MATH 324 Summer 2011
Elementary Number Theory

Notes on the Integers

Properties of the Integers

The set of all integers is the set
Z: { 7_57_47_37_27_1707 1u 23 33 4-a 57 }7

N:{()?]" 27 3’ 4’...}7

and the subset of Z given by
is the set of nonnegative integers (also called the natural numbers or the counting numbers).
We assume that the notions of addition (+) and multiplication (- ) of integers have been defined, and note

that Z with these two binary operations satisfy the following.

Axioms for Integers
and a-beZ.

e Closure Laws: if a,b € Z, then
a+bez

e Commutative Laws: if a,b € Z, then
a+b=b+a and

(a-b)-c=a-(b-c)

e Associative Laws: if a,b,c € Z, then
(a+bd)+c=a+(b+c) and
e Distributive Law: if a,b,c € Z, then
a-(b+c)=a-b+a-c and (a+b)-c=a-c+b-ec
e Identity Elements: There exist integers 0 and 1 in Z, with 1 # 0, such that
a+0=0+a=a and a-1=1-a=a

for all a € Z.
e Additive Inverse: For each a € Z, there is an x € Z such that
a+r=x+a=0,

x is called the additive inverse of a or the negative of a, and is denoted by —a

The set Z together with the operations of + and - satisfying these axioms is called a commutative ring

with identity.



We can now prove the following results concerning the integers.

Theorem. For any a € Z, we have 0-a =a-0=0.

Proof. We start with the fact that 0 + 0 = 0. Multiplying by a, we have
a-(04+0)=a-0

and from the distributive law we have,
a-04+a-0=a-0.

If b = —(a - 0), then
(a-0+a-0)+b=a-04+b=0,

and from the associative law,
a-0+(a-0+b)=0,

that is,
a-04+0=0,

and finally,
a-0=0.

Theorem. For any a € Z, we have —a = (—1) - a.

Proof. Let a € Z, then
0=0-a=[1+(-1)]-a=1-a+(-1)-a,

so that
—a+0=—-a+(a+(-1)-a),
that is,
—a=(—a+a)+(-1)-a,
that is,

—a=0+(-1)"a,

and finally, —a = (-1) - a.

Theorem. (—1)-(-1)=1.
Proof. We have

so that
(D) (- + (-] +1=0+1=1,
that is,
(=D D+ [(=D+1] =1,

Therefore, (—1) - (—1) = 1.



We can define an ordering on the set of integers Z using the set of positive integers N* = {1, 2, 3, --- }.
Definition. If a,b € Z, then we define a < b if and only if b —a € N*.

Note: By b—a we mean b+ (—a), and if a < b we also write b > a. Also, we note that a is a positive integer
if and only if a > 0, since by definition a > 0 if and only if a =a — 0 € NT.

Order Axioms for the Integers
e Closure Axioms for NT : If a,b € NT, then
a+beNt and a-beNT.
e Law of Trichotomy: For every integer a € Z, exactly one of the following is true:

aeNT or —aeN* or a=0.

Exercise. Use the Law of Trichotomy together with the fact that (—1)-(—1) = 1 to show that 1 > 0.

Definition. We say that an integer a is a zero divisor or divisor of zero if and only if a # 0 and there
exists an integer b # 0 such that a - b = 0.

Now we can show that Z with the usual notion of addition and multiplication has no zero divisors.

Theorem. If a,b € Z and a - b = 0, then either a = 0 or b = 0.
Proof. Suppose that a,b € Z and a-b=0. If a # 0 and b # 0, since

a-b=(—a)-(-b) and —a-b=(—a)-b=a-(-D),

by considering all possible cases, the fact that N is closed under multiplication and the Law of Trichotomy
imply that a - b # 0, which is a contradiction. Therefore, if a - b = 0, then either a = 0 or b = 0. O

Thus, Z with the usual notion of addition and multiplication is a commutative ring with identity which has
no zero divisors, such a structure is called an integral domain, and we have the following result.

Theorem. (Cancellation Law)
If a,b,c € Z with ¢ 20, and if a- ¢ =b- ¢, then a = b.
Proof. If a-c¢=1b"¢, then (a —b) - ¢ =0, and since ¢ # 0, then a — b = 0. O

Exercise. Show that the relation on Z defined by a < b if and only if a < b or a = b, is a partial ordering,
that is, it is

e Reflexive: For each a € Z, we have a < a.
e Antisymmetric: For each a,b € Z, if a < b and b < a, then a = b.
e Transitive: For each a,b,c € Z, if a < b and b < ¢, then a < c.

Show also that this is a total ordering, that is, for any a,b € Z, either a < b or b < a.



We have the standard results concerning the order relation on Z. We will prove (ii), (iv), and (v), and leave
the rest as exercises.

Theorem. If a,b,c,d € Z, then

(i) fa<b,thenat+c<bzxec.

(ii) fa<band ¢ >0, thena-c<b-ec

(iii) f a <band ¢ < 0, thena-c>b-c.

(iv) fO0<a<band 0<c<d, thena-c<b-d.

(v) If a € Z and a # 0, then a? > 0. In particular, 1 > 0.
Proof.

(ii) If a < b and ¢ > 0, then b —a > 0 and ¢ > 0, so that (b —a) - ¢ > 0, that is, b- ¢ — a - ¢ > 0. Therefore,
a-c<b-c

(iv) We have
b-d—a-c=b-d-=b-c+b-c—a-c=b-(d-=c)+c-(b—a)>0

since b>0,¢c>0,d—c>0, and b—a > 0.
(v) Let a € Z, if a > 0, then (ii) implies that a - a > a - 0, that is, a® > 0.

If a < 0, then —a > 0, and (ii) implies that a® = (—a) - (—a) > 0. Finally, since 1 # 0, then 1 = 12 > 0.
O

Exercise. Show that if a,b,c € Z and a-b < a-cand a > 0, then b < c.

Finally, we need one more axiom for the set of integers.

Well-Ordering Axiom for the Integers

If B is a nonempty subset of Z which is bounded below, that is, there exists an n € Z such that n < b for
all b € B, then B has a smallest element, that is, there exists a bg € B such that by < b for all b € B, b # by.

In particular, we have

Theorem. (Well-Ordering Principle for N)

Every nonempty set of nonnegative integers has a least element.

It can be shown that the Well-Ordering Principle for N is logically equivalent to the Principle of Mathematical
Induction, so we may assume one of them as an axiom and prove the other one as a theorem.

Exercise. Show that the following statement is equivalent to the Well-Ordering Axiom for the Integers:

Every nonempty subset of integers which is bounded above has a largest element.



Example. The set of rational numbers
Q= {a/b|a,b€Z, b#O}
with the usual ordering is not a well-ordered set, that is, there exists a nonempty subset B of Q which is

bounded below, but which has no smallest element.

Proof. In fact, we can take B = QT, the set of all positive rational numbers; clearly QT # () and 0 < ¢ for
all ¢ € QT, so it is also bounded below.

Now, suppose that Q1 has a smallest element, say go € Q7, then ¢p/2 € QT also, and q9/2 < qo, which is
a contradiction. Therefore, our original assumption must have been false, and QT has no smallest element,
so Q is not well-ordered. O

Definition. The set of irrational numbers is the set of all real numbers that are not rational, that is, the

set R\ Q.

Example. The real number V/2 is irrational.

Proof. We will show this using the Well-Ordering Principle. First note that the integer 2 lies between the
squares of two consecutive positive integers (consecutive squares), namely, 1 < 2 < 4, and therefore

1<V2<2,

(since 0 < V2<1 implies 2 < 1, a contradiction; while V2>2 implies 2 > 4, again, a contradiction).

Now let
B = {be N*|2=a/bfor some a € Z},

if V2 € Q, then B # 0.

Since B is bounded below by 0, then the Well-Ordering Principle implies that B has a smallest element, call
it bg, so that
V2 =22

)
where ag, by € NT, and 2b3 = ad.
Since a
1< ™ <2,
then by < ag < 2bg, and therefore 0 < ag — by < bg.
Now we find a positive integer x such that
x ao

3

ao—bo  bo

that is, box = ag(aop — bo) = a3 — agby = 2b% — agby = bo(2by — ap), so we may take x = 2by — ag, and

2b0 — Qg ag
2 =
\/— ag — bo bo ’

so that ag — by € B, and 0 < ag — bg < bg. However, this contradicts the fact that by is the smallest element
in B, so our original assumption is incorrect. Therefore, B = () and /2 is irrational. O



Exercise. Show that if m is a positive integer which is not a perfect square, that is, m is not the square of
another integer, then /m is irrational.

Hint: The proof mimics the proof above for v/2.

Definition. If n € Z, then we say that n is even if and only if there exists an integer k € Z such that
n = 2k. We say that n is odd if and only if there is an integer k € Z such that n = 2k + 1.

We will use the Well-Ordering Principle to show that every integer is either even or odd, but first we need
a lemma.

Lemma. There does not exist an integer n satisfying 0 < n < 1.

Proof. Let
B={n|n€Z, and 0 <n < 1}.

If B # (), since B is bounded below by 0, then by the Well-Ordering Principle B has a smallest element, say
no € B, but then multiplying the inequality 0 < ng < 1 by the positive integer ng, we have

0<ni<ng<l.
However, n is an integer and so n3 € B, which contradicts the fact that ng is the smallest element of B.

Therefore, our original assumption is incorrect and B = (), that is, there does not exist an integer n satisfying
0 < n < 1. Note that we have shown that 1 is the smallest positive integer. (|

Theorem. Every integer n € Z is either even or odd.

Proof. Suppose there exists an integer IV € Z such that NV is neither even nor odd, let
B={neZ|nisevenorodd and n < N},

then B # () and B is bounded above by N. By the Well-Ordering Property, B has a largest element, say
ng € B. Since nyg is either even or odd, and ng < NN, then we must have the strict inequality ng < IN.

If ng is even, then ng 4+ 1 is odd, and since ng is the largest such integer in B, then we must have
ng < N <ng+ 1.

If ng is odd, then ng + 1 is even, and again, since ng is the largest such integer in B, we must have
no < N <mng—+1.

Thus, in both cases, N — ng is an integer and
0< N —ng<1,

which is a contradiction. Therefore, our original assumption was incorrect, and there does not exist an
integer N € Z which is neither even nor odd, that is, every integer n € Z is either even or odd. |



Theorem. There does not exist an integer a € Z which is both even and odd. Thus the set of integers Z is
partitioned into two disjoint classes, the even integers and the odd integers.

Proof. Suppose that a € Z and a is both even and odd, then there exist k, ¢ € Z such that
a =2k and a=20+1,

and therefore 2¢ 4+ 1 = 2k, so that 2(k — £) = 1.
Now, since 1 > 0, the law of trichotomy implies that ¥ — ¢ > 0. Also, since2=1+1> 140 =1, then

1=2-(k—0)>1-(k—0)=k—1.

Therefore, k — ¢ is an integer satisfying 0 < k — ¢ < 1, which is a contradiction, and our assumption that
there exists an integer a which is both even and odd is false. (|



