The projective plane

If Fis a field and V' a F-vector space, then the projective space P(V') associated to V' is the
set of lines through the origin. In other words, an element x in P(V) is a subset of V' the
form {tv | t € F'} for some nonzero v € V.

The projective line is defined as P(F?) and is denoted as P!

The projective plane is defined as P(F?) and denoted P2

More generally projective n-space is defined as P(F™*1). We can describe a point in P"
by giving a nonzero element in the line it represents: we write [zg,z1,...,x,] for the line
containing (xg, z1,...,T,) € F": the set of all (txg,txy, ..., tx,) with t € F. Here, not all
of the x; are allowed to be zero, and [zg, z1, ..., 2,] = [Axg, A\x1, ..., Az,] whenever X # 0 is
an element of F. [zg,x1,...,2,| are the projective coordinates on P".

P! may be thought of as F'U {oo}: indeed, to t € F associate the point [t,1] € P'. Notice
that [t,1] = [¢/,1] if and only if ¢ = . So this defines an injective map F' — P'. The image
contains all points except [1,0] (playing the role of co). This makes sense: suppose F' = R.
Then for all nonzero t € R, we have [t,1] = [1,¢7!]. So for |t| — oo, it is “reasonable” to
define the limit as [1,0].

We could have also chosen the map F' — P! sending ¢ to [1,t]. For nonzero ¢ this is the
image of t~! under the map above. It maps 0 to [1,0] and the “co” with respect to this map
is then [0, 1], the old 0.

Notice that for [z,y,2] € P?, the condition that z # 0 is well defined: if (z,y) # (0,0),
then all elements of the line through (z,y,0) will have last coordinate zero. So all projective
coordinates for this line will have z = 0.

Let U C P? be the set where 2z # 0. Any [z,y, 2] € U is represented by a unique triple of the
form [z,y,1] (by dividing all coordinates with z=!. This gives a bijection F> — U sending
(x,y) to [z,y,1]. On the other hand the complement L of U is the set of points [z, v, 2] in
P? for which 2z = 0. Tt is naturally in with P': [z,y,0] may be identified with [x,y] € P!
We can therefore think of P? as UU L as F? with a copy of P! attached, the “line at infinity”,
playing a role similar to co in the case of P!. Any line C' in F? that contains (0,0) will then
give another copy of P! in P? by attaching its slope “at infinity”: we put C to be the set
of all points in C' C U together with [x,y,0]. If C has slope different from infinity with the
x-axis in U, say, then the point x # 0 and so [z, y,0] = [1,y/z, 0] may be identified with the
“slope“. Notice that if we identify L with F' U {oc} where [1,¢,0] corresponds to ¢t € F' and
00 is [0,1,0], then this means exactly that C' = C'U {slope}. Any line parallel to C'in U has
the same slope so we add the same point to it. That way any two parallel lines in F? = U
"intersect“ at infinity.

The set of lines in P? is then the collection of all these C together with L. Compare this
to the picture in class, where F' = Z,. F? has four elements. P? has 7 elements: there are
7 nonzero vectors in F® each one corresponding to a unique line through the origin (0,0, 0)
(every such line contains the origin and precisely one nonzero element, because F' = {0, 1}).
We could therefore number them through as follows 1: (1,0,0), 2: (1,0,1), 3: (1,1,0), 4:
(0,0,1), 5: (0,1,1), 6: (1,1,1), and 7: (0,1,0). This enumeration is somewhat arbitrary, the
only reason for it to be chosen here is that it coincides with the picture in class.



The set U would then consist of the [x,y, z] with z # 0. Thus
U ={[0,0,1],[1,0,1],[0,1,1],[1,1,1]}

or in the other notation U = {2,4,5,6}. The "line at infinity“, L is then [1,0,0],[1, 1, 0] and
[0,1,0], or {1,3,7}.

You see that we can identify U with F? = {(0,0), (1,0),(0,1), (1,1)} simply by appending a
1 to each vector, so that 4 corresponds to (0,0), and so on. The line through the origin in
F?, that also contains (1,0) for example has slope 0 with itself (the z-axis). And so in P2
we would add [1,0,0] to it and obtain the line {4,2,1} in our picture. The line containing
(0,1) and (1,1) is parallel to the z-axis and therefore has the same slope (we get {5,6,1}. In
this manner we find that the set of all these lines in P? (including L) will correspond to the
lines in our picture (in a natural way). These lines are all naturally in bijection with a copy
of P!. Indeed, any such line is of the form P(W) for a uniquely determined two-dimensional
linear subspace of F® (given by a single linear equation). It is the subspace spanned by any
two points (i.e. lines in F®) contained in it.

For example, the line L is P(W) for W = kerz = {(z,y,0) | ,y € F}. The line {5,6,1}
mentioned earlier is the projective space of the span of (0,1,1) and (1,1, 1), which is the
space satisfying y + z = 0.

In general, if a line C' C U is given by the (affine) linear equation ax + by + ¢ = 0, C is the
projective space of the kernel of ax + by + ¢z = 0 (and so the point at infinity of Cin L is
the solution [z, y, 0] of az + by = 0).



