Math 422 Winter 2007 - Sample Problems

April 9, 2007

Problem 1. Let *C* be the linear code of length 10 over $F = \mathbb{Z}_{11}$ given by the equations $\sum_{i=1}^{10} ix_i = 0$. That is $\mathbf{x} \in F^{10}$ is a codeword if and only if $x_1 + 2x_2 + \cdots + 10x_{10} = 0$. To distinguish the symbol 10 from the sequence of symbols 10 we write X instead of 10.

- a) Find a generator matrix for C.
- b) Find a parity check matrix for C.
- c) Compute the dimension of C and C^{\perp} .
- d) Find the minimum distance of C and C^{\perp} . Justify your answers.
- e) Suppose the vector $\mathbf{y} = X23456789X$ is received. Use syndrome decoding (with your parity check matrix in b)) to obtain a codeword. How many errors did at least occur?
- f) In your answer in e), is there a unique nearest neighbour? Or could you have decoded to a different codeword which is also a nearest codeword? Justify your answer.

Problem 2. Let $F_8 = \mathbb{Z}_2[x]/\langle 1 + x + x^3 \rangle$ and denote the congruence class of x in F_8 by a.

- a) Let $\alpha = 1 + a$. Find the minimal polynomial m_{α} of α over \mathbb{Z}_2 . (Hint: What are the roots of m_{α} ?)
- b) Let C be the binary BCH code of length 7 and design distance d = 5 given by α . (You may use without proof that α has order 7.)

Find the generator polynomial of C. You do not need to multiply it out.

- c) What is the dimension of C?
- d) Use the factorization $x^7 1 = (x 1)(x^3 + x + 1)(x^3 + x^2 + 1)$ to identify the check polynomial for C.
- e) Suppose the vector $\mathbf{y} = 1101011$ is received. Using the check polynomial from d), test whether \mathbf{y} is a codeword.
- f) Use the BCH decoding procedure to obtain the original codeword if possible. How many errors did occur?

Element	Power of α
0	N/A
1	$lpha^7$
a	$lpha^5$
a^2	$lpha^3$
1+a	α^1
$1 + a^2$	α^2
$a + a^2$	$lpha^6$
$1 + a + a^2$	$lpha^4$

Problem 3.

- a) Prove that a Hamming code is perfect. (You may use the fact that a Hamming code has minimum distance 3.)
- b) Let q be a prime. Write down a PCM for a q-ary Hamming code with redundancy 2.

Problem 4. For each of the following statements indicate whether it is true or false:

- a) Any binary Hamming code is equivalent to a cyclic code.
- b) $R_{q,n} = F_q[x]/\langle x^n 1 \rangle$ is a field if and only if n = 1.
- c) There is a field with 256 elements.
- d) There is a field with 255 elements.
- e) A standard array for a linear [n, k, d]-code over F_q has q^{n-k} rows.
- f) Every code is equivalent to a linear code.

Problem 5. Let F_q be a finite field with q elements. Suppose q - 1 is prime. Show that every nonzero element of F_q is primitive.

Problem 6.

- a) Show that $f = 1 + x + x^2 + x^3 + x^4$ is irreducible in $\mathbb{Z}_2[x]$.
- b) Let $F_{16} = \mathbb{Z}_2[x]/\langle f \rangle$ and suppose α is a primitive element of F_{16} . What is the degree of its minimal polynomial over \mathbb{Z}_2 .
- c) What is the degree of m_{α^7} ? Justify your answer.