Notes on the Integers

Properties of the Integers

The set of all integers is the set

$$
\mathbb{Z}=\{\cdots,-5,-4,-3,-2,-1,0,1,2,3,4,5, \cdots\}
$$

and the subset of \mathbb{Z} given by

$$
\mathbb{N}=\{0,1,2,3,4, \cdots\},
$$

is the set of nonnegative integers (also called the natural numbers or the counting numbers).
We assume that the notions of addition $(+)$ and multiplication (\cdot) of integers have been defined, and note that \mathbb{Z} with these two binary operations satisfy the following.

Axioms for Integers

- Closure Laws: if $a, b \in \mathbb{Z}$, then

$$
a+b \in \mathbb{Z} \quad \text { and } \quad a \cdot b \in \mathbb{Z}
$$

- Commutative Laws: if $a, b \in \mathbb{Z}$, then

$$
a+b=b+a \quad \text { and } \quad a \cdot b=b \cdot a
$$

- Associative Laws: if $a, b, c \in \mathbb{Z}$, then

$$
(a+b)+c=a+(b+c) \quad \text { and } \quad(a \cdot b) \cdot c=a \cdot(b \cdot c) .
$$

- Distributive Law: if $a, b, c \in \mathbb{Z}$, then

$$
a \cdot(b+c)=a \cdot b+a \cdot c \quad \text { and } \quad(a+b) \cdot c=a \cdot c+b \cdot c
$$

- Identity Elements: There exist integers 0 and 1 in \mathbb{Z}, with $1 \neq 0$, such that

$$
a+0=0+a=a \quad \text { and } \quad a \cdot 1=1 \cdot a=a
$$

for all $a \in \mathbb{Z}$.

- Additive Inverse: For each $a \in \mathbb{Z}$, there is an $x \in \mathbb{Z}$ such that

$$
a+x=x+a=0
$$

x is called the additive inverse of a or the negative of a, and is denoted by $-a$.

The set \mathbb{Z} together with the operations of + and \cdot satisfying these axioms is called a commutative ring with identity.

We can now prove the following results concerning the integers.
Theorem. For any $a \in \mathbb{Z}$, we have $0 \cdot a=a \cdot 0=0$.
Proof. We start with the fact that $0+0=0$. Multiplying by a, we have

$$
a \cdot(0+0)=a \cdot 0
$$

and from the distributive law we have,

$$
a \cdot 0+a \cdot 0=a \cdot 0
$$

If $b=-(a \cdot 0)$, then

$$
(a \cdot 0+a \cdot 0)+b=a \cdot 0+b=0,
$$

and from the associative law,

$$
a \cdot 0+(a \cdot 0+b)=0
$$

that is,

$$
a \cdot 0+0=0,
$$

and finally,

$$
a \cdot 0=0
$$

Theorem. For any $a \in \mathbb{Z}$, we have $-a=(-1) \cdot a$.
Proof. Let $a \in \mathbb{Z}$, then

$$
0=0 \cdot a=[1+(-1)] \cdot a=1 \cdot a+(-1) \cdot a,
$$

so that

$$
-a+0=-a+(a+(-1) \cdot a)
$$

that is,

$$
-a=(-a+a)+(-1) \cdot a,
$$

that is,

$$
-a=0+(-1) \cdot a,
$$

and finally, $-a=(-1) \cdot a$.

Theorem. $(-1) \cdot(-1)=1$.
Proof. We have

$$
(-1) \cdot(-1)+(-1)=(-1) \cdot(-1)+(-1) \cdot 1=(-1) \cdot[(-1)+1]=(-1) \cdot 0=0
$$

so that

$$
[(-1) \cdot(-1)+(-1)]+1=0+1=1,
$$

that is,

$$
(-1) \cdot(-1)+[(-1)+1]=1
$$

or,

$$
(-1) \cdot(-1)+0=1 .
$$

Therefore, $(-1) \cdot(-1)=1$.

We can define an ordering on the set of integers \mathbb{Z} using the set of positive integers $\mathbb{N}^{+}=\{1,2,3, \cdots\}$.
Definition. If $a, b \in \mathbb{Z}$, then we define $a<b$ if and only if $b-a \in \mathbb{N}^{+}$.
Note: By $b-a$ we mean $b+(-a)$, and if $a<b$ we also write $b>a$. Also, we note that a is a positive integer if and only if $a>0$, since by definition $a>0$ if and only if $a=a-0 \in \mathbb{N}^{+}$.

Order Axioms for the Integers

- Closure Axioms for $\mathbb{N}^{+}:$If $a, b \in \mathbb{N}^{+}$, then

$$
a+b \in \mathbb{N}^{+} \quad \text { and } \quad a \cdot b \in \mathbb{N}^{+}
$$

- Law of Trichotomy: For every integer $a \in \mathbb{Z}$, exactly one of the following is true:

$$
a \in \mathbb{N}^{+} \quad \text { or } \quad-a \in \mathbb{N}^{+} \quad \text { or } \quad a=0
$$

Exercise. Use the Law of Trichotomy together with the fact that $(-1) \cdot(-1)=1$ to show that $1>0$.
Definition. We say that an integer a is a zero divisor or divisor of zero if and only if $a \neq 0$ and there exists an integer $b \neq 0$ such that $a \cdot b=0$.

Now we can show that \mathbb{Z} with the usual notion of addition and multiplication has no zero divisors.

Theorem. If $a, b \in \mathbb{Z}$ and $a \cdot b=0$, then either $a=0$ or $b=0$.
Proof. Suppose that $a, b \in \mathbb{Z}$ and $a \cdot b=0$. If $a \neq 0$ and $b \neq 0$, since

$$
a \cdot b=(-a) \cdot(-b) \quad \text { and } \quad-a \cdot b=(-a) \cdot b=a \cdot(-b)
$$

by considering all possible cases, the fact that \mathbb{N}^{+}is closed under multiplication and the Law of Trichotomy imply that $a \cdot b \neq 0$, which is a contradiction. Therefore, if $a \cdot b=0$, then either $a=0$ or $b=0$.

Thus, \mathbb{Z} with the usual notion of addition and multiplication is a commutative ring with identity which has no zero divisors, such a structure is called an integral domain, and we have the following result.

Theorem. (Cancellation Law)

If $a, b, c \in \mathbb{Z}$ with $c \neq 0$, and if $a \cdot c=b \cdot c$, then $a=b$.
Proof. If $a \cdot c=b \cdot c$, then $(a-b) \cdot c=0$, and since $c \neq 0$, then $a-b=0$.

Exercise. Show that the relation on \mathbb{Z} defined by $a \leq b$ if and only if $a<b$ or $a=b$, is a partial ordering, that is, it is

- Reflexive: For each $a \in \mathbb{Z}$, we have $a \leq a$.
- Antisymmetric: For each $a, b \in \mathbb{Z}$, if $a \leq b$ and $b \leq a$, then $a=b$.
- Transitive: For each $a, b, c \in \mathbb{Z}$, if $a \leq b$ and $b \leq c$, then $a \leq c$.

Show also that this is a total ordering, that is, for any $a, b \in \mathbb{Z}$, either $a \leq b$ or $b \leq a$.

We have the standard results concerning the order relation on \mathbb{Z}. We will prove (ii), (iv), and (v), and leave the rest as exercises.

Theorem. If $a, b, c, d \in \mathbb{Z}$, then
(i) if $a<b$, then $a \pm c \leq b \pm c$.
(ii) If $a<b$ and $c>0$, then $a \cdot c<b \cdot c$.
(iii) If $a<b$ and $c<0$, then $a \cdot c>b \cdot c$.
(iv) If $0<a<b$ and $0<c<d$, then $a \cdot c<b \cdot d$.
(v) If $a \in \mathbb{Z}$ and $a \neq 0$, then $a^{2}>0$. In particular, $1>0$.

Proof.

(ii) If $a<b$ and $c>0$, then $b-a>0$ and $c>0$, so that $(b-a) \cdot c>0$, that is, $b \cdot c-a \cdot c>0$. Therefore, $a \cdot c<b \cdot c$.
(iv) We have

$$
b \cdot d-a \cdot c=b \cdot d-b \cdot c+b \cdot c-a \cdot c=b \cdot(d-c)+c \cdot(b-a)>0
$$

since $b>0, c>0, d-c>0$, and $b-a>0$.
(v) Let $a \in \mathbb{Z}$, if $a>0$, then (ii) implies that $a \cdot a>a \cdot 0$, that is, $a^{2}>0$.

If $a<0$, then $-a>0$, and (ii) implies that $a^{2}=(-a) \cdot(-a)>0$. Finally, since $1 \neq 0$, then $1=1^{2}>0$.

Exercise. Show that if $a, b, c \in \mathbb{Z}$ and $a \cdot b<a \cdot c$ and $a>0$, then $b<c$.

Finally, we need one more axiom for the set of integers.

Well-Ordering Axiom for the Integers

If B is a nonempty subset of \mathbb{Z} which is bounded below, that is, there exists an $n \in \mathbb{Z}$ such that $n \leq b$ for all $b \in B$, then B has a smallest element, that is, there exists a $b_{0} \in B$ such that $b_{0}<b$ for all $b \in B, b \neq b_{0}$.

In particular, we have

Theorem. (Well-Ordering Principle for \mathbb{N})

Every nonempty set of nonnegative integers has a least element.

It can be shown that the Well-Ordering Principle for \mathbb{N} is logically equivalent to the Principle of Mathematical Induction, so we may assume one of them as an axiom and prove the other one as a theorem.

Exercise. Show that the following statement is equivalent to the Well-Ordering Axiom for the Integers:
Every nonempty subset of integers which is bounded above has a largest element.

Example. The set of rational numbers

$$
\mathbb{Q}=\{a / b \mid a, b \in \mathbb{Z}, b \neq 0\}
$$

with the usual ordering is not a well-ordered set, that is, there exists a nonempty subset B of \mathbb{Q} which is bounded below, but which has no smallest element.

Proof. In fact, we can take $B=\mathbb{Q}^{+}$, the set of all positive rational numbers; clearly $\mathbb{Q}^{+} \neq \emptyset$ and $0<q$ for all $q \in \mathbb{Q}^{+}$, so it is also bounded below.
Now, suppose that \mathbb{Q}^{+}has a smallest element, say $q_{0} \in \mathbb{Q}^{+}$, then $q_{0} / 2 \in \mathbb{Q}^{+}$also, and $q_{0} / 2<q_{0}$, which is a contradiction. Therefore, our original assumption must have been false, and \mathbb{Q}^{+}has no smallest element, so \mathbb{Q} is not well-ordered.

Definition. The set of irrational numbers is the set of all real numbers that are not rational, that is, the set $\mathbb{R} \backslash \mathbb{Q}$.

Example. The real number $\sqrt{2}$ is irrational.
Proof. We will show this using the Well-Ordering Principle. First note that the integer 2 lies between the squares of two consecutive positive integers (consecutive squares), namely, $1<2<4$, and therefore

$$
1<\sqrt{2}<2
$$

(since $0<\sqrt{2} \leq 1$ implies $2 \leq 1$, a contradiction; while $\sqrt{2} \geq 2$ implies $2 \geq 4$, again, a contradiction).
Now let

$$
B=\left\{b \in \mathbb{N}^{+} \mid \sqrt{2}=a / b \text { for some } a \in \mathbb{Z}\right\}
$$

if $\sqrt{2} \in \mathbb{Q}$, then $B \neq \emptyset$.
Since B is bounded below by 0 , then the Well-Ordering Principle implies that B has a smallest element, call it b_{0}, so that

$$
\sqrt{2}=\frac{a_{0}}{b_{0}}
$$

where $a_{0}, b_{0} \in \mathbb{N}^{+}$, and $2 b_{0}^{2}=a_{0}^{2}$.
Since

$$
1<\frac{a_{0}}{b_{0}}<2
$$

then $b_{0}<a_{0}<2 b_{0}$, and therefore $0<a_{0}-b_{0}<b_{0}$.
Now we find a positive integer x such that

$$
\frac{x}{a_{0}-b_{0}}=\frac{a_{0}}{b_{0}}
$$

that is, $b_{0} x=a_{0}\left(a_{0}-b_{0}\right)=a_{0}^{2}-a_{0} b_{0}=2 b_{0}^{2}-a_{0} b_{0}=b_{0}\left(2 b_{0}-a_{0}\right)$, so we may take $x=2 b_{0}-a_{0}$, and

$$
\sqrt{2}=\frac{2 b_{0}-a_{0}}{a_{0}-b_{0}}=\frac{a_{0}}{b_{0}}
$$

so that $a_{0}-b_{0} \in B$, and $0<a_{0}-b_{0}<b_{0}$. However, this contradicts the fact that b_{0} is the smallest element in B, so our original assumption is incorrect. Therefore, $B=\emptyset$ and $\sqrt{2}$ is irrational.

Exercise. Show that if m is a positive integer which is not a perfect square, that is, m is not the square of another integer, then \sqrt{m} is irrational.
Hint: The proof mimics the proof above for $\sqrt{2}$.

Definition. If $n \in \mathbb{Z}$, then we say that n is even if and only if there exists an integer $k \in \mathbb{Z}$ such that $n=2 k$. We say that n is odd if and only if there is an integer $k \in \mathbb{Z}$ such that $n=2 k+1$.

We will use the Well-Ordering Principle to show that every integer is either even or odd, but first we need a lemma.

Lemma. There does not exist an integer n satisfying $0<n<1$.
Proof. Let

$$
B=\{n \mid n \in \mathbb{Z}, \text { and } 0<n<1\} .
$$

If $B \neq \emptyset$, since B is bounded below by 0 , then by the Well-Ordering Principle B has a smallest element, say $n_{0} \in B$, but then multiplying the inequality $0<n_{0}<1$ by the positive integer n_{0}, we have

$$
0<n_{0}^{2}<n_{0}<1
$$

However, n_{0}^{2} is an integer and so $n_{0}^{2} \in B$, which contradicts the fact that n_{0} is the smallest element of B. Therefore, our original assumption is incorrect and $B=\emptyset$, that is, there does not exist an integer n satisfying $0<n<1$. Note that we have shown that 1 is the smallest positive integer.

Theorem. Every integer $n \in \mathbb{Z}$ is either even or odd.
Proof. Suppose there exists an integer $N \in \mathbb{Z}$ such that N is neither even nor odd, let

$$
B=\{n \in \mathbb{Z} \mid n \text { is even or odd and } n \leq N\}
$$

then $B \neq \emptyset$ and B is bounded above by N. By the Well-Ordering Property, B has a largest element, say $n_{0} \in B$. Since n_{0} is either even or odd, and $n_{0} \leq N$, then we must have the strict inequality $n_{0}<N$.

If n_{0} is even, then $n_{0}+1$ is odd, and since n_{0} is the largest such integer in B, then we must have

$$
n_{0}<N<n_{0}+1
$$

If n_{0} is odd, then $n_{0}+1$ is even, and again, since n_{0} is the largest such integer in B, we must have

$$
n_{0}<N<n_{0}+1
$$

Thus, in both cases, $N-n_{0}$ is an integer and

$$
0<N-n_{0}<1,
$$

which is a contradiction. Therefore, our original assumption was incorrect, and there does not exist an integer $N \in \mathbb{Z}$ which is neither even nor odd, that is, every integer $n \in \mathbb{Z}$ is either even or odd.

Theorem. There does not exist an integer $a \in \mathbb{Z}$ which is both even and odd. Thus the set of integers \mathbb{Z} is partitioned into two disjoint classes, the even integers and the odd integers.
Proof. Suppose that $a \in \mathbb{Z}$ and a is both even and odd, then there exist $k, \ell \in \mathbb{Z}$ such that

$$
a=2 k \quad \text { and } \quad a=2 \ell+1
$$

and therefore $2 \ell+1=2 k$, so that $2(k-\ell)=1$.
Now, since $1>0$, the law of trichotomy implies that $k-\ell>0$. Also, since $2=1+1>1+0=1$, then

$$
1=2 \cdot(k-\ell)>1 \cdot(k-\ell)=k-\ell
$$

Therefore, $k-\ell$ is an integer satisfying $0<k-\ell<1$, which is a contradiction, and our assumption that there exists an integer a which is both even and odd is false.

