Math 422, Winter 2008 Review on Linear Algebra

Systems of Equations

In the following let F be a field. To solve a system of linear equations

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0$$

$$\vdots \qquad = \vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = 0$$

we proceed as follows: the set of solutions to this system is precisely the nullspace of the matrix

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

Here the nullspace of A is the set of all $n \times 1$ column vectors **x** satisfying A**x** = **0**. Thus, (x_1, x_2, \ldots, x_n) solves the above system if and only if

$$A\begin{bmatrix} x_1\\x_2\\\vdots\\x_n\end{bmatrix} = \mathbf{0}$$

In coding theory it is common to write vectors in F^n as row vectors. That is we often write

$$\mathbf{x} = [x_1 \, x_2 \, \dots \, x_n]$$

for the vector (x_1, x_2, \ldots, x_n) in F^n . In this notation (x_1, x_2, \ldots, x_n) solves the above system if and only if $A\mathbf{x}^t = \mathbf{0}$ where $\mathbf{x} = [x_1 x_2 \ldots x_n]$ and ?^t denotes the transpose.

How do we solve such a system? The answer is: Gaussian Elimination. That is, we need to bring the matrix A into reduced (row) echelon form. We can do this by performing the following operations:

- exchanging two rows
- adding a multiple of one row to another (different) row
- multiplying any row with a nonzero scalar

If we call the first nonzero entry in a row the *leading entry* of this row then using these operations we obtain a matrix that has the following properties:

- If a row has a leading entry, the leading entry is 1.
- If a row has a leading entry, it is (strictly) to the right of the leading entry of the preceding row. (In particular, if a row has a leading entry, then the preceding row has a leading entry.)
- The entries above each leading entry are zero.

(From the second property it follows that the rows containing all zeros are below the rows containing nonzero entries.)

A matrix satisfying these three properties is called a matrix in *reduced (row) echelon form*. A typical (but not the most general) matrix in this form looks like

0	0	 0	1	*	 *	0	*]
0	0	 0	0	0	 0	1	*
0	0	 0	0	0	 0	0	0

Here a * denotes an arbitrary entry (zero or nonzero). Each column of the matrix corresponds to a variable. The variables corresponding to the columns without leading entry are called free variables.

IMPORTANT: The number of free variables is the dimension of the nullspace of this matrix. The nullspace of a matrix and that of its reduced row echelon form are equal. If solving the equation $A\mathbf{x} = \mathbf{0}$: if, in the reduced echelon form of A the column corresponding to a variable contains a leading entry (of any row), then the value of the corresponding variable is uniquely determined by the values of the free variables (cf. back substitution).

RECALL: This applies only to homogeneous systems. For general systems of the form $A\mathbf{x} = \mathbf{b}$, the matrix one needs to bring into reduced echelon form is the *augmented matrix* obtained from our A by adding **b** as an additional column. But here this column would be all zeros and would not change during the process of finding the reduced echelon form.

Example

Consider $F = \mathbb{Z}_3$ and

$$A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 0 & -1 & 2 \\ 1 & -2 & 0 & 1 \end{bmatrix}$$

Using the fact that $F = \mathbb{Z}_3$, we add the first row to the second, and subtract it from the last to obtain

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \end{bmatrix}$$

Erasing the second and third 1 in the first row by subtracting the second row and adding the third we arrive at the reduced echelon form (after scaling the last row by -1):

$$\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Thus the nullspace of A is the set of vectors satisfying the equations $x_1 + x_4 = 0, x_2 = 0, x_3 = 0$. The only free variable is x_4 , and we obtain as nullspace (or *kernel*, denoted ker A)

$$\ker A = \left\{ t \begin{bmatrix} 2\\0\\0\\1 \end{bmatrix} : t \in F \right\}$$

Since this is a one-dimensional subspace over F, it has three elements, corresponding to the three possible values of t (0, 1, 2):

$$\ker A = \left\{ \begin{bmatrix} 0\\0\\0\\0\end{bmatrix}, \begin{bmatrix} 2\\0\\0\\1\end{bmatrix}, \begin{bmatrix} 1\\0\\0\\2\end{bmatrix} \right\}$$

Dimension and bases of vector spaces

Explicit case

How do we compute the dimension of a subspace W of F^n ? It depends how W is given. Suppose we know that W is *explicitly* given, that is, W is spanned by given vectors $\mathbf{w}_1, \mathbf{w}_2, \ldots, \mathbf{w}_k$ (thought of as column vectors). Then we form the matrix

$$A = [\mathbf{w}_1 \, \mathbf{w}_2 \, \dots \, \mathbf{w}_k]$$

Then W is equal to the column space of A (that is, the space spanned by the columns of A) and so

$$\dim W = \operatorname{rank} A$$

How do we find dim $W = \operatorname{rank} A$? Again, by determining the reduced row echelon form (if you know what it means: *any* echelon form will do, it does not have to be reduced) and counting the number of leading entries. Alternatively, if F is finite with q elements, and if we know the number of elements W contains, then $|W| = q^k$ where $k = \dim W$, so $\dim W = \log_q |W|$.

How do we find a spanning set for W? This depends on the problem we are looking at. However, if we work over a finite field F, then W is finite. If we are given *all* elements of W, then we may take as spanning set W itself, that is, the columns of A will be all elements of W. Of course, for large subspaces this is impractical.

How do we find a basis of a subspace W? Again, we form the matrix A whose columns form a spanning set of W. Then we compute the row echelon form. For each row with a leading entry we note the column which contains this leading entry. Then the corresponding columns of A (*not* those of the echelon form) will be a basis for W.

Implicit case

If W is implicitly given, that is $W = \ker A$ for some matrix A, then we find its dimension and a basis by solving the system $A\mathbf{x} = \mathbf{0}$. So dim W is the number of free variables, and a basis is obtained by the parameterized vector form of the solution, that is: for each free variable we obtain one basis vector as follows:

For the free variable x_i the vector is: its entry at the *i*th position is 1, its entry at a position $j \neq i$ is 0 if x_j is a free variable. Otherwise it is $-u_{ki}$ where u_{ki} is the entry in the *k*th row and *i*th column of the reduced row echelon form of A and k is the index of the row which contains the leading entry corresponding to x_j .

In the example above: the only free variable is x_4 . The corresponding basis vector has $2 = -u_{14}$ as first entry. The second and third entries are $-u_{24} = -u_{34} = 0$.

Again, if we are only interested in the dimension of W, then dim $W = n - \operatorname{rank} A$ where n is the number of columns of A (cf. the Rank Theorem).