Decoding BCH Codes

Let $F = F_q$ be a field with q elements. Let $\alpha \in F_{q^s}$ be an element of order n, and let C be the corresponding BCH code of length n and design distance d (with generator polynomial equal to the product of the distinct minimal polynomials of $\alpha, \alpha^2, \ldots, \alpha^{d-1}$). Let g be the generator polynomial.

If we identify polynomials in $F_q[x]$ of degree $\langle n \rangle$ with the elements of $R_{q,n} = F_q[x]/(x^n - 1)$, then C may be thought of as the set of all polynomials of degree $\langle n \rangle$ with roots $\alpha, \alpha^2, \ldots, \alpha^{d-1}$. That is

$$C = \{ f \in F_q[x] \mid \deg f < n; f(\alpha) = f(\alpha^2) = \dots = f(\alpha^{d-1}) = 0 \} = \{ f \in (g) \mid \deg f < n \}$$

Notice that the elements in C are in one-to-one correspondence with their congruence classes in $R_{q,n}$; therefore, C corresponds to an ideal in $R_{q,n}$ (all elements divisible by \bar{g} in $R_{q,n}$).

Since g divides $x^n - 1$, $f \in F_q[x]$ is divisible by g in $F_q[x]$ if and only if $\overline{f} \in R_{q,n}$ is divisible by \overline{g} : suppose f = qg, then $\overline{f} = \overline{q}\overline{g}$ in $R_{q,n}$ is clear. On the other hand, suppose $\overline{f} = \overline{q}\overline{g}$ for some polynomial q. Then $f = qg + (x^n - 1)r$ for a suitable polynomial r. Since $x^n - 1 = hg$, it follows that f = (q + rh)g is divisible by g in $F_q[x]$ as well.

We are interested in C only as a vector space over F_q and are not really interested in the multiplicative structure. In that sense, it makes no difference whether we think of C as a subset of $F_q[x]$ or of $R_{q,n}$. It is worth keeping in mind though, that C is not an ideal when thought of as a subset of $F_q[x]$ (for starters, it is a finite set, but no nonzero ideal in $F_q[x]$ is finite), nor is it invariant under multiplication with x (this is true only modulo $x^n - 1$).

The decoding procedure for C is now as follows: Suppose a vector f is received, which we think of as a polynomial of degree < n. We assume that d = 2t + 1 is odd. We need to compute the coset leader e.

- (1) Compute the syndromes: $S_1 = f(\alpha), S_2 = f(\alpha^2), \ldots, S_{d-1} = f(\alpha^{d-1})$. These are elements of F_{q^s} .
- (2) If all of the S_i are zero, f is a codeword, go to Step (8) (with e = 0). Otherwise, for $k = 1, 2, 3, \ldots, t$ consider

$$M_{k} = \begin{bmatrix} S_{1} & S_{2} & \dots & S_{k} \\ S_{2} & S_{3} & \dots & S_{k+1} \\ \vdots & \vdots & \ddots & \vdots \\ S_{k} & S_{k+1} & \dots & S_{2k-1} \end{bmatrix}$$

This is a $k \times k$ matrix with entries in F_{q^s} .

Find the maximum value k such that det $M_k \neq 0$. We think of k as the number of errors that occurred (it will be in most instances). It is potentially possible that

det $M_k = 0$ for all k but some S_i are nonzero nevertheless. In this case more than t errors occurred, and we have to seek retransmission.

Note that you always have to check det M_k until k = t, so you would typically start with det M_t and work your way down to the first k such that det $M_k \neq 0$.

(If you start with k = 1, then det $M_i = 0$ does not imply that det $M_{i+1} = 0$, so you have to check all the way up to k = t).

We assume that k is the number of errors that actually occurred. (In rare circumstances, the number of errors could be actually bigger than k, but then it is also bigger than t and our decoding procedure does not yield a result.)

(3) Solve the following system of linear equations (over F_{q^s}):

$$M_k \mathbf{b} = -\mathbf{S}$$

with indeterminate

$$\mathbf{b} = \begin{bmatrix} b_k \\ b_{k-1} \\ \vdots \\ b_1 \end{bmatrix}$$

where

$$\mathbf{S} = \begin{bmatrix} S_{k+1} \\ S_{k+2} \\ \vdots \\ S_{2k} \end{bmatrix}.$$

Notice the order of the variables b_i and the sign on the right hand side! The solution to this system gives us the *error locator polynomial*

$$\sigma = b_k x^k + b_{k-1} x^{k-1} + \dots + b_1 x + 1.$$

The coefficients b_i of σ are elements of F_{q^s} in general, and need not be elements of F_q . The error locator polynomial is defined as

$$\sigma = (-1)^k (\alpha_1 x - 1) (\alpha_2 x - 1) \cdots (\alpha_k x - 1).$$

(Notice the sign. This way we can avoid the annoying $(-1)^k$ in all syndrome equations above. So σ is the unique polynomial in $F_{q^s}[x]$ with roots α_i^{-1} and constant term $\sigma(0) = 1$. This changes nothing compared to the discussion in class except for the sign. We still have $\sigma(\alpha_i^{-1}) = 0$ and then the deduction leads to the equation $M_k \mathbf{b} = -\mathbf{S}$ instead of $M_k \mathbf{b} = (-1)^{k+1}S$. We simply replace \mathbf{b} by $(-1)^k \mathbf{b}$ from class.)

- (4) Find the roots of the error locator polynomial: We are working under the assumption that precisely k errors occurred (we know that at least k errors occurred, and if the number is not k then it is strictly greater than t and no decoding is possible with this method); therefore, σ must have precisely k distinct roots $\beta_1, \beta_2, \ldots, \beta_k$ unless more than k errors occurred. Again, the roots are in F_{q^s} . If the roots do not exist, then we have to seek retransmission.
- (5) Compute the error locations: First compute $\alpha_i := \beta_i^{-1}$. Now find l_1, l_2, \ldots, l_k such that

$$\alpha_i = \alpha^{l_i}.$$

Notice that the l_i are unique as long as we require $0 \le l_i < n$ (the l_i are supposed to be the error positions so they need to be bewteen 0 and n-1; so for example $1 = \alpha^0$).

Again, if the l_i do not exist, we cannot decode further. (NB if α is primitive, then the l_i always exist.)

We now have worked our way to an error vector of the form

$$e = e_1 x^{l_1} + e_2 x^{l_2} + \dots + e_k x^{l_k}.$$

We therefore conjecture the error locations to be l_1, l_2, \ldots, l_k (keeping in mind that these positions are based on 0).

(6) Determine the values of e_1, e_2, \ldots, e_k :

This step is essentially void if q = 2, for then all e_i must be equal to 1 provided decoding is possible; If $q \neq 2$, we only know that they are nonzero (assuming decoding is possible). Solve the equations

$$S_i = e_1(\alpha^{l_1})^i + e_2(\alpha^{l_2})^i + \dots + e_k(\alpha^{l_k})^i \qquad (i = 1, 2, \dots, 2k)$$

for the e_j in F_q . (Notice that often not all 2k equations are needed to determine the e_i because each single equation corresponds to multiple linear equations over F_q , but you still need to check all 2k equations hold). Another way of doing it is by inverting the Vandermonde matrix V and V^t and computing the diagonal matrix

$$D = V^{-1} M_k (V^T)^{-1}.$$

Then the k entries of D are $e_1\alpha_1, e_2\alpha_2, \ldots, e_k\alpha_k$, determining the e_i uniquely.

It could potentially happen that the e_i computed in this manner are *not* elements of F_q but are in F_{q^s} rather. In this case, decoding is not possible, because of course our error vector must have coefficients in F_q .

(7) Check for consistency:

We now have a supposed error vector $e = e_1 x^{l_1} + e_2 x^{l_2} + \cdots + e_k x^{l_k}$. By construction, for $i = 1, 2, \ldots, 2k$, we know that $f(\alpha^i) = S_i = e(\alpha^i)$ (see remarks below).

However, if k < t, then we still need to check that

$$S_i = e(\alpha^i)$$

also for i = 2k + 1, 2k + 2, ..., 2t = d - 1. If this fails for any *i*, more than *t* errors occurred, and decoding is not possible. Of course, if k = t, this step is empty.

(8) Celebrate!

We are done. The decoded codeword is now c = f - e. c is indeed a codeword, because $c(\alpha^i) = f(\alpha^i) - e(\alpha^i) = 0$ for i = 1, 2, ..., d - 1.

In the special case that q = 2, this step simply means flipping the positions l_1, l_2, \ldots, l_k in f.

Remarks.

For step (7), for i = 1, 2, 3, ..., 2k - 1 the equations $S_i = \sum_j e_j \alpha_j^i$ hold as a consequence of the fact that $M_k = VDV^T$, so $e(\alpha^i) = S_i$. For i = 2k it follows from this together with

$$-S_{2k} = S_k b_k + S_{k+1} b_{k-1} + \dots + S_{2k-1} b_1 = \sum_{i=1}^k \sum_{j=1}^k e_j \alpha_j^{2k-i} b_i = -\sum_{j=1}^k e_j \alpha_j^{2k}$$

which uses that $\sigma(\alpha_i^{-1}) = 0$, hence $-\alpha_i^{-1} = \sum_{j=1}^k b_j \alpha_i^{-j}$.

This procedure seems very elaborate. However, the number of cosets is at least q^{d-1} (or even bigger). Often q = 256, and d = 33, so the syndrome table would be huge.

Examples

Element	Minimal polynomial	Power of α
1	x - 1 = x + 2	$\alpha^0 = \alpha^8$
2	x - 2 = x + 1	$lpha^4$
a	$x^2 + 1$	$lpha^6$
2a	$x^2 + 1$	α^2
1+a	$x^2 + x + 2$	α^1
1+2a	$x^2 + x + 2$	$lpha^3$
2+a	$x^2 + 2x + 2$	α^7
2+2a	$x^2 + 2x + 2$	$lpha^5$

Table 1. Elements of F_9 , their minimal polynomials over \mathbb{Z}_3 , and their expression as powers of the primitive element.

a) Let C be the BCH code of length 8 and design distance 5 over $F_3 = \mathbb{Z}_3$ corresponding to the primitive element $\alpha = 1 + a \in F_9$. $(F_9 = \mathbb{Z}_3[x]/(1+x^2)$ and $a = \bar{x}$; cf. Table 1.) So here s = 2, $q^s = 9$.

Suppose we receive $f = 2 + x^2 + x^3 + x^4 + x^5$. Then

(1)

$$S_{1} = f(\alpha) = 2 + \alpha^{2} + \alpha^{3} + \alpha^{4} + \alpha^{5} = 2 + 2a + 1 + 2a + 2 + 2 + 2a = 7 + 6a = 1$$

$$S_{2} = f(\alpha^{2}) = 2 + \alpha^{4} + \alpha^{6} + \alpha^{8} + \alpha^{10} = 2 + 2 + a + 1 + 2a = 2 + 3a = 2$$

$$S_{3} = f(\alpha^{3}) = f(\alpha)^{3} = 1$$

$$S_{4} = 2 + \alpha^{8} + \alpha^{12} + \alpha^{16} + \alpha^{20} = 2 + 1 + 2 + 1 + 2 = 2$$

NB it is an accident that all syndromes are actually in $F_q = \mathbb{Z}_3$ rather than in F_9 . (2) Notice that t = 2.

$$M_2 = \begin{bmatrix} 1 & 2\\ 2 & 1 \end{bmatrix}$$

and det $M_2 = 1 - 4 = 0$. Now we know that either 1 or more than 2 errors occurred.

$$M_1 = [1]$$

so det $M_1 = 1 \neq 0$. We assume that 1 error occurred.

(3) The syndrome equations now take the form

$$M[b_1] = -[S_2]$$

or $1 \cdot b_1 = -2 = 1$. Thus $\sigma = 1 \cdot x + 1$.

- (4) Obviously σ has just one root, namely, -1 = 2. Thus $\beta_1 = 2$, and $\alpha_1 = 2^{-1} = 2$. It is again an accident that β_1 is an element of \mathbb{Z}_3 . In general, this need not happen.
- (5) Find l_1 such that $\alpha_1 = \alpha_1^l$. A look at the table shows that $l_1 = 4$. (NB if α_1 were 1, we would take $l_1 = 0$ not $l_1 = 8$, because our error vector must be a polynomial of degree at most 7).
- (6) $e = e_1 x^4$. We need to compute e_1 . $M_1 = V D V^T$ translates into M = D as V = [1].

Thus, here $e_1 \alpha_1 = 2 \cdot e_1 = 1$. Thus $e_1 = 2$.

Alternatively, use the first syndrome equation $S_1 = 1 = e_1 \alpha_1$ (which happens to be the same equation here).

 $e_1 = 2$ is an element of \mathbb{Z}_3 , so we are OK.

(7) We have $e = 2x^4$ and we believe that this is the sought after coset leader. We know that the first two syndrome equations are satisfied (cf. Remarks after (8) above).

We need to check $S_3 = e(\alpha^3)$ and $S_4 = e(\alpha^4)$. Now the first one follows because $e(\alpha^3) = e(\alpha)^3 = 1$. The second $e(\alpha^4) = 2\alpha^{16} = 2 = S_4$.

(8) We are done: f - e is a codeword. Indeed,

$$f - e = 2 + x^2 + x^3 + 2x^4 + x^5$$

which we would recognize as the generator polynomial if we had computed the latter.

- b) Let C be the same code as above, but this time suppose we receive $f = x + x^3 + 2x^4 + 2x^5 + x^6$.
 - (1)

$$\begin{array}{lll} S_1 = \alpha + \alpha^3 + 2\alpha^4 + 2\alpha^5 + \alpha^6 & = 1 + a + 1 + 2a + 1 + 1 + a + a & = 1 + 2a = \alpha^3 \\ S_2 = \alpha^2 + \alpha^6 + 2\alpha^8 + 2\alpha^{10} + \alpha^{12} & = 2a + a + 2 + a + 2 & = 1 + a = \alpha \\ S_3 = S_1^3 & = 1 + 2a^3 & = 1 + a = \alpha \\ S_4 = \alpha^4 + \alpha^{12} + 2\alpha^{16} + 2\alpha^{20} + \alpha^{24} & = 2 + 2 + 2 + 1 + 1 & = 2 \end{array}$$

(2)

$$M_2 = \begin{bmatrix} \alpha^3 & \alpha \\ \alpha & \alpha \end{bmatrix}$$

 So

$$\det M_2 = \alpha^4 - \alpha^2 = 2 + a \neq 0$$

and we conclude that 2 or more errors occurred. Notice the fact that det $M_1 \neq 0$ is now irrelevant and we don't even have to compute it (well it's not much of a computation in the 1×1 case but this just serves to illustrate the principle).

(3) The syndrome equation is

$$\begin{bmatrix} \alpha^3 & \alpha \\ \alpha & \alpha \end{bmatrix} \begin{bmatrix} b_2 \\ b_1 \end{bmatrix} = - \begin{bmatrix} \alpha \\ 2 \end{bmatrix}$$

Recall that for an invertible 2×2 matrix we have

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

Consequently, using det $M_2 = 2 + a = \alpha^7 = \alpha^{-1}$

$$M_2^{-1} = \frac{1}{\alpha^7} \begin{bmatrix} \alpha & -\alpha \\ -\alpha & \alpha^3 \end{bmatrix} = \begin{bmatrix} \alpha^2 & -\alpha^2 \\ -\alpha^2 & \alpha^4 \end{bmatrix}$$

and so

$$\begin{bmatrix} b_2 \\ b_1 \end{bmatrix} = -\begin{bmatrix} \alpha^2 & -\alpha^2 \\ -\alpha^2 & \alpha^4 \end{bmatrix} \begin{bmatrix} \alpha \\ 2 \end{bmatrix} = -\begin{bmatrix} \alpha^3 - 2\alpha^2 \\ -\alpha^3 + 2\alpha^4 \end{bmatrix} = -\begin{bmatrix} \alpha \\ \alpha^6 \end{bmatrix} = \begin{bmatrix} \alpha^5 \\ \alpha^2 \end{bmatrix}$$

The error locator polynomial becomes $\sigma = \alpha^5 x^2 + \alpha^2 x + 1$. Notice that this polynomial does not have all of its coefficients in \mathbb{Z}_3 .

(4) Now we find its roots in F_9 . Well, this basically just trial and error. One run through all 9 elements of F_9 suffices. We can always leave out 0 as this is never a root ($\sigma(0) = 1$).

$\sigma(1) = \alpha^5 + \alpha^2 + 1$	$= a \neq 0$
$\sigma(\alpha) = \alpha^7 + \alpha^3 + 1$	$=1 \neq 0$
$\sigma(\alpha^2) = \alpha^9 + \alpha^4 + 1$	$= \alpha \neq 0$
$\sigma(\alpha^3) = \alpha^{11} + \alpha^5 + 1$	$= a \neq 0$
$\sigma(\alpha^4) = \alpha^{13} + \alpha^6 + 1$	= 3 + 3a = 0
$\sigma(\alpha^5) = \alpha^{15} + \alpha^7 + 1$	$=2a \neq 0$
$\sigma(\alpha^6) = \alpha^{17} + \alpha^8 + 1$	$= 2 + \alpha \neq 0$
$\sigma(\alpha^7) = \alpha^{19} + \alpha^9 + 1$	$= \alpha^3 + \alpha + 1 = 0$

As a side remark, this table neatly illustrates that here $\sigma(\alpha^3)$ is not equal to $\sigma(\alpha)^3$, due to the fact that some coefficients of σ are not in \mathbb{Z}_3 .

We conclude that the two roots are $\beta_1 = \alpha^4 = 2$ and $\beta_2 = \alpha^7$.

- (5) The table gives $\alpha_1 = 2^{-1} = 2 = \alpha^4$ and $\alpha_2 = \beta_2^{-1} = \alpha = \alpha^1$. The supposed error locations are therefore $l_1 = 4$ and $l_2 = 2$.
- (6) We must have

$$S_1 = \alpha^3 = e_1 \alpha^{l_1} + e_2 \alpha^{l_2} = e_1 \cdot 2 + e_2 \cdot \alpha$$

Looking at Table 1, this translates into

$$1 + 2a = e_1 \cdot 2 + e_2(1+a) = (2e_1 + e_2) \cdot 1 + e_2 \cdot a \tag{(*)}$$

Now we use the fact that F_9 is a vector space over \mathbb{Z}_3 with basis 1, *a*. It follows that the coefficients of 1 and *a* on both sides have to coincide; thus,

$$1 = 2e_1 + e_2$$
$$2 = e_2$$

Notice that the one equation (*) becomes a system of equations (in general as many as there are basis vectors, hence the number is usually equal to the dimension of F_{q^s} as F_q -vector space, i.e. s). This is now a system of equations with coefficients in \mathbb{Z}_3 and so we can hopefully solve it over \mathbb{Z}_3 : $e_2 = 2$ and $2e_1 + 2 = 1$ implies $e_1 = 1$.

We conclude
$$e = x^4 + 2x$$
.

In theory, we would now need to check that also the other three syndrome equations are satisfied, because we only know the first one holds (we have a total of four syndrome equations, resulting in 8 equations over \mathbb{Z}_3 with 2 indeterminates, so potentially the system could be overdetermined and have no solution; here however this does not happen.)

Alternatively,

$$V^{-1} = \frac{1}{\alpha + 1} \begin{bmatrix} \alpha & -1 \\ -2 & 1 \end{bmatrix} = \alpha \begin{bmatrix} \alpha & 2 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} \alpha^2 & \alpha^5 \\ \alpha & \alpha \end{bmatrix}$$

Because $(V^T)^{-1} = (V^{-1})^T$ we have

$$D = V^{-1}M_2(V^{-1})^T = \begin{bmatrix} \alpha^5 + \alpha^6 & \alpha^3 + \alpha^6 \\ \alpha^4 + \alpha^2 & \alpha^2 + \alpha^2 \end{bmatrix} (V^{-1})^T = \begin{bmatrix} 2 & 1 \\ \alpha^5 & \alpha^6 \end{bmatrix} (V^{-1})^T$$
$$= \begin{bmatrix} 2 & 1 \\ \alpha^5 & \alpha^6 \end{bmatrix} \begin{bmatrix} \alpha^2 & \alpha \\ \alpha^5 & \alpha \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 2\alpha \end{bmatrix}$$

We end up with the two equations $e_1\alpha_1 = 2$ and $e_2\alpha_2 = 2\alpha$ which because of $\alpha_1 = 2$ and $\alpha_2 = \alpha$ means $e_1 = 1$ and $e_2 = 2$. Here no further checks are necessary.

- (7) We do not have to do any consistency checks, because k = t = 2.
- (8) The codeword is therefore $f e = 2x + x^3 + x^4 + 2x^5 + x^6$, which we recognize as xg where g is the codeword of the previous example.