Math 422 Winter 2007 - Final Exam

April 24, 2007

No books, no notes, no calculators are allowed.

Good Luck!

Remark: The equation to find the error locator polynomial for a BCH code is of the form

$\begin{bmatrix} S_1 & S_2 \\ S_2 & S_3 \\ \vdots & \vdots \\ S_t & S_{t+} \end{bmatrix}$	· · · · · · ·	$\begin{array}{c} S_t \\ S_{t+1} \end{array}$	b_t b_{t-1}	 $\begin{bmatrix} S_{t+1} \\ S_{t+2} \\ \vdots \\ S_{2t} \end{bmatrix}$
$\begin{bmatrix} \vdots & \vdots \\ S_t & S_{t+1} \end{bmatrix}$: Sat 1	$\begin{vmatrix} \vdots \\ b_1 \end{vmatrix}$: Sat

Problem 1. [14] Let n > 0 and let C be the binary *even-weight code* of length n: that is, C consists of all length n vectors that have even weight.

$$C = \{ \mathbf{x} \in \mathbb{Z}_2^n \mid w(\mathbf{x}) \text{ is even} \}$$

- a) Find a parity check matrix H for C. (*Hint:* $w(\mathbf{x}) \equiv x_1 + x_2 + \cdots + x_n \mod 2$)
- b) Find a generator matrix for C.
- c) Compute the minimum distance of both, C and its dual code C^{\perp} . Justify your answers.
- d) How many elements does C contain? How many elements does C^{\perp} contain? Justify your answer.
- e) Suppose n is odd. Is C^{\perp} perfect? Why or why not?
- f) Again let n > 2 be odd. Is $C \subseteq C^{\perp}$? Is $C^{\perp} \subseteq C$?
- g) Prove or disprove: C is a cyclic code.

Problem 2. [16] Let $F_9 = \mathbb{Z}_3[x]/\langle x^2 + 1 \rangle$. We denote $\bar{x} \in F_9$ by a. Then $\alpha = 1 + a$ is primitive.

Let C be the BCH code of design-distance 3 over \mathbb{Z}_3 corresponding to α, α^2 .

- a) What is the length of C? Justify your answer.
- b) Find the generator polynomial g for C.
- c) Find the check polynomial h for C.
- d) What are the dimensions of C and C^{\perp} ? Justify your answer.
- e) How many errors can C at least correct?
- f) Suppose you receive the vector 00101100. Translate this into a polynomial and compute the syndromes S_1 and S_2 .
- g) Decode the received vector in f) to a codeword if possible, using the decoding scheme for BCH codes. How many errors did occur?
- h) Is the BCH code corresponding to $\alpha, \alpha^2, \alpha^3$ (design-distance 4) the same code as C? Why or why not?

(You may freely refer to Table 1.)

Element	Minimal polynomial	Power of α
1	x - 1 = x + 2	$lpha^{8}$
2	x - 2 = x + 1	$lpha^4$
a	$x^2 + 1$	$lpha^6$
2a	$x^2 + 1$	α^2
1+a	$x^2 + x + 2$	α^1
1+2a	$x^2 + x + 2$	$lpha^3$
2+a	$x^2 + 2x + 2$	$lpha^7$
2+2a	$x^2 + 2x + 2$	$lpha^5$

Table 1. Elements of F_9 , their minimal polynomials over \mathbb{Z}_3 , and their expression as powers of the primitive element.

Problem 3. [6] For each nonzero element in F_9 (defined as in Problem 2), find its order. Justify your answer.

Problem 4. [4] Prove the singleton bound:

If C is a linear [n, k, d]-code over F_q , then $k \leq n - d + 1$ or, equivalently, $d \leq n - k + 1$. (*Hint:* You need to show only one of the two inequalities. For the second one, you could use the criterion involving a parity check matrix for C.) **Problem 5.** [10] For each of the following statements, indicate whether it is true or false. No justification is needed.

- a) For a linear code C with a parity check matrix H, its minimum distance is the smallest positive number d such that there are d linearly dependent columns of H.
- b) The minimum distance of a Hamming code is always 5.
- c) There is a perfect ternary code of length 11 and dimension 6.
- d) A binary Hamming code is equivalent to a cyclic code.
- e) The degree of the generator polynomial of a cyclic code is equal to the dimension of the code.

Problem 6. [4] Let $q = p^l$ for some prime p and some integer l > 0, and let F_q be a finite field with q elements. Show that for each $a \in F_q$, the polynomial $f = x^p - a$ has a unique root in F_q .

(*Hint:* Powers of a?)