
Decoding BCH Codes

Let F = Fq be a field with q elements. Let α ∈ Fqs be an element of order n, and let C be
the corresponding BCH code of length n and design distance d (with generator polynomial
equal to the product of the distinct minimal polynomials of α, α2, . . . , αd−1). Let g be the
generator polynomial.
If we identify polynomials in Fq[x] of degree < n with the elements of Rq,n = Fq[x]/(xn −
1), then C may be thought of as the set of all polynomials of degree < n with roots
α, α2, . . . , αd−1. That is

C = {f ∈ Fq[x] | deg f < n; f(α) = f(α2) = · · · = f(αd−1) = 0} = {f ∈ (g) | deg f < n}

Notice that the elements in C are in one-to-one correspondence with their congruence classes
in Rq,n; therefore, C corresponds to an ideal in Rq,n (all elements divisible by ḡ in Rq,n).

Since g divides xn − 1, f ∈ Fq[x] is divisible by g in Fq[x] if and only if f̄ ∈ Rq,n is divisible
by ḡ: suppose f = qg, then f̄ = q̄ḡ in Rq,n is clear. On the other hand, suppose f̄ = q̄ḡ for
some polynomial q. Then f = qg +(xn− 1)r for a suitable polynomial r. Since xn− 1 = hg,
it follows that f = (q + rh)g is divisible by g in Fq[x] as well.

We are interested in C only as a vector space over Fq and are not really interested in the
multiplicative structure. In that sense, it makes no difference whether we think of C as a
subset of Fq[x] or of Rq,n. It is worth keeping in mind though, that C is not an ideal when
thought of as a subset of Fq[x] (for starters, it is a finite set, but no nonzero ideal in Fq[x] is
finite), nor is it invariant under multiplication with x (this is true only modulo xn − 1).

The decoding procedure for C is now as follows: Suppose a vector f is received, which we
think of as a polynomial of degree < n. We assume that d = 2t + 1 is odd. We need to
compute the coset leader e.

(1) Compute the syndromes: S1 = f(α), S2 = f(α2), . . . , Sd−1 = f(αd−1). These are
elements of Fqs .

(2) If all of the Si are zero, f is a codeword, go to Step (8) (with e = 0). Otherwise, for
k = 1, 2, 3, . . . , t consider

Mk =




S1 S2 . . . Sk

S2 S3 . . . Sk+1
...

...
. . .

...
Sk Sk+1 . . . S2k−1




This is a k × k matrix with entries in Fqs .

Find the maximum value k such that det Mk 6= 0. We think of k as the number
of errors that occurred (it will be in most instances). It is potentially possible that



det Mk = 0 for all k but some Si are nonzero nevertheless. In this case more than t
errors occurred, and we have to seek retransmission.

Note that you always have to check det Mk until k = t, so you would typically start
with det Mt and work your way down to the first k such that det Mk 6= 0.

(If you start with k = 1, then det Mi = 0 does not imply that det Mi+1 = 0, so you
have to check all the way up to k = t).

We assume that k is the number of errors that actually occurred. (In rare circum-
stances, the number of errors could be actually bigger than k, but then it is also bigger
than t and our decoding procedure does not yield a result.)

(3) Solve the following system of linear equations (over Fqs):

Mkb = −S

with indeterminate

b =




bk

bk−1
...
b1




where

S =




Sk+1

Sk+2
...

S2k


 .

Notice the order of the variables bi and the sign on the right hand side!

The solution to this system gives us the error locator polynomial

σ = bkx
k + bk−1x

k−1 + · · ·+ b1x + 1.

The coefficients bi of σ are elements of Fqs in general, and need not be elements of Fq.

The error locator polynomial is defined as

σ = (−1)k(α1x− 1)(α2x− 1) · · · (αkx− 1).

(Notice the sign. This way we can avoid the annoying (−1)k in all syndrome equations
above. So σ is the unique polynomial in Fqs [x] with roots α−1

i and constant term
σ(0) = 1. This changes nothing compared to the discussion in class except for the sign.
We still have σ(α−1

i ) = 0 and then the deduction leads to the equation Mkb = −S
instead of Mkb = (−1)k+1S. We simply replace b by (−1)kb from class.)



(4) Find the roots of the error locator polynomial: We are working under the
assumption that precisely k errors occurred (we know that at least k errors occurred,
and if the number is not k then it is strictly greater than t and no decoding is possible
with this method); therefore, σ must have precisely k distinct roots β1, β2, . . . , βk unless
more than k errors occurred. Again, the roots are in Fqs . If the roots do not exist,
then we have to seek retransmission.

(5) Compute the error locations: First compute αi := β−1
i . Now find l1, l2, . . . , lk such

that
αi = αli .

Notice that the li are unique as long as we require 0 ≤ li < n (the li are supposed to
be the error positions so they need to be bewteen 0 and n− 1; so for example 1 = α0).

Again, if the li do not exist, we cannot decode further. (NB if α is primitive,
then the li always exist.)

We now have worked our way to an error vector of the form

e = e1x
l1 + e2x

l2 + · · ·+ ekx
lk .

We therefore conjecture the error locations to be l1, l2, . . . , lk (keeping in mind that
these positions are based on 0).

(6) Determine the values of e1, e2, . . . , ek:

This step is essentially void if q = 2, for then all ei must be equal to 1 provided
decoding is possible; If q 6= 2, we only know that they are nonzero (assuming decoding
is possible). Solve the equations

Si = e1(α
l1)i + e2(α

l2)i + · · ·+ ek(α
lk)i (i = 1, 2, . . . , 2k)

for the ej in Fq. (Notice that often not all 2k equations are needed to determine the
ei because each single equation corresponds to multiple linear equations over Fq, but
you still need to check all 2k equations hold). Another way of doing it is by inverting
the Vandermonde matrix V and V t and computing the diagonal matrix

D = V −1Mk(V
T )−1.

Then the k entries of D are e1α1, e2α2, . . . , ekαk, determining the ei uniquely.

It could potentially happen that the ei computed in this manner are not elements of
Fq but are in Fqs rather. In this case, decoding is not possible, because of course
our error vector must have coefficients in Fq.

(7) Check for consistency:

We now have a supposed error vector e = e1x
l1 + e2x

l2 + · · ·+ ekx
lk . By construction,

for i = 1, 2, . . . , 2k, we know that f(αi) = Si = e(αi) (see remarks below).



However, if k < t, then we still need to check that

Si = e(αi)

also for i = 2k + 1, 2k + 2, . . . , 2t = d − 1. If this fails for any i, more than t errors
occurred, and decoding is not possible. Of course, if k = t, this step is empty.

(8) Celebrate!

We are done. The decoded codeword is now c = f−e. c is indeed a codeword, because
c(αi) = f(αi)− e(αi) = 0 for i = 1, 2, . . . , d− 1.

In the special case that q = 2, this step simply means flipping the positions l1, l2, . . . , lk
in f .

Remarks.
For step (7), for i = 1, 2, 3, . . . , 2k − 1 the equations Si =

∑
j ejα

i
j hold as a consequence of

the fact that Mk = V DV T , so e(αi) = Si. For i = 2k it follows from this together with

−S2k = Skbk + Sk+1bk−1 + · · ·+ S2k−1b1 =
k∑

i=1

k∑
j=1

ejα
2k−i
j bi = −

k∑
j=1

ejα
2k
j

which uses that σ(α−1
i ) = 0, hence −α−1

i =
∑k

j=1 bjα
−j
i .

This procedure seems very elaborate. However, the number of cosets is at least qd−1 (or even
bigger). Often q = 256, and d = 33, so the syndrome table would be huge.

Examples

Element Minimal polynomial Power of α

1 x− 1 = x + 2 α0 = α8

2 x− 2 = x + 1 α4

a x2 + 1 α6

2a x2 + 1 α2

1 + a x2 + x + 2 α1

1 + 2a x2 + x + 2 α3

2 + a x2 + 2x + 2 α7

2 + 2a x2 + 2x + 2 α5

Table 1. Elements of F9, their minimal polynomials over Z3, and their expression
as powers of the primitive element.

a) Let C be the BCH code of length 8 and design distance 5 over F3 = Z3 corresponding
to the primitive element α = 1 + a ∈ F9. (F9 = Z3[x]/(1 + x2) and a = x̄; cf. Table 1.)
So here s = 2, qs = 9.

Suppose we receive f = 2 + x2 + x3 + x4 + x5. Then



(1)

S1 = f(α) = 2 + α2 + α3 + α4 + α5 = 2 + 2a + 1 + 2a + 2 + 2 + 2a = 7 + 6a = 1

S2 = f(α2) = 2 + α4 + α6 + α8 + α10 = 2 + 2 + a + 1 + 2a = 2 + 3a = 2

S3 = f(α3) = f(α)3 = 1

S4 = 2 + α8 + α12 + α16 + α20 = 2 + 1 + 2 + 1 + 2 = 2

NB it is an accident that all syndromes are actually in Fq = Z3 rather than in F9.

(2) Notice that t = 2.

M2 =

[
1 2
2 1

]

and det M2 = 1 − 4 = 0. Now we know that either 1 or more than 2 errors
occurred.

M1 = [1]

so det M1 = 1 6= 0. We assume that 1 error occurred.

(3) The syndrome equations now take the form

M [b1] = −[S2]

or 1 · b1 = −2 = 1. Thus σ = 1 · x + 1.

(4) Obviously σ has just one root, namely, −1 = 2. Thus β1 = 2, and α1 = 2−1 = 2.
It is again an accident that β1 is an element of Z3. In general, this need not
happen.

(5) Find l1 such that α1 = αl
1. A look at the table shows that l1 = 4.

(NB if α1 were 1, we would take l1 = 0 not l1 = 8, because our error vector must
be a polynomial of degree at most 7).

(6) e = e1x
4. We need to compute e1. M1 = V DV T translates into M = D as

V = [1].

Thus, here e1α1 = 2 · e1 = 1. Thus e1 = 2.

Alternatively, use the first syndrome equation S1 = 1 = e1α1 (which happens to
be the same equation here).

e1 = 2 is an element of Z3, so we are OK.

(7) We have e = 2x4 and we believe that this is the sought after coset leader. We
know that the first two syndrome equations are satisfied (cf. Remarks after (8)
above).

We need to check S3 = e(α3) and S4 = e(α4). Now the first one follows because
e(α3) = e(α)3 = 1. The second e(α4) = 2α16 = 2 = S4.



(8) We are done: f − e is a codeword. Indeed,

f − e = 2 + x2 + x3 + 2x4 + x5

which we would recognize as the generator polynomial if we had computed the
latter.

b) Let C be the same code as above, but this time suppose we receive f = x + x3 + 2x4 +
2x5 + x6.

(1)

S1 = α + α3 + 2α4 + 2α5 + α6 =1 + a + 1 + 2a + 1 + 1 + a + a = 1 + 2a = α3

S2 = α2 + α6 + 2α8 + 2α10 + α12 =2a + a + 2 + a + 2 = 1 + a = α

S3 = S3
1 =1 + 2a3 = 1 + a = α

S4 = α4 + α12 + 2α16 + 2α20 + α24 =2 + 2 + 2 + 1 + 1 = 2

(2)

M2 =

[
α3 α
α α

]

So
det M2 = α4 − α2 = 2 + a 6= 0

and we conclude that 2 or more errors occurred. Notice the fact that det M1 6= 0
is now irrelevant and we don’t even have to compute it (well it’s not much of a
computation in the 1× 1 case but this just serves to illustrate the principle).

(3) The syndrome equation is
[
α3 α
α α

] [
b2

b1

]
= −

[
α
2

]

Recall that for an invertible 2× 2 matrix we have
[
a b
c d

]−1

=
1

ad− bc

[
d −b
−c a

]

Consequently, using det M2 = 2 + a = α7 = α−1

M−1
2 =

1

α7

[
α −α
−α α3

]
=

[
α2 −α2

−α2 α4

]

and so [
b2

b1

]
= −

[
α2 −α2

−α2 α4

] [
α
2

]
= −

[
α3 − 2α2

−α3 + 2α4

]
= −

[
α
α6

]
=

[
α5

α2

]

The error locator polynomial becomes σ = α5x2 + α2x + 1. Notice that this
polynomial does not have all of its coefficients in Z3.



(4) Now we find its roots in F9. Well, this basically just trial and error. One run
through all 9 elements of F9 suffices. We can always leave out 0 as this is never a
root (σ(0) = 1).

σ(1) = α5 + α2 + 1 = a 6= 0

σ(α) = α7 + α3 + 1 = 1 6= 0

σ(α2) = α9 + α4 + 1 = α 6= 0

σ(α3) = α11 + α5 + 1 = a 6= 0

σ(α4) = α13 + α6 + 1 = 3 + 3a = 0

σ(α5) = α15 + α7 + 1 = 2a 6= 0

σ(α6) = α17 + α8 + 1 = 2 + α 6= 0

σ(α7) = α19 + α9 + 1 = α3 + α + 1 = 0

As a side remark, this table neatly illustrates that here σ(α3) is not equal to
σ(α)3, due to the fact that some coefficients of σ are not in Z3.

We conclude that the two roots are β1 = α4 = 2 and β2 = α7.

(5) The table gives α1 = 2−1 = 2 = α4 and α2 = β−1
2 = α = α1. The supposed error

locations are therefore l1 = 4 and l2 = 2.

(6) We must have
S1 = α3 = e1α

l1 + e2α
l2 = e1 · 2 + e2 · α

Looking at Table 1, this translates into

1 + 2a = e1 · 2 + e2(1 + a) = (2e1 + e2) · 1 + e2 · a (*)

Now we use the fact that F9 is a vector space over Z3 with basis 1, a. It follows
that the coefficients of 1 and a on both sides have to coincide; thus,

1 = 2e1 + e2

2 = e2

Notice that the one equation (*) becomes a system of equations (in general as
many as there are basis vectors, hence the number is usually equal to the dimen-
sion of Fqs as Fq-vector space, i.e. s). This is now a system of equations with
coefficients in Z3 and so we can hopefully solve it over Z3: e2 = 2 and 2e1 +2 = 1
implies e1 = 1.

We conclude e = x4 + 2x.

In theory, we would now need to check that also the other three syndrome equa-
tions are satisfied, because we only know the first one holds (we have a total of
four syndrome equations, resulting in 8 equations over Z3 with 2 indeterminates,



so potentially the system could be overdetermined and have no solution; here
however this does not happen.)

Alternatively,

V −1 =
1

α + 1

[
α −1
−2 1

]
= α

[
α 2
1 1

]
=

[
α2 α5

α α

]

Because (V T )−1 = (V −1)T we have

D = V −1M2(V
−1)T =

[
α5 + α6 α3 + α6

α4 + α2 α2 + α2

]
(V −1)T =

[
2 1
α5 α6

]
(V −1)T

=

[
2 1
α5 α6

] [
α2 α
α5 α

]
=

[
2 0
0 2α

]

We end up with the two equations e1α1 = 2 and e2α2 = 2α which because of
α1 = 2 and α2 = α means e1 = 1 and e2 = 2. Here no further checks are
necessary.

(7) We do not have to do any consistency checks, because k = t = 2.

(8) The codeword is therefore f − e = 2x + x3 + x4 + 2x5 + x6, which we recognize as
xg where g is the codeword of the previous example.


