
Math 422 Winter 2007 - Midterm Exam

March 1, 2007

No books, no notes, no calculators are allowed.

Good Luck!

Problem 1. [12] Let C be the linear [7, k, d]-code over Z2 with generator matrix

G =









1 1 0 0 1 0 0
0 1 0 0 0 1 1
1 1 1 0 0 1 0
0 1 0 1 1 1 0









a) Find k and the number of elements in C. Justify your answer.

b) Find a parity check matrix H for C. If possible, find one in standard form.

c) Is C a Hamming code? Explain.

d) Encode the message vector 1001.

e) Suppose you receive the vector 1110111. Decode it using syndrome decoding with your
matrix H from b). Show your work (in particular, compute the syndrome). (Hint: You
do not have to write down a syndrome table...)

Solution.

a) k = 4 because G has 4 rows which form a basis for C. C has 2k = 24 = 16 elements,
because this is the number of distinct linear combinations of four linearly independent
vectors over Z2.

b) G may be transformed into standard form without any column swaps. The result is

S =









1 0 0 0 1 1 1
0 1 0 0 0 1 1
0 0 1 0 1 1 0
0 0 0 1 1 0 1









Unsing the formula H = [−At I] one then obtains

H =





1 0 1 1 1 0 0
1 1 1 0 0 1 0
1 1 0 1 0 0 1







c) Yes, C is a Hamming code: by inspection, H contains every nonzero vector of length
3 as exactly one column. By the construction of Hamming codes, this makes C a
Hamming code.

d) [1 0 0 1]G is the sum of the first and last row of G: [1 0 0 1 0 1 0].

e) The syndrome is Hyt = [1 0 1]t, which is the fourth column of H . Thus, e =
[0 0 0 1 0 0 0], and y is decoded to 1111111.

Problem 2. [10] Let C be the linear code of length 5 over Z11 given by the equations

x1 + x2 + x3 + x4 + x5 = 0

x2 + 2x3 + 2x4 + x5 = 0

x1 − 8x2 + 9x3 = 0

a) Find a generator matrix for C.

b) Find a parity check matrix H for C.

c) Find a basis for the dual code of C.

d) Find the maximum number N such that any collection of N columns of H (cf. b)) is
linearly independent. Justify your answer.

e) Find d(C). Is C a perfect code? Justify your answer.

Solution.

a) C is the solution set of linear equations, so we have to row reduce

A =





1 1 1 1 1
0 1 2 2 1
1 −8 9 0 0





The reduced echelon form of A is

U =





1 0 0 6 2
0 1 0 10 8
0 0 1 7 2





and so C is spanned by [5 1 4 1 0] and [9 3 9 0 1] and a generator matrix is

[

5 1 4 1 0
9 3 9 0 1

]

b) C is basically the nullspace of A and U (up to transposition), and rankA = 3 =
5 − dim C. Thus H = A or H = U will do. Of course, there are other possibilities.



c) The rows of A = H will do: [1 1 1 1 1], [0 1 2 2 1], [1 − 8 9 0 0].

d) N does not depend on whether we compute it for H or its row echelon form. Clearly,
N ≤ 3 because N ≤ rank U . (and every column is a linear combination of the first
three columns of U). It is also clear that no two columns of I3 together with one of
the last two columns of U form a linearly dependent set. It remains to see that any
column of I3 together with the last two columns of U is linearly independent. But that
is clear because they always form an invertible matrix.

e) By d) N = 3 and by a theorem we know d(C) = N + 1 = 4. We have seen (home-
work/sample midterm/class) that a code with even minimum distance is never perfect.

Problem 3. [8] For each of the following statements indicate whether it is true or false. No
justification is needed.

a) If G is the generator matrix of a linear code (of dimension k with 1 ≤ k < n), then
G is also a parity check matrix for some (possibly different) linear code of dimension
n − k.

b) There is no linear 3-ary (7, 16, 3)-code.

c) An (n, M, 2t)-code can be used to correct t errors, using nearest neighbour decoding.

d) An (n, M, d)-code can be used to detect d − 1 errors.

e) Two equivalent codes have the same minimum distance.

f) A (nonempty) binary code is linear if and only if the sum of any two (not necessarily
distinct) codewords is again a codeword.

g) For every pair of positive integers n > d, there is always a perfect (n, M, d)-code (for
some M).

h) If C is a linear [n, k]-code with generator matrix G, then x ∈ F n
q is a codeword if and

only if Gxt = 0.

a) TRUE: G is a PCM for C⊥.

b) TRUE: 16 is not a power of 3,

c) FALSE: We can correct only t−1 = [(d−1)/2] errors using nearest neighbour decoding.

d) TRUE

e) TRUE

f) TRUE: This is special for binary codes; there are no non-trivial scalar multiples to
ckeck (λx is either x or 0), and since 0 = x + x every axiom of a subspace is satisfied.



g) FALSE: This is (if at all) possible only if the Hamming bound is sharp (but even then,
it is not always possible).

h) FALSE: This is the condition for the dual code C⊥.

Problem 4. [8] Let C be a linear [3, k, 3]-code over Z3 with k ≥ 1. Show that k (i.e. dim C)
is equal to 1. How many linear codes with these parameters are there? Justify your answer.

Solution. There are many possible ways to do this. Here is one: We know that Aq(n, n) = q.
So A3(3, 3) = 3. A [3, k, 3]-code has 3k elements. Thus we must have 3k ≤ 3, or k ≤ 1.
Hence k = 1.
Alternatively: we know that any such code is a subcode of the binary repetition code of
length 3 or some equivalent thereof, Hence 3k ≤ 3, and again k ≤ 1.
Other solutions are equally fine.
As for the number: since k = 1, C is specified by a single basis vector. As any nonzero
element of C has weight 3, C is specified by a vector of weight 3. There are 8 = 23 such
vectors (for each place a choice of 1 or 2), and two vectors will result in the same code.
Hence the total number of different codes is 4.

Problem 5. [6] Recall that Aq(n, d) is the largest value for M such that there exists a q-ary
(n, M, d)-code.
Let C be a q-ary (n, M, d)-code with n, d > 0 and M ≥ 2. Suppose that M is maximal, i.e.
that M = Aq(n, d).
Prove: For every vector y ∈ F n

q there is a codeword x such that d(x,y) < d. In other words,
every vector is a distance of at most d − 1 away from a codeword.
(Hint: M is maximal.)
Solution. Let y be a vector. If d(x,y) ≥ d for all x ∈ C, we may add y to C and still have a
code with minimum distance d. But now the number of elements would be M +1 > Aq(n, d),
a contradiction. Thus d(x,y) < d for some x ∈ C.


