
 

MATH 324 Summer 2011
Elementary Number Theory

Notes on the Integers

Properties of the Integers

The set of all integers is the set

Z = {· · · ,−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5, · · · },

and the subset of Z given by
N = {0, 1, 2, 3, 4, · · · },

is the set of nonnegative integers (also called the natural numbers or the counting numbers).

We assume that the notions of addition (+) and multiplication ( · ) of integers have been defined, and note
that Z with these two binary operations satisfy the following.

Axioms for Integers

• Closure Laws: if a, b ∈ Z, then

a + b ∈ Z and a · b ∈ Z.

• Commutative Laws: if a, b ∈ Z, then

a + b = b + a and a · b = b · a.

• Associative Laws: if a, b, c ∈ Z, then

(a + b) + c = a + (b + c) and (a · b) · c = a · (b · c).

• Distributive Law: if a, b, c ∈ Z, then

a · (b + c) = a · b + a · c and (a + b) · c = a · c + b · c.

• Identity Elements: There exist integers 0 and 1 in Z, with 1 6= 0, such that

a + 0 = 0 + a = a and a · 1 = 1 · a = a

for all a ∈ Z.

• Additive Inverse: For each a ∈ Z, there is an x ∈ Z such that

a + x = x + a = 0,

x is called the additive inverse of a or the negative of a, and is denoted by −a.

The set Z together with the operations of + and · satisfying these axioms is called a commutative ring
with identity.



We can now prove the following results concerning the integers.

Theorem. For any a ∈ Z, we have 0 · a = a · 0 = 0.

Proof. We start with the fact that 0 + 0 = 0. Multiplying by a, we have

a · (0 + 0) = a · 0

and from the distributive law we have,
a · 0 + a · 0 = a · 0.

If b = −(a · 0), then
(a · 0 + a · 0) + b = a · 0 + b = 0,

and from the associative law,
a · 0 + (a · 0 + b) = 0,

that is,
a · 0 + 0 = 0,

and finally,
a · 0 = 0.

Theorem. For any a ∈ Z, we have −a = (−1) · a.

Proof. Let a ∈ Z, then
0 = 0 · a = [1 + (−1)] · a = 1 · a + (−1) · a,

so that
−a + 0 = −a + (a + (−1) · a),

that is,
−a = (−a + a) + (−1) · a,

that is,
−a = 0 + (−1) · a,

and finally, −a = (−1) · a.

Theorem. (−1) · (−1) = 1.

Proof. We have

(−1) · (−1) + (−1) = (−1) · (−1) + (−1) · 1 = (−1) ·
[

(−1) + 1
]

= (−1) · 0 = 0,

so that
[

(−1) · (−1) + (−1)
]

+ 1 = 0 + 1 = 1,

that is,
(−1) · (−1) +

[

(−1) + 1
]

= 1,

or,
(−1) · (−1) + 0 = 1.

Therefore, (−1) · (−1) = 1.
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We can define an ordering on the set of integers Z using the set of positive integers N+ = {1, 2, 3, · · · }.
Definition. If a, b ∈ Z, then we define a < b if and only if b − a ∈ N+.

Note: By b−a we mean b+(−a), and if a < b we also write b > a. Also, we note that a is a positive integer
if and only if a > 0, since by definition a > 0 if and only if a = a − 0 ∈ N+.

Order Axioms for the Integers

• Closure Axioms for N+ : If a, b ∈ N+, then

a + b ∈ N+ and a · b ∈ N+.

• Law of Trichotomy: For every integer a ∈ Z, exactly one of the following is true:

a ∈ N+ or − a ∈ N+ or a = 0.

Exercise. Use the Law of Trichotomy together with the fact that (−1) · (−1) = 1 to show that 1 > 0.

Definition. We say that an integer a is a zero divisor or divisor of zero if and only if a 6= 0 and there
exists an integer b 6= 0 such that a · b = 0.

Now we can show that Z with the usual notion of addition and multiplication has no zero divisors.

Theorem. If a, b ∈ Z and a · b = 0, then either a = 0 or b = 0.

Proof. Suppose that a, b ∈ Z and a · b = 0. If a 6= 0 and b 6= 0, since

a · b = (−a) · (−b) and − a · b = (−a) · b = a · (−b),

by considering all possible cases, the fact that N+ is closed under multiplication and the Law of Trichotomy
imply that a · b 6= 0, which is a contradiction. Therefore, if a · b = 0, then either a = 0 or b = 0.

Thus, Z with the usual notion of addition and multiplication is a commutative ring with identity which has
no zero divisors, such a structure is called an integral domain, and we have the following result.

Theorem. (Cancellation Law)

If a, b, c ∈ Z with c 6= 0, and if a · c = b · c, then a = b.

Proof. If a · c = b · c, then (a − b) · c = 0, and since c 6= 0, then a − b = 0.

Exercise. Show that the relation on Z defined by a ≤ b if and only if a < b or a = b, is a partial ordering,
that is, it is

• Reflexive: For each a ∈ Z, we have a ≤ a.

• Antisymmetric: For each a, b ∈ Z, if a ≤ b and b ≤ a, then a = b.

• Transitive: For each a, b, c ∈ Z, if a ≤ b and b ≤ c, then a ≤ c.

Show also that this is a total ordering, that is, for any a, b ∈ Z, either a ≤ b or b ≤ a.
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We have the standard results concerning the order relation on Z. We will prove (ii), (iv), and (v), and leave
the rest as exercises.

Theorem. If a, b, c, d ∈ Z, then

(i) if a < b, then a ± c ≤ b ± c.

(ii) If a < b and c > 0, then a · c < b · c.
(iii) If a < b and c < 0, then a · c > b · c.
(iv) If 0 < a < b and 0 < c < d, then a · c < b · d.

(v) If a ∈ Z and a 6= 0, then a2 > 0. In particular, 1 > 0.

Proof.

(ii) If a < b and c > 0, then b − a > 0 and c > 0, so that (b − a) · c > 0, that is, b · c − a · c > 0. Therefore,
a · c < b · c.

(iv) We have
b · d − a · c = b · d − b · c + b · c − a · c = b · (d − c) + c · (b − a) > 0

since b > 0, c > 0, d − c > 0, and b − a > 0.

(v) Let a ∈ Z, if a > 0, then (ii) implies that a · a > a · 0, that is, a2 > 0.

If a < 0, then −a > 0, and (ii) implies that a2 = (−a) · (−a) > 0. Finally, since 1 6= 0, then 1 = 12 > 0.

Exercise. Show that if a, b, c ∈ Z and a · b < a · c and a > 0, then b < c.

Finally, we need one more axiom for the set of integers.

Well-Ordering Axiom for the Integers

If B is a nonempty subset of Z which is bounded below, that is, there exists an n ∈ Z such that n ≤ b for
all b ∈ B, then B has a smallest element, that is, there exists a b0 ∈ B such that b0 < b for all b ∈ B, b 6= b0.

In particular, we have

Theorem. (Well-Ordering Principle for N)

Every nonempty set of nonnegative integers has a least element.

It can be shown that the Well-Ordering Principle for N is logically equivalent to the Principle of Mathematical
Induction, so we may assume one of them as an axiom and prove the other one as a theorem.

Exercise. Show that the following statement is equivalent to the Well-Ordering Axiom for the Integers:

Every nonempty subset of integers which is bounded above has a largest element.
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Example. The set of rational numbers

Q =
{

a/b
∣

∣ a, b ∈ Z, b 6= 0
}

with the usual ordering is not a well–ordered set, that is, there exists a nonempty subset B of Q which is
bounded below, but which has no smallest element.

Proof. In fact, we can take B = Q+, the set of all positive rational numbers; clearly Q+ 6= ∅ and 0 < q for
all q ∈ Q+, so it is also bounded below.

Now, suppose that Q+ has a smallest element, say q0 ∈ Q+, then q0/2 ∈ Q+ also, and q0/2 < q0, which is
a contradiction. Therefore, our original assumption must have been false, and Q+ has no smallest element,
so Q is not well–ordered.

Definition. The set of irrational numbers is the set of all real numbers that are not rational, that is, the
set R \ Q.

Example. The real number
√

2 is irrational.

Proof. We will show this using the Well-Ordering Principle. First note that the integer 2 lies between the
squares of two consecutive positive integers (consecutive squares), namely, 1 < 2 < 4, and therefore

1 <
√

2 < 2,

(since 0 <
√

2 ≤ 1 implies 2 ≤ 1, a contradiction; while
√

2 ≥ 2 implies 2 ≥ 4, again, a contradiction).

Now let
B = {b ∈ N+ |

√
2 = a/b for some a ∈ Z},

if
√

2 ∈ Q, then B 6= ∅.
Since B is bounded below by 0, then the Well-Ordering Principle implies that B has a smallest element, call
it b0, so that √

2 =
a0

b0

where a0, b0 ∈ N+, and 2b2
0 = a2

0.

Since
1 <

a0

b0

< 2,

then b0 < a0 < 2b0, and therefore 0 < a0 − b0 < b0.

Now we find a positive integer x such that

x

a0 − b0

=
a0

b0

,

that is, b0x = a0(a0 − b0) = a2
0 − a0b0 = 2b2

0 − a0b0 = b0(2b0 − a0), so we may take x = 2b0 − a0, and

√
2 =

2b0 − a0

a0 − b0

=
a0

b0

,

so that a0 − b0 ∈ B, and 0 < a0 − b0 < b0. However, this contradicts the fact that b0 is the smallest element
in B, so our original assumption is incorrect. Therefore, B = ∅ and

√
2 is irrational.
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Exercise. Show that if m is a positive integer which is not a perfect square, that is, m is not the square of
another integer, then

√
m is irrational.

Hint: The proof mimics the proof above for
√

2.

Definition. If n ∈ Z, then we say that n is even if and only if there exists an integer k ∈ Z such that
n = 2k. We say that n is odd if and only if there is an integer k ∈ Z such that n = 2k + 1.

We will use the Well-Ordering Principle to show that every integer is either even or odd, but first we need
a lemma.

Lemma. There does not exist an integer n satisfying 0 < n < 1.

Proof. Let
B = {n | n ∈ Z, and 0 < n < 1}.

If B 6= ∅, since B is bounded below by 0, then by the Well-Ordering Principle B has a smallest element, say
n0 ∈ B, but then multiplying the inequality 0 < n0 < 1 by the positive integer n0, we have

0 < n2
0 < n0 < 1.

However, n2
0 is an integer and so n2

0 ∈ B, which contradicts the fact that n0 is the smallest element of B.
Therefore, our original assumption is incorrect and B = ∅, that is, there does not exist an integer n satisfying
0 < n < 1. Note that we have shown that 1 is the smallest positive integer.

Theorem. Every integer n ∈ Z is either even or odd.

Proof. Suppose there exists an integer N ∈ Z such that N is neither even nor odd, let

B = {n ∈ Z | n is even or odd and n ≤ N},

then B 6= ∅ and B is bounded above by N. By the Well-Ordering Property, B has a largest element, say
n0 ∈ B. Since n0 is either even or odd, and n0 ≤ N, then we must have the strict inequality n0 < N.

If n0 is even, then n0 + 1 is odd, and since n0 is the largest such integer in B, then we must have

n0 < N < n0 + 1.

If n0 is odd, then n0 + 1 is even, and again, since n0 is the largest such integer in B, we must have

n0 < N < n0 + 1.

Thus, in both cases, N − n0 is an integer and

0 < N − n0 < 1,

which is a contradiction. Therefore, our original assumption was incorrect, and there does not exist an
integer N ∈ Z which is neither even nor odd, that is, every integer n ∈ Z is either even or odd.
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Theorem. There does not exist an integer a ∈ Z which is both even and odd. Thus the set of integers Z is
partitioned into two disjoint classes, the even integers and the odd integers.

Proof. Suppose that a ∈ Z and a is both even and odd, then there exist k, ` ∈ Z such that

a = 2k and a = 2` + 1,

and therefore 2` + 1 = 2k, so that 2(k − `) = 1.

Now, since 1 > 0, the law of trichotomy implies that k − ` > 0. Also, since 2 = 1 + 1 > 1 + 0 = 1, then

1 = 2 · (k − `) > 1 · (k − `) = k − `.

Therefore, k − ` is an integer satisfying 0 < k − ` < 1, which is a contradiction, and our assumption that
there exists an integer a which is both even and odd is false.
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