

MATH 324 Summer 2011 Elementary Number Theory

Notes on the Integers

Properties of the Integers

The set of all integers is the set

$$\mathbb{Z} = \{ \cdots, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, \cdots \},\$$

and the subset of \mathbb{Z} given by

$$\mathbb{N} = \{0, 1, 2, 3, 4, \cdots\},\$$

is the set of nonnegative integers (also called the natural numbers or the counting numbers).

We assume that the notions of addition (+) and multiplication (\cdot) of integers have been defined, and note that \mathbb{Z} with these two binary operations satisfy the following.

Axioms for Integers

• Closure Laws: if $a, b \in \mathbb{Z}$, then

$$a+b \in \mathbb{Z}$$
 and $a \cdot b \in \mathbb{Z}$.

• Commutative Laws: if $a, b \in \mathbb{Z}$, then

$$a+b=b+a$$
 and $a \cdot b = b \cdot a$.

• Associative Laws: if $a, b, c \in \mathbb{Z}$, then

$$(a+b)+c=a+(b+c)$$
 and $(a\cdot b)\cdot c=a\cdot (b\cdot c).$

• Distributive Law: if $a, b, c \in \mathbb{Z}$, then

$$a \cdot (b+c) = a \cdot b + a \cdot c$$
 and $(a+b) \cdot c = a \cdot c + b \cdot c$.

• Identity Elements: There exist integers 0 and 1 in \mathbb{Z} , with $1 \neq 0$, such that

$$a+0=0+a=a$$
 and $a\cdot 1=1\cdot a=a$

for all $a \in \mathbb{Z}$.

• Additive Inverse: For each $a \in \mathbb{Z}$, there is an $x \in \mathbb{Z}$ such that

$$a + x = x + a = 0,$$

x is called the **additive inverse** of a or the **negative** of a, and is denoted by -a.

The set \mathbb{Z} together with the operations of + and \cdot satisfying these axioms is called a **commutative ring** with identity.

We can now prove the following results concerning the integers.

Theorem. For any $a \in \mathbb{Z}$, we have $0 \cdot a = a \cdot 0 = 0$.

Proof. We start with the fact that 0 + 0 = 0. Multiplying by a, we have

$$a \cdot (0+0) = a \cdot 0$$

and from the distributive law we have,

$$a \cdot 0 + a \cdot 0 = a \cdot 0.$$

If $b = -(a \cdot 0)$, then

$$(a \cdot 0 + a \cdot 0) + b = a \cdot 0 + b = 0,$$

and from the associative law,

$$a \cdot 0 + (a \cdot 0 + b) = 0,$$

that is,

$$a \cdot 0 + 0 = 0,$$

and finally,

$$a \cdot 0 = 0$$
.

Theorem. For any $a \in \mathbb{Z}$, we have $-a = (-1) \cdot a$.

Proof. Let $a \in \mathbb{Z}$, then

$$0 = 0 \cdot a = [1 + (-1)] \cdot a = 1 \cdot a + (-1) \cdot a,$$

so that

$$-a + 0 = -a + (a + (-1) \cdot a),$$

that is,

$$-a = (-a + a) + (-1) \cdot a,$$

that is,

$$-a = 0 + (-1) \cdot a,$$

and finally, $-a = (-1) \cdot a$.

Theorem. $(-1) \cdot (-1) = 1$.

Proof. We have

$$(-1)\cdot (-1) + (-1) = (-1)\cdot (-1) + (-1)\cdot 1 = (-1)\cdot \big[(-1)+1\big] = (-1)\cdot 0 = 0,$$

so that

$$\left[(-1)\cdot (-1) + (-1) \right] + 1 = 0 + 1 = 1,$$

that is,

$$(-1) \cdot (-1) + \lceil (-1) + 1 \rceil = 1,$$

or,

$$(-1) \cdot (-1) + 0 = 1.$$

Therefore, $(-1) \cdot (-1) = 1$.

We can define an ordering on the set of integers \mathbb{Z} using the set of positive integers $\mathbb{N}^+ = \{1, 2, 3, \dots\}$.

Definition. If $a, b \in \mathbb{Z}$, then we define a < b if and only if $b - a \in \mathbb{N}^+$.

Note: By b-a we mean b+(-a), and if a < b we also write b > a. Also, we note that a is a positive integer if and only if a > 0, since by definition a > 0 if and only if $a = a - 0 \in \mathbb{N}^+$.

Order Axioms for the Integers

• Closure Axioms for \mathbb{N}^+ : If $a, b \in \mathbb{N}^+$, then

$$a+b \in \mathbb{N}^+$$
 and $a \cdot b \in \mathbb{N}^+$.

• Law of Trichotomy: For every integer $a \in \mathbb{Z}$, exactly one of the following is true:

$$a \in \mathbb{N}^+$$
 or $-a \in \mathbb{N}^+$ or $a = 0$

Exercise. Use the Law of Trichotomy together with the fact that $(-1) \cdot (-1) = 1$ to show that 1 > 0.

Definition. We say that an integer a is a **zero divisor** or **divisor of zero** if and only if $a \neq 0$ and there exists an integer $b \neq 0$ such that $a \cdot b = 0$.

Now we can show that \mathbb{Z} with the usual notion of addition and multiplication has no zero divisors.

Theorem. If $a, b \in \mathbb{Z}$ and $a \cdot b = 0$, then either a = 0 or b = 0.

Proof. Suppose that $a, b \in \mathbb{Z}$ and $a \cdot b = 0$. If $a \neq 0$ and $b \neq 0$, since

$$a \cdot b = (-a) \cdot (-b)$$
 and $-a \cdot b = (-a) \cdot b = a \cdot (-b)$,

by considering all possible cases, the fact that \mathbb{N}^+ is closed under multiplication and the Law of Trichotomy imply that $a \cdot b \neq 0$, which is a contradiction. Therefore, if $a \cdot b = 0$, then either a = 0 or b = 0.

Thus, \mathbb{Z} with the usual notion of addition and multiplication is a commutative ring with identity which has no zero divisors, such a structure is called an **integral domain**, and we have the following result.

Theorem. (Cancellation Law)

If $a, b, c \in \mathbb{Z}$ with $c \neq 0$, and if $a \cdot c = b \cdot c$, then a = b.

Proof. If
$$a \cdot c = b \cdot c$$
, then $(a - b) \cdot c = 0$, and since $c \neq 0$, then $a - b = 0$.

Exercise. Show that the relation on \mathbb{Z} defined by $a \leq b$ if and only if a < b or a = b, is a **partial ordering**, that is, it is

- Reflexive: For each $a \in \mathbb{Z}$, we have $a \leq a$.
- Antisymmetric: For each $a, b \in \mathbb{Z}$, if $a \leq b$ and $b \leq a$, then a = b.
- Transitive: For each $a, b, c \in \mathbb{Z}$, if a < b and b < c, then a < c.

Show also that this is a **total ordering**, that is, for any $a, b \in \mathbb{Z}$, either $a \leq b$ or $b \leq a$.

We have the standard results concerning the order relation on \mathbb{Z} . We will prove (ii), (iv), and (v), and leave the rest as exercises.

Theorem. If $a, b, c, d \in \mathbb{Z}$, then

- (i) if a < b, then $a \pm c \le b \pm c$.
- (ii) If a < b and c > 0, then $a \cdot c < b \cdot c$.
- (iii) If a < b and c < 0, then $a \cdot c > b \cdot c$.
- (iv) If 0 < a < b and 0 < c < d, then $a \cdot c < b \cdot d$.
- (v) If $a \in \mathbb{Z}$ and $a \neq 0$, then $a^2 > 0$. In particular, 1 > 0.

Proof.

- (ii) If a < b and c > 0, then b a > 0 and c > 0, so that $(b a) \cdot c > 0$, that is, $b \cdot c a \cdot c > 0$. Therefore, $a \cdot c < b \cdot c$.
- (iv) We have

$$b \cdot d - a \cdot c = b \cdot d - b \cdot c + b \cdot c - a \cdot c = b \cdot (d - c) + c \cdot (b - a) > 0$$

since
$$b > 0$$
, $c > 0$, $d - c > 0$, and $b - a > 0$.

(v) Let $a \in \mathbb{Z}$, if a > 0, then (ii) implies that $a \cdot a > a \cdot 0$, that is, $a^2 > 0$.

If
$$a < 0$$
, then $-a > 0$, and (ii) implies that $a^2 = (-a) \cdot (-a) > 0$. Finally, since $1 \neq 0$, then $1 = 1^2 > 0$.

Exercise. Show that if $a, b, c \in \mathbb{Z}$ and $a \cdot b < a \cdot c$ and a > 0, then b < c.

Finally, we need one more axiom for the set of integers.

Well-Ordering Axiom for the Integers

If B is a nonempty subset of \mathbb{Z} which is bounded below, that is, there exists an $n \in \mathbb{Z}$ such that $n \leq b$ for all $b \in B$, then B has a smallest element, that is, there exists a $b_0 \in B$ such that $b_0 < b$ for all $b \in B$, $b \neq b_0$.

In particular, we have

Theorem. (Well-Ordering Principle for \mathbb{N})

Every nonempty set of nonnegative integers has a least element.

It can be shown that the Well-Ordering Principle for \mathbb{N} is logically equivalent to the Principle of Mathematical Induction, so we may assume one of them as an axiom and prove the other one as a theorem.

Exercise. Show that the following statement is equivalent to the Well-Ordering Axiom for the Integers:

Every nonempty subset of integers which is bounded above has a largest element.

Example. The set of rational numbers

$$\mathbb{Q} = \{ a/b \mid a, b \in \mathbb{Z}, b \neq 0 \}$$

with the usual ordering is not a well–ordered set, that is, there exists a nonempty subset B of \mathbb{Q} which is bounded below, but which has no smallest element.

Proof. In fact, we can take $B = \mathbb{Q}^+$, the set of all positive rational numbers; clearly $\mathbb{Q}^+ \neq \emptyset$ and 0 < q for all $q \in \mathbb{Q}^+$, so it is also bounded below.

Now, suppose that \mathbb{Q}^+ has a smallest element, say $q_0 \in \mathbb{Q}^+$, then $q_0/2 \in \mathbb{Q}^+$ also, and $q_0/2 < q_0$, which is a contradiction. Therefore, our original assumption must have been false, and \mathbb{Q}^+ has no smallest element, so \mathbb{Q} is not well-ordered.

Definition. The set of **irrational numbers** is the set of all real numbers that are not rational, that is, the set $\mathbb{R} \setminus \mathbb{Q}$.

Example. The real number $\sqrt{2}$ is irrational.

Proof. We will show this using the Well-Ordering Principle. First note that the integer 2 lies between the squares of two consecutive positive integers (consecutive squares), namely, 1 < 2 < 4, and therefore

$$1 < \sqrt{2} < 2$$

(since $0 < \sqrt{2} \le 1$ implies $2 \le 1$, a contradiction; while $\sqrt{2} \ge 2$ implies $2 \ge 4$, again, a contradiction).

Now let

$$B = \{b \in \mathbb{N}^+ \mid \sqrt{2} = a/b \text{ for some } a \in \mathbb{Z}\},\$$

if $\sqrt{2} \in \mathbb{Q}$, then $B \neq \emptyset$.

Since B is bounded below by 0, then the Well-Ordering Principle implies that B has a smallest element, call it b_0 , so that

$$\sqrt{2} = \frac{a_0}{b_0}$$

where $a_0, b_0 \in \mathbb{N}^+$, and $2b_0^2 = a_0^2$.

Since

$$1 < \frac{a_0}{b_0} < 2,$$

then $b_0 < a_0 < 2b_0$, and therefore $0 < a_0 - b_0 < b_0$.

Now we find a positive integer x such that

$$\frac{x}{a_0 - b_0} = \frac{a_0}{b_0},$$

that is, $b_0x = a_0(a_0 - b_0) = a_0^2 - a_0b_0 = 2b_0^2 - a_0b_0 = b_0(2b_0 - a_0)$, so we may take $x = 2b_0 - a_0$, and

$$\sqrt{2} = \frac{2b_0 - a_0}{a_0 - b_0} = \frac{a_0}{b_0},$$

so that $a_0 - b_0 \in B$, and $0 < a_0 - b_0 < b_0$. However, this contradicts the fact that b_0 is the smallest element in B, so our original assumption is incorrect. Therefore, $B = \emptyset$ and $\sqrt{2}$ is irrational.

Exercise. Show that if m is a positive integer which is not a perfect square, that is, m is not the square of another integer, then \sqrt{m} is irrational.

Hint: The proof mimics the proof above for $\sqrt{2}$.

Definition. If $n \in \mathbb{Z}$, then we say that n is **even** if and only if there exists an integer $k \in \mathbb{Z}$ such that n = 2k. We say that n is **odd** if and only if there is an integer $k \in \mathbb{Z}$ such that n = 2k + 1.

We will use the Well-Ordering Principle to show that every integer is either even or odd, but first we need a lemma.

Lemma. There does not exist an integer n satisfying 0 < n < 1.

Proof. Let

$$B = \{ n \mid n \in \mathbb{Z}, \text{ and } 0 < n < 1 \}.$$

If $B \neq \emptyset$, since B is bounded below by 0, then by the Well-Ordering Principle B has a smallest element, say $n_0 \in B$, but then multiplying the inequality $0 < n_0 < 1$ by the positive integer n_0 , we have

$$0 < n_0^2 < n_0 < 1.$$

However, n_0^2 is an integer and so $n_0^2 \in B$, which contradicts the fact that n_0 is the smallest element of B. Therefore, our original assumption is incorrect and $B = \emptyset$, that is, there does not exist an integer n satisfying 0 < n < 1. Note that we have shown that 1 is the smallest positive integer.

Theorem. Every integer $n \in \mathbb{Z}$ is either even or odd.

Proof. Suppose there exists an integer $N \in \mathbb{Z}$ such that N is neither even nor odd, let

$$B = \{ n \in \mathbb{Z} \mid n \text{ is even or odd and } n \leq N \},$$

then $B \neq \emptyset$ and B is bounded above by N. By the Well-Ordering Property, B has a largest element, say $n_0 \in B$. Since n_0 is either even or odd, and $n_0 \leq N$, then we must have the strict inequality $n_0 < N$.

If n_0 is even, then $n_0 + 1$ is odd, and since n_0 is the largest such integer in B, then we must have

$$n_0 < N < n_0 + 1$$
.

If n_0 is odd, then $n_0 + 1$ is even, and again, since n_0 is the largest such integer in B, we must have

$$n_0 < N < n_0 + 1$$
.

Thus, in both cases, $N - n_0$ is an integer and

$$0 < N - n_0 < 1$$
,

which is a contradiction. Therefore, our original assumption was incorrect, and there does not exist an integer $N \in \mathbb{Z}$ which is neither even nor odd, that is, every integer $n \in \mathbb{Z}$ is either even or odd.

Theorem. There does not exist an integer $a \in \mathbb{Z}$ which is both even and odd. Thus the set of integers \mathbb{Z} is partitioned into two disjoint classes, the even integers and the odd integers.

Proof. Suppose that $a \in \mathbb{Z}$ and a is both even and odd, then there exist $k, \ell \in \mathbb{Z}$ such that

$$a = 2k$$
 and $a = 2\ell + 1$,

and therefore $2\ell + 1 = 2k$, so that $2(k - \ell) = 1$.

Now, since 1 > 0, the law of trichotomy implies that $k - \ell > 0$. Also, since 2 = 1 + 1 > 1 + 0 = 1, then

$$1 = 2 \cdot (k - \ell) > 1 \cdot (k - \ell) = k - \ell.$$

Therefore, $k - \ell$ is an integer satisfying $0 < k - \ell < 1$, which is a contradiction, and our assumption that there exists an integer a which is both even and odd is false.