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Notes on the Riemann Zeta Function

In this note we give an introduction to the Riemann zeta function, which connects the ideas of real analysis
with the arithmetic of the integers.

Define a function of a real variable s as follows,

ζ(s) =

∞∑

n=1

1

ns
.

This function is called the Riemann zeta function, after the German mathematician Bernhard Riemann who
systematically studied the deeper properties of this function beginning in 1859.

The infinite series for ζ(s) was actually first introduced by Euler nearly 100 years before Riemann’s work.

Note that from the integral test, the series for ζ(s) converges for s > 1, and therefore the function ζ(s) is
defined for all real numbers s > 1. Also, since

1

ns
≥
∫ n+1

n

dx

xs
,

for all n ≥ 1, we have
∞∑

n=1

1

ns
≥
∫ ∞

1

dx

xs
=

1

s − 1

for all s > 1. Now we let s → 1+, and we see that

lim
s→1+

ζ(s) = ∞.

Infinite Products

In order to discuss the connection of ζ(s) with the primes, we need the concept of an infinite product, which
is very similar to the notion of an infinite sum.

Definition. Given a sequence of real numbers {an}n≥1, let

p1 = a1,

p2 = a1 · a2,

p3 = a1 · a2 · a3,

...

pn = a1 · a2 · · · an =

n∏

k=1

ak.

The ordered pair of sequences {{an}, {pn}} is called an infinite product. The real number pn is called the nth

partial product and an is called the nth factor of the product, and the following symbols are used to denote
the infinite product defined above:

a1 · a2 · · · an · · · or

∞∏

n=1

an.



Using the the analogy with infinite series, where we say that the series converges if and only if the sequence
of partial sums converges, it is tempting to say that the infinite product converges if and only if the sequence
of partial products converges. However, if we do this, then every product which has one factor equal to zero
would converge, regardless of the behavior of the remaining factors. The definition below is more useful:

Definition. Given an infinite product

∞∏

n=1

an, let pn =

n∏

k=1

ak be the nth partial product.

(a) If infinitely many factors an are zero, then we say the product diverges to zero.

(b) If no factor an is zero, then we say that the product converges if and only if there exists a p 6= 0, such

that pn → p as n → ∞. In this case, p is called the value of the product, and we write p =

∞∏

n=1

an.

If pn → 0 as n → ∞, then we say the product diverges to zero.

(c) If there exists an integer N such that n > N implies that an 6= 0, then we say that

∞∏

n=1

an converges,

provided that

∞∏

n=N+1

an converges as described in part (b). In this case, the value of the product is

a1 · a2 · · · aN ·
∞∏

n=N+1

an.

(d)

∞∏

n=1

an is said to be divergent if it does not converge as described in parts (b) and (c) above.

Note: The value of a convergent infinite product can be zero, but this is the case if and only if a finite
number of the factors are zero.

Also, the convergence of an infinite product is not affected by inserting or removing a finite number of factors,
zero or not.

Now we give a criterion for the converge of infinite products, completely analogous to the corresponding
criterion for convergence of infinite series.

Theorem (Cauchy Criteria for Convergence of an Infinite Product).

The infinite product
∞∏

n=1

an converges if and only if given any ε > 0, there exists an integer n0 such that

∣∣∣∣∣

m∏

k=n+1

ak − 1

∣∣∣∣∣ < ε

whenever m > n ≥ n0.

Proof. Assume first that the product

∞∏

n=1

an converges, we may also assume that no an is zero (discarding

a finite number of terms if necessary). Let

pn = a1 · a2 · · · an and p = lim
n→∞

pn,



so that p 6= 0, and there exists an M > 0 such that |pn| > M for all n ≥ 1. Now, since {pn} satisfies the
Cauchy criteria for sequences, given an ε > 0, there exists an integer n0 such that

|pm − pn| < εM

whenever m > n ≥ n0. Dividing by |pn| we get

∣∣∣∣∣

m∏

k=n+1

ak − 1

∣∣∣∣∣ < ε whenever m > n ≥ n0.

Conversly, suppose that given any ε > 0, there exists an integer n0 such that

∣∣∣∣∣

m∏

k=n+1

ak − 1

∣∣∣∣∣ < ε (∗)

whenever m > n ≥ n0.

First note that if m > n0 this implies that am 6= 0, since (assuming that 0 < ε < 1), taking n = m − 1, we
have ∣∣|am| − 1

∣∣ ≤ |am − 1| < ε,

that is,
0 < 1 − ε < |am| < 1 + ε

for m ≥ n0.

Now take ε = 1
2 , and let

qm = an0+1an0+2 · · · am

for m > n0, then
1
2 < |qm| < 3

2 ,

for all m > n0. Therefore, if {qm} converges, it cannot converge to zero.

To see that the sequence {qn} does actually converge, let 0 < ε < 1
2 be arbitrary, then there exists an n0

such that ∣∣∣∣
qm

qn
− 1

∣∣∣∣ < 2
3ε

whenever m > n ≥ n0, that is,
|qm − qn| < 2

3ε|qn| < 3
2 · 2

3ε = ε

whenever m > n ≥ n0. Thus, the sequence {qn} is a Cauchy sequence of real numbers, and hence converges,

and so the infinite product

∞∏

n=1

an converges.

Note: Taking n = m − 1 in (∗), we see that if the infinite product

∞∏

n=1

an converges, then

lim
n→∞

an = 1.

Because of this, the factors of a product are often written as 1 + an, so that convergence of a product
∞∏

n=1

(1 + an) implies that lim
n→∞

an = 0.



Theorem. If an > 0 for all n ≥ 1, then the infinite product

∞∏

n=1

(1 + an) converges if and only if the infinite

series
∞∑

n=1
an converges.

Proof. Let the partial sums and partial products be given by

sn = a1 + a2 + · · · + an and pn = (1 + a1)(1 + a2) · · · (1 + an)

for n ≥ 1. Since an > 0 for all n ≥ 1, then both of the sequences {sn} and {pn} are monotone increasing,
and to prove the theorem, we only have to show that {sn} is bounded above if and only if {pn} is bounded
above.

First we note that sn < pn for all n ≥ 1. Now using the fact that 1 + x ≤ ex for all real numbers x, we have

pn = (1 + a1)(1 + a2) · · · (1 + an) ≤ ea1ea2 · · · ean = esn

for all n ≥ 1. Therefore the sequence {pn} is bounded above if and only if the sequence {sn} is bounded
above.

Also, note that the sequence of partial products {pn} cannot converge to zero, since pn ≥ 1 for n ≥ 1.

Finally, note that
pn → +∞ if and only if sn → +∞.

Definition. The infinite product

∞∏

n=1

(1+an) is said to converge absolutely if and only if the infinite product

∞∏

n=1

(1 + |an|) converges.

Theorem. If the infinite product

∞∏

n=1

(1 + an) converges absolutely, then it converges.

Proof. Use the Cauchy criterion together with the inequality

|(1 + an+1)(1 + an+2) · · · (1 + am) − 1| ≤ (1 + |an+1|)(1 + |an+2|) · · · (1 + |am|) − 1.

Note: For positive terms an > 0 for all n ≥ 1, we know that
∞∏

n=1

(1 + an) converges if and only if
∞∑

n=1
an

converges, so that

∞∏

n=1

(1 + an) converges absolutely if and only if
∞∑

n=1
an converges absolutely. However, if

the terms are not positive, we have the following examples to show the results need not be valid.

Exercise 1. Let an =
(−1)n

√
n

for n ≥ 1, show that

∞∏

n=1

(1 + an) diverges, but
∞∑

n=1
an converges.

Exercise 2. Let

a2n−1 =
−1√

n
and a2n =

1√
n

+
1

n

for n = 1, 2, . . . , show that

∞∏

n=1

(1 + an) converges, but
∞∑

n=1
an diverges.



We do have a theorem analogous to the positive term result:

Theorem. If an ≥ 0 for all n ≥ 1, then the infinite product

∞∏

n=1

(1− an) converges if and only if the infinite

series
∞∑

n=1
an converges.

Proof. Note that convergence of
∞∑

n=1
an implies the absolute convergence of

∞∏

n=1

(1 − an), and hence the

convergence of

∞∏

n=1

(1 − an).

Conversely, suppose that
∞∑

n=1
an diverges, if {an} does not converge to zero, then

∞∏

n=1

(1 − an) also diverges.

Therefore, we may assume that an → 0 as n → ∞, and by discarding finitely many terms if necessary, we
may assume that an ≤ 1

2 for all n ≥ 1. But then, 1 − an ≥ 1
2 for all n ≥ 1, and so an 6= 0 for n ≥ 1.

Let
pn = (1 − a1)(1 − a2) · · · (1 − an) and qn = (1 + a1)(1 + a2) · · · (1 + an)

for all n ≥ 1, then since
(1 − ak)(1 + ak) = 1 − a2

k ≤ 1

we have pn ≤ 1

qn
for all n ≥ 1.

Now since
∞∑

n=1
an diverges, then

∞∏

n=1

(1 + an) diverges also, and qn → +∞ as n → ∞. Therefore, pn → 0 as

n → ∞ and so by part (b) of the definition of convergence, it follows that

∞∏

n=1

(1 − an) diverges to 0.

Euler’s Product Formula for the Riemann Zeta Function

We now have enough information to prove Euler’s theorem and make the connection between infinite products
and prime numbers.

Theorem (Euler’s Product Formula)

Let pk denote the kth prime number, if s > 1, then

ζ(s) =

∞∑

n=1

1

ns
=

∞∏

k=1

1

1 − p−s
k

,

and the infinite product converges absolutely.

Proof. For m ≥ 1, let

Pm =

m∏

k=1

1

1 − p−s
k

be the mth partial product of the infinite product.



If we write each factor as a convergent geomteric series, we have

Pm =

m∏

k=1

(
1 +

1

ps
k

+
1

p2s
k

+ · · ·
)

,

which is a product of a finite number of absolutely convergent infinite series, and multiplying these series to-
gether and rearranging the terms according to increasing denominators, we get another absolutely convergent
infinite series, and a typical term looks like

1

pa1s
1 pa2s

2 · · · pams
m

=
1

ns

where n = pa1

1 pa2

2 · · · pam

m , and ai ≥ 0 for i = 1, 2, . . . , m. Therefore,

Pm =
∑{

1

ns
: all prime factors of n are ≤ pm

}

and by the Fundamental Theorem of Arithmetic, each such n occurs exactly once in the summation.

Therefore,

ζ(s) − Pm =
∑{

1

ns
: at least one prime factor of n is > pm

}

and since these prime factors occur among the integers n > pm, we have

|ζ(s) − Pm| ≤
∑

n>pm

1

ns
.

As m → ∞, the sum on the right tends to 0, since
∞∑

n=1

1

ns
converges, and therefore

lim
m→∞

Pm = ζ(s).

Finally, the product has the form

∞∏

n=1

(1 + an) where

an =
1

ps
n

+
1

p2s
n

+ · · · ,

and the series

∞∑

n=1

an converges absolutely since it is dominated by

∞∑

n=1

1

ns
, and therefore the infinite product

∞∏

n=1

(1 + an) also converges absolutely.



Evaluating the Zeta Function

In 1734, Euler found that

ζ(2) =

∞∑

n=1

1

n2
=

π2

6
,

and he later found closed formulas for

ζ(4) =

∞∑

n=1

1

n4

ζ(6) =
∞∑

n=1

1

n6

ζ(8) =

∞∑

n=1

1

n8

...

but he failed to find a closed formula for ζ(3) =

∞∑

n=1

1

n3
. In fact, it was not even known if ζ(3) was irrational

or not until 1979, when R. Apery proved that ζ(3) is irrational. It is still unknown whether or not ζ(3) is
transcendental.

An elementary proof that ζ(2) =
π2

6
uses the theory of Fourier series to sum the series. There is another

elementary proof given below that uses only the binomial theorem and some elementary facts about the
roots of polynomials with integer coefficients.

Theorem.

ζ(2) =

∞∑

n=1

1

n2
=

π2

6
.

Proof. Note that for 0 < x <
π

2
, we have 0 < sin x < x < tan x, so that 0 < cot x <

1

x
< csc x, and

therefore

cot2 x <
1

x2
< csc2 x (1)

for 0 < x <
π

2
.

Now let m ∈ N, then for k = 1, . . . , m we have 0 <
kπ

2m + 1
<

π

2
, so that

m∑

k=1

cot2
kπ

2m + 1
<

m∑

k=1

(2m + 1)2

k2π2
<

m∑

k=1

csc2 kπ

2m + 1

for all m ≥ 1; therefore,

π2

(2m + 1)2
·

m∑

k=1

cot2
kπ

2m + 1
<

m∑

k=1

1

k2
<

π2

(2m + 1)2
·

m∑

k=1

csc2 kπ

2m + 1
(2)

for all m ≥ 1.



Now we find explicit formulas for
m∑

k=1

cot2 kπ
2m+1 and

m∑
k=1

csc2 kπ
2m+1 . From DeMoivre’s formula and the bino-

mial theorem, we have, for x ∈ R and n ∈ N,

cosnx + i sinnx =
(
cosx + i sinx

)n

=

n∑

j=0

(
n

j

)(
cosx

)n−j(
i sinx

)j

=

[ n

2
]∑

j=0

(
n

2j

)
cosn−2j x (i)2j sin2j x +

[ n−1

2
]∑

j=0

(
n

2j + 1

)
cosn−2j−1 x (i)2j+1 sin2j+1 x

=

[ n

2
]∑

j=0

(
− 1
)j
(

n

2j

)
cosn−2j x sin2j x + i

[ n−1

2
]∑

j=0

(
− 1
)j
(

n

2j + 1

)
cosn−2j−1 x sin2j+1 x,

and equating real and imaginary parts in this expression, we have

cosnx =

[ n

2
]∑

j=0

(
− 1
)j
(

n

2j

)
cosn−2j x sin2j x (3)

and

sin nx =

[ n−1

2
]∑

j=0

(
− 1
)j
(

n

2j + 1

)
cosn−2j−1 x sin2j+1 x. (4)

Now, if sin x 6= 0, and m ∈ N, then taking n = 2m + 1 in (4), we have

sin(2m + 1)x =

m∑

j=0

(
− 1
)j
(

2m + 1

2j + 1

)
cos2m−2j x sin2j+1 x

= sin2m+1 x ·
m∑

j=0

(
− 1
)j
(

2m + 1

2j + 1

)(
cos2 x

)m−j (
sin2 x

)j−m

= sin2m+1 x ·
m∑

j=0

(
− 1
)j
(

2m + 1

2j + 1

)(
cot2 x

)m−j
,

that is,

sin(2m + 1)x = sin2m+1 x ·
m∑

j=0

(
− 1
)j
(

2m + 1

2j + 1

)(
cot2 x

)m−j
(5)

for all m ∈ N, provided that sin x 6= 0.

Taking x = kπ
2m+1 , for k = 1, 2, . . . , m; then

sin kπ
2m+1 6= 0 but sin

(
(2m + 1) kπ

2m+1

)
= sin kπ = 0

for k = 1, 2, . . . , m, and (5) yields

m∑

j=0

(
− 1
)j
(

2m + 1

2j + 1

)(
cot2 kπ

2m+1

)m−j
= 0 (6)

for k = 1, 2, . . . , m.



Therefore, the m roots of the equation

m∑

j=0

(
− 1
)j
(

2m + 1

2j + 1

)
tm−j = 0

are t = cot2 kπ
2m+1 , k = 1, 2, . . . , m.

Now, if p(t) = a0 + a1t + · · · + amtm is a polynomial in t of degree m, and if λ1, λ2, . . . , λm are the roots of
p, then

p(t) = am(t − λ1)(t − λ2) · · · (t − λm)

= amtm − am(λ1 + · · · + λm)tm−1 + · · ·

so the coefficient of tm−1 is −am(λ1 + · · ·+λm). Now, for p(t) =
m∑

j=0

(−1)j
(
2m+1
2j+1

)
tm−j , the coefficient of tm−1

is −
(
2m+1

3

)
and am =

(
2m+1

1

)
, and therefore from (6) we have

m∑

k=1

cot2
kπ

2m + 1
=

(
2m+1

3

)
(
2m+1

1

) =
m(2m − 1)

3
(7)

for all m ≥ 1. and since csc2 x = 1 + cot2 x, then

m∑

k=1

csc2 kπ

2m + 1
=

2m(m + 1)

3
(8)

for all m ≥ 1.

Combining (2), (7) and (8), we have

2m(2m − 1)

(2m + 1)2
· π2

6
<

m∑

k=1

1

k2
<

2m(2m + 2)

(2m + 1)2
· π2

6
, (9)

for all m ≥ 1, and letting m → ∞, we have

∞∑

k=1

1

k2
=

π2

6
.

as required.

Example. The usual Fourier series evaluation of ζ(2) looks at the function

f(x) = x2, 0 < x < π,

and then finds the Fourier cosine series of f̂ , the even 2π-periodic extension of f, to be

a0

2
+

∞∑

n=1

an cosnx,

where

an =
2

π

∫ π

0

f(x) cosnx dx

for n = 0, 1, 2, . . . .



For n = 0, we have

a0 =
2

π

∫ π

0

x2 dx =
2

π
· x3

3

∣∣∣∣
π

0

=
2

π
· π3

3
=

2π2

3
.

For n ≥ 1, we have

an =
2

π

∫ π

0

x2 cosnx dx =
2

π

[
x2 sin nx

n

∣∣∣∣
π

0

− 2

n

∫ π

0

x sin nx dx

]
= − 4

nπ

∫ π

0

x sin nx dx

= − 4

nπ

[
−x cosnx

n

∣∣∣∣
π

0

+
1

n

∫ π

0

cosnx dx

]
=

4

n2
(−1)n − 4

n3π
sin nx

∣∣∣∣
π

0

=
4(−1)n

n2
.

Therefore, the Fourier cosine series for f̂ is given by

f̂(x) ∼ π2

3
+ 4

∞∑

n=1

(−1)n

n2
cosnx

for all x ∈ R.

From Dirichlet’s theorem, since the even 2π-periodic extension of f is continuous at each x ∈ R, then the
Fourier cosine series converges to f̂(x) for all x ∈ R, and we can write

f̂(x) =
π2

3
+ 4

∞∑

n=1

(−1)n

n2
cosnx

for all x ∈ R. In particular, when x = π, the series converges to π2, so that

π2 =
π2

3
+ 4

∞∑

n=1

1

n2
,

and therefore

ζ(2) =
∞∑

n=1

1

n2
=

π2

6
.

Exercise 3. Show that ζ(2) =
π2

6
by evaluating the double integral

I =

∫ 1

0

∫ 1

0

dx dy

1 − xy

in two different ways.

(a) Obtain I = ζ(2) from the expansion

1

1 − xy
= 1 + xy + x2y2 + x3y3 + · · · ,

which is valid for |xy| < 1.

(b) Evaluate the integral directly by rotating the coordinate system about the origin through an angle of
π

4
to obtain

I = 4

∫ 1/
√

2

0

(∫ u

0

dv

2 − u2 + v2

)
du + 4

∫ √
2

1/
√

2

(∫ √
2−u

0

dv

2 − u2 + v2

)
du,

integrating with respect to v and then making the substitution u =
√

2 cos θ.


