
The projective plane

If F is a field and V a F -vector space, then the projective space P(V ) associated to V is the
set of lines through the origin. In other words, an element x in P(V ) is a subset of V the
form {tv | t ∈ F} for some nonzero v ∈ V .
The projective line is defined as P(F 2) and is denoted as P1.
The projective plane is defined as P(F 3) and denoted P2.
More generally projective n-space is defined as P(F n+1). We can describe a point in Pn

by giving a nonzero element in the line it represents: we write [x0, x1, . . . , xn] for the line
containing (x0, x1, . . . , xn) ∈ F n+1: the set of all (tx0, tx1, . . . , txn) with t ∈ F . Here, not all
of the xi are allowed to be zero, and [x0, x1, . . . , xn] = [λx0, λx1, . . . , λxn] whenever λ 6= 0 is
an element of F . [x0, x1, . . . , xn] are the projective coordinates on Pn.
P1 may be thought of as F ∪ {∞}: indeed, to t ∈ F associate the point [t, 1] ∈ P1. Notice
that [t, 1] = [t′, 1] if and only if t = t′. So this defines an injective map F → P1. The image
contains all points except [1, 0] (playing the role of ∞). This makes sense: suppose F = R.
Then for all nonzero t ∈ R, we have [t, 1] = [1, t−1]. So for |t| → ∞, it is “reasonable” to
define the limit as [1, 0].
We could have also chosen the map F → P1 sending t to [1, t]. For nonzero t this is the
image of t−1 under the map above. It maps 0 to [1, 0] and the “∞” with respect to this map
is then [0, 1], the old 0.
Notice that for [x, y, z] ∈ P2, the condition that z 6= 0 is well defined: if (x, y) 6= (0, 0),
then all elements of the line through (x, y, 0) will have last coordinate zero. So all projective
coordinates for this line will have z = 0.
Let U ⊂ P2 be the set where z 6= 0. Any [x, y, z] ∈ U is represented by a unique triple of the
form [x, y, 1] (by dividing all coordinates with z−1. This gives a bijection F 2 → U sending
(x, y) to [x, y, 1]. On the other hand the complement L of U is the set of points [x, y, z] in
P2 for which z = 0. It is naturally in with P1: [x, y, 0] may be identified with [x, y] ∈ P1.
We can therefore think of P2 as U ∪L as F 2 with a copy of P1 attached, the “line at infinity”,
playing a role similar to ∞ in the case of P1. Any line C in F 2 that contains (0, 0) will then
give another copy of P1 in P2 by attaching its slope “at infinity”: we put Ĉ to be the set
of all points in C ⊂ U together with [x, y, 0]. If C has slope different from infinity with the
x-axis in U , say, then the point x 6= 0 and so [x, y, 0] = [1, y/x, 0] may be identified with the
“slope“. Notice that if we identify L with F ∪ {∞} where [1, t, 0] corresponds to t ∈ F and
∞ is [0, 1, 0], then this means exactly that Ĉ = C ∪{slope}. Any line parallel to C in U has
the same slope so we add the same point to it. That way any two parallel lines in F 2 = U
”intersect“ at infinity.
The set of lines in P2 is then the collection of all these Ĉ together with L. Compare this
to the picture in class, where F = Z2. F 2 has four elements. P2 has 7 elements: there are
7 nonzero vectors in F 3 each one corresponding to a unique line through the origin (0, 0, 0)
(every such line contains the origin and precisely one nonzero element, because F = {0, 1}).
We could therefore number them through as follows 1: (1, 0, 0), 2: (1, 0, 1), 3: (1, 1, 0), 4:
(0, 0, 1), 5: (0, 1, 1), 6: (1, 1, 1), and 7: (0, 1, 0). This enumeration is somewhat arbitrary, the
only reason for it to be chosen here is that it coincides with the picture in class.



The set U would then consist of the [x, y, z] with z 6= 0. Thus

U = {[0, 0, 1], [1, 0, 1], [0, 1, 1], [1, 1, 1]}

or in the other notation U = {2, 4, 5, 6}. The ”line at infinity“, L is then [1, 0, 0], [1, 1, 0] and
[0, 1, 0], or {1, 3, 7}.
You see that we can identify U with F 2 = {(0, 0), (1, 0), (0, 1), (1, 1)} simply by appending a
1 to each vector, so that 4 corresponds to (0, 0), and so on. The line through the origin in
F 2, that also contains (1, 0) for example has slope 0 with itself (the x-axis). And so in P2,
we would add [1, 0, 0] to it and obtain the line {4, 2, 1} in our picture. The line containing
(0, 1) and (1, 1) is parallel to the x-axis and therefore has the same slope (we get {5, 6, 1}. In
this manner we find that the set of all these lines in P2 (including L) will correspond to the
lines in our picture (in a natural way). These lines are all naturally in bijection with a copy
of P1. Indeed, any such line is of the form P(W ) for a uniquely determined two-dimensional
linear subspace of F 3 (given by a single linear equation). It is the subspace spanned by any
two points (i.e. lines in F 3) contained in it.
For example, the line L is P(W ) for W = ker z = {(x, y, 0) | x, y ∈ F}. The line {5, 6, 1}
mentioned earlier is the projective space of the span of (0, 1, 1) and (1, 1, 1), which is the
space satisfying y + z = 0.
In general, if a line C ⊂ U is given by the (affine) linear equation ax + by + c = 0, Ĉ is the
projective space of the kernel of ax + by + cz = 0 (and so the point at infinity of Ĉ in L is
the solution [x, y, 0] of ax + by = 0).


