

MATH 324 Summer 2011 Elementary Number Theory Assignment 1 Hint for Question 3 Tuesday July 5, 2011

Question 3. [p 20. #5]

Find and prove a formula for

$$\sum_{k=1}^{n} \left\lfloor \sqrt{k} \right\rfloor$$

in terms of n and $\lfloor \sqrt{n} \rfloor$.

HINT: Note that if a_1, a_2, \dots, a_n are positive integers, and we let

- f(1) denote the number of them that are greater than or equal to 1,
- f(2) denote the number of them that are greater than or equal to 2,
- f(3) denote the number of them that are greater than or equal to 3,

then

$$a_1 + a_2 + \dots + a_n = f(1) + f(2) + f(3) + \dots$$

since a_k contributes 1 to each of the numbers $f(1), f(2), \dots, f(a_k)$.

For this particular problem, we take $a_k = \lfloor \sqrt{k} \rfloor$ for $1 \le k \le n$, and note that:

- f(1) is the number of a_k 's such that $\sqrt{k} \ge 1$, that is, the number of k's with $1 \le k \le n$ such that $k \ge 1$, so that f(1) = n.
- f(2) is the number of a_k 's such that $\sqrt{k} \ge 2$, that is, the number of k's with $1 \le k \le n$ such that $k \ge 2^2 = 4$, so that f(2) = n 3.
- f(3) is the number of a_k 's such that $\sqrt{k} \ge 3$, that is, the number of k's with $1 \le k \le n$ such that $k \ge 3^2 = 9$, so that f(3) = n 8.

In general, if $1 \le m \le \lfloor \sqrt{n} \rfloor$, then

÷

• f(m) is the number of a_k 's such that $\sqrt{k} \ge m$, that is, the number of k's with $1 \le k \le n$ such that $k \ge m^2$, so that $f(m) = n - (m^2 - 1)$.