The projective plane

If F is a field and V a F-vector space, then the *projective space* $\mathbb{P}(V)$ associated to V is the set of lines through the origin. In other words, an element x in $\mathbb{P}(V)$ is a subset of V the form $\{tv \mid t \in F\}$ for some nonzero $v \in V$.

The projective line is defined as $\mathbb{P}(F^2)$ and is denoted as \mathbb{P}^1 .

The projective plane is defined as $\mathbb{P}(F^3)$ and denoted \mathbb{P}^2 .

More generally projective n-space is defined as $\mathbb{P}(F^{n+1})$. We can describe a point in \mathbb{P}^n by giving a nonzero element in the line it represents: we write $[x_0, x_1, \ldots, x_n]$ for the line containing $(x_0, x_1, \ldots, x_n) \in F^{n+1}$: the set of all $(tx_0, tx_1, \ldots, tx_n)$ with $t \in F$. Here, not all of the x_i are allowed to be zero, and $[x_0, x_1, \ldots, x_n] = [\lambda x_0, \lambda x_1, \ldots, \lambda x_n]$ whenever $\lambda \neq 0$ is an element of F. $[x_0, x_1, \ldots, x_n]$ are the projective coordinates on \mathbb{P}^n .

 \mathbb{P}^1 may be thought of as $F \cup \{\infty\}$: indeed, to $t \in F$ associate the point $[t, 1] \in \mathbb{P}^1$. Notice that [t, 1] = [t', 1] if and only if t = t'. So this defines an injective map $F \to \mathbb{P}^1$. The image contains all points except [1, 0] (playing the role of ∞). This makes sense: suppose $F = \mathbb{R}$. Then for all nonzero $t \in \mathbb{R}$, we have $[t, 1] = [1, t^{-1}]$. So for $|t| \to \infty$, it is "reasonable" to define the limit as [1, 0].

We could have also chosen the map $F \to \mathbb{P}^1$ sending t to [1, t]. For nonzero t this is the image of t^{-1} under the map above. It maps 0 to [1, 0] and the " ∞ " with respect to this map is then [0, 1], the old 0.

Notice that for $[x, y, z] \in \mathbb{P}^2$, the condition that $z \neq 0$ is well defined: if $(x, y) \neq (0, 0)$, then all elements of the line through (x, y, 0) will have last coordinate zero. So all projective coordinates for this line will have z = 0.

Let $U \subset \mathbb{P}^2$ be the set where $z \neq 0$. Any $[x, y, z] \in U$ is represented by a unique triple of the form [x, y, 1] (by dividing all coordinates with z^{-1} . This gives a bijection $F^2 \to U$ sending (x, y) to [x, y, 1]. On the other hand the complement L of U is the set of points [x, y, z] in \mathbb{P}^2 for which z = 0. It is naturally in with \mathbb{P}^1 : [x, y, 0] may be identified with $[x, y] \in \mathbb{P}^1$.

We can therefore think of \mathbb{P}^2 as $U \cup L$ as F^2 with a copy of \mathbb{P}^1 attached, the "line at infinity", playing a role similar to ∞ in the case of \mathbb{P}^1 . Any line C in F^2 that contains (0,0) will then give another copy of \mathbb{P}^1 in \mathbb{P}^2 by attaching its slope "at infinity": we put \hat{C} to be the set of all points in $C \subset U$ together with [x, y, 0]. If C has slope different from infinity with the x-axis in U, say, then the point $x \neq 0$ and so [x, y, 0] = [1, y/x, 0] may be identified with the "slope". Notice that if we identify L with $F \cup \{\infty\}$ where [1, t, 0] corresponds to $t \in F$ and ∞ is [0, 1, 0], then this means exactly that $\hat{C} = C \cup \{\text{slope}\}$. Any line parallel to C in U has the same slope so we add the same point to it. That way any two parallel lines in $F^2 = U$ "intersect" at infinity.

The set of lines in \mathbb{P}^2 is then the collection of all these \hat{C} together with L. Compare this to the picture in class, where $F = \mathbb{Z}_2$. F^2 has four elements. \mathbb{P}^2 has 7 elements: there are 7 nonzero vectors in F^3 each one corresponding to a unique line through the origin (0,0,0) (every such line contains the origin and precisely one nonzero element, because $F = \{0,1\}$). We could therefore number them through as follows 1: (1,0,0), 2: (1,0,1), 3: (1,1,0), 4: (0,0,1), 5: (0,1,1), 6: (1,1,1), and 7: (0,1,0). This enumeration is somewhat arbitrary, the only reason for it to be chosen here is that it coincides with the picture in class.

The set U would then consist of the [x, y, z] with $z \neq 0$. Thus

$$U = \{[0, 0, 1], [1, 0, 1], [0, 1, 1], [1, 1, 1]\}$$

or in the other notation $U = \{2, 4, 5, 6\}$. The "line at infinity", L is then [1, 0, 0], [1, 1, 0] and $[0, 1, 0], \text{ or } \{1, 3, 7\}$.

You see that we can identify U with $F^2 = \{(0,0), (1,0), (0,1), (1,1)\}$ simply by appending a 1 to each vector, so that 4 corresponds to (0,0), and so on. The line through the origin in F^2 , that also contains (1,0) for example has slope 0 with itself (the *x*-axis). And so in \mathbb{P}^2 , we would add [1,0,0] to it and obtain the line $\{4,2,1\}$ in our picture. The line containing (0,1) and (1,1) is parallel to the *x*-axis and therefore has the same slope (we get $\{5,6,1\}$. In this manner we find that the set of all these lines in \mathbb{P}^2 (including L) will correspond to the lines in our picture (in a natural way). These lines are all naturally in bijection with a copy of \mathbb{P}^1 . Indeed, any such line is of the form $\mathbb{P}(W)$ for a uniquely determined two-dimensional linear subspace of F^3 (given by a single linear equation). It is the subspace spanned by any two points (i.e. lines in F^3) contained in it.

For example, the line L is $\mathbb{P}(W)$ for $W = \ker z = \{(x, y, 0) \mid x, y \in F\}$. The line $\{5, 6, 1\}$ mentioned earlier is the projective space of the span of (0, 1, 1) and (1, 1, 1), which is the space satisfying y + z = 0.

In general, if a line $C \subset U$ is given by the (affine) linear equation ax + by + c = 0, \hat{C} is the projective space of the kernel of ax + by + cz = 0 (and so the point at infinity of \hat{C} in L is the solution [x, y, 0] of ax + by = 0).