
 

MATH 324 Summer 2010
Elementary Number Theory
Solutions to Assignment 3
Due: Wednesday July 28, 2010

Question 1. [p 139. #13]

Which combinations of pennies, dimes, and quarters have a total value of 99c6 ?

Solution: Let x = # of pennies, y = # of dimes, z = #of quarters, then we want to solve the linear
diophantine equation

x + 10y + 25z = 99 (∗)

in nonnegative integers.
Let a = 1, b = 10, c = 25, and d = (a, b, c) = 1, then d

∣
∣ 99 so there are solutions to (∗). Setting

2y + 5z = t (∗∗)

then 1 = 2 · (−2) + 5 · 1, so that t = 2 · (−2t) + 5 · t, and a particular solution to (∗∗) is y0 = −2t, z0 = t,

and so the general solution to (∗∗) is

y = −2t + 5s

z = t − 2s

where s, t ∈ Z.

But then x = 99 − 10y − 25z becomes x = 99 − 5t, and the general solution to (∗) is

x = 99 − 5t

y = −2t + 5s

z = t − 2s

where s, t ∈ Z.

Since x, y, z have to be nonnegative, then (s, t) must lie in the region of the s, t–plane determined by the
inequalities:

99 − 5t ≥ 0

−2t + 5s ≥ 0

t − 2s ≥ 0.

That is,

t ≤ 19

2t ≤ 5s

2s ≤ t

So we need to find the lattice points (i.e. points with integer coordinates) (s, t) which lie inside the region
shown.



19

s

t

0

19

s5/2t = 

t = 2 s

t =

This is most easily done by starting with t = 0, then t = 1, . . . and finally t = 19, and for each t value,
determining the values of s so that (s, t) is in the region. For example,

If t = 0, then s = 0, and this implies that x = 99, y = 0, z = 0.

...

If t = 19, then s = 8 or s = 9, and this implies that x = 4, y = 2, z = 3 or x = 4, y = 7, z = 1.

Question 2. [p 149. #5]

Show that if a is an odd integer, then a2 ≡ 1 (mod 8).

Solution:

If a ≡ 1 (mod 8), then a2 ≡ 12 ≡ 1 (mod 8).

If a ≡ 3 (mod 8), then a2 ≡ 32 ≡ 9 ≡ 1 (mod 8).

If a ≡ 5 (mod 8), then a2 ≡ 52 ≡ 25 ≡ 1 (mod 8).

If a ≡ 7 (mod 8), then a2 ≡ 72 ≡ 49 ≡ 1 (mod 8).

Therefore, a2 ≡ 1 (mod 8) for any odd integer a since every odd integer is congruent to 1, 3, 5, or 7
modulo 8.

Question 3. [p 149. #6]

Find the least nonnegative residue modulo 13 of each of the following integers.

(a) 22 (d) −1

(b) 100 (e) −100

(c) 1001 (f) −1000

Solution:

(a) 22 ≡ 9 (mod 13).

(b) 100 ≡ 9 (mod 13).

(c) 1001 ≡ 0 (mod 13).

(d) −1 ≡ 12 (mod 13).

(e) −100 ≡ 4 (mod 13).

(f) −1000 ≡ 1 (mod 13).



Question 4. [p 149. #7]

Find the least positive residue of 1! + 2! + · · · + 100! modulo each of the following integers.

(a) 2 (c) 12

(b) 7 (d) 25

Solution:

(a) 1! + 2! + · · · + 100!
︸ ︷︷ ︸

all ≡ 0 (mod 2)

≡ 1 (mod 2)

(b) 1! + 2! + 3! + 4! + 5! + 6! + 7! + · · · + 100!
︸ ︷︷ ︸

all ≡ 0 (mod 7)

≡ 1 + 2 + 6 + 24 + 120 + 720 ≡ 5 (mod 7)

(c) 1! + 2! + 3! + 4! + · · · + 100!
︸ ︷︷ ︸

all ≡ 0 (mod 12)

≡ 9 (mod 12)

(d) 1! + 2! + · · · + 9! + 10! + · · · + 100!
︸ ︷︷ ︸

all ≡ 0 (mod 25)

≡ 1! + 2! + · · · + 9! (mod 25)

Now,

1! ≡ 1 (mod 25), 2! ≡ 2 (mod 25), 3! ≡ 6 (mod 25), 4! ≡ 24 ≡ −1 (mod 25),

5! ≡ −5 (mod 25), 6! ≡ −30 ≡ −5 (mod 25), 7! ≡ −35 ≡ 15 (mod 25),

8! ≡ 120 ≡ −5 (mod 25), 9! ≡ −45 ≡ 5 (mod 25),

and therefore 1! + 2! + · + 100! ≡ 1 + 2 + 6 − 1 − 5 − 5 + 15 − 5 + 5 ≡ 13 (mod 25).

Question 5. [p 150. #21]

For which positive integers n is it true that

12 + 22 + 32 + · · · + (n − 1)2 ≡ 0 (mod n) ?

Solution:

Recall that

12 + 22 + 32 + · · · + (n − 1)2 =
(n − 1)n(2n − 1)

6
,

and since (n, n − 1) = 1 and (n, 2n − 1) = 1, then

n

∣
∣
∣
∣

(n − 1)n(2n − 1)

6
if and only if 6

∣
∣ (n − 1)(2n− 1).

Also, since (n− 1, 2n− 1) = 1, then 6
∣
∣ (n− 1)(2n− 1) if and only if either (i) 6

∣
∣ n− 1, or (ii) 2

∣
∣ n− 1 and

3
∣
∣ 2n − 1.

(i) 6
∣
∣ n − 1 if and only if n = 6k + 1, that is, if and only if n ≡ 1 (mod 6).

(ii) 2
∣
∣ n − 1 and 3

∣
∣ 2n − 1 if and only if n = 2k + 1 and 2n = 3l + 1. Now, 2n is even, so that l is odd,

say, l = 2m + 1. Thus, 2n = 6m + 4, or n = 3m + 2. But since n is odd, then m must be odd, say,
m = 2q − 1, so that n = 6q − 1, that is, n ≡ −1 (mod 6).

Therefore, 12 + 22 + 32 + · · · + (n − 1)2 ≡ 0 (mod n) if and only if n ≡ ±1 (mod 6).



Question 6. [p 150. #25]

Show that if n ≡ 3 (mod 4), then n cannot be the sum of the squares of two integers.

Solution:

If a ≡ 0 (mod 4) then a2 ≡ 0 (mod 4)

If a ≡ 1 (mod 4) then a2 ≡ 1 (mod 4)

If a ≡ 2 (mod 4) then a2 ≡ 0 (mod 4)

If a ≡ 3 (mod 4) then a2 ≡ 1 (mod 4)

Therefore, if n = a2 + b2, then n ≡ 0, 1, or 2 (mod 4 ), but n 6≡ 3 (mod 4).

Question 7. [p 150. #20]

Show that if n is an odd positive integer or if n is a positive integer divisible by 4, then

13 + 23 + 33 + · · · + (n − 1)3 ≡ 0 (mod n).

Is this statement true if n is even but not divisible by 4?

Solution: Recall that

13 + 23 + 33 + · · · + (n − 1)3 =
n2(n − 1)2

4
,

so that if n is an odd positive integer, then n − 1 is even and 4
∣
∣ (n − 1)2, so t hat n

∣
∣
n2(n − 1)2

4
, and

13 + 23 + 33 + · · · + (n − 1)3 ≡ 0 (mod n).

If n is a multiple of 4, then
n

4
is an integer, and n

∣
∣
n2(n − 1)2

4
, so that

13 + 23 + 33 + · · · + (n − 1)3 ≡ 0 (mod n).

in this case also.

If n is even, but 4 6
∣
∣ n, then n = 2k where k is an odd int eger, and n − 1 is also odd, so that

n2(n − 1)2

4
= k2(2k − 1)2

is an odd integer, and since n is even, then

13 + 23 + 33 + · · · + (n − 1)3 6≡ 0 (mod n).

Question 8. [p 157. #18]

Show that if p is an odd prime and a is a positive integer which is not divisible by p, then the congruence
x2 ≡ a (mod p) has either no solution or exactly two incongruent solutions.

Solution: Note first that if x2
0 ≡ a (mod p), then (−x0)

2 ≡ a (mod p), so that −x0 is also a solution.

Now note that x0 6≡ −x0 (mod p), since this implies that 2x0 ≡ 0 (mod p), which is impossible since p is
odd and p 6

∣
∣ x0, since x2

0 ≡ a (mod p) and p 6
∣
∣ a.



To see that there are no more than two incongruent solutions, assume that x = x0 and x = x1 are both
solutions to x2 ≡ a (mod p), then x2

0 ≡ x2
1 ≡ a (mod p), so that

x2
0 − x2

1 ≡ (x0 − x1)(x0 + x1) ≡ 0 (mod p),

so that p
∣
∣x0 − x1 or p

∣
∣x0 + x1, that is,

x1 ≡ x0 (mod p) or x1 ≡ −x0 (mod p).

Thus, if there is a solution to x2 ≡ a (mod p), then there are exactly two incongruent solutions.

Question 9. [p 167. #33]

The three children in a family have feet that are 5 inches, 7 inches, and 9 inches long. When they measure
the length of the dining room of their house using their feet, they each find that there are 3 inches left over.
How long is the dining room?

Solution: Let n be the length of the dining room (in inches), we solve the following simultaneous congru-
ences using the Chinese remainder theorem:

n ≡ 3 (mod 5)

n ≡ 3 (mod 7)

n ≡ 3 (mod 9).

Here

a1 = 3, a2 = 3, a3 = 3

m1 = 5, m2= 7, m3 = 9,

and

M1 = 7 · 9 = 63, M2 = 5 · 9 = 45, M3 = 5 · 7 = 35.

Also, solving the congrences

M1y1 ≡ 1 (mod m1)

M2y2 ≡ 1 (mod m2)

M3y3 ≡ 1 (mod m3)

for the inverses y1, y2, and y3, we have

y1 ≡ 2 (mod 5), y2 ≡ 5 (mod 7), y3 ≡ 8 (mod 9),

and the unique solution modulo 5 · 7 · 9 is given by

n = a1M1y1 + a2M2y2 + a3M3y3 = 3 · 63 · 2 + 3 · 45 · 53 · 35 · 9 = 378 + 675 + 945 = 1998 ≡ 3 (mod 315).

Therefore a reasonable answer would be n = 3 + 315 = 318 inches, or 26 feet, 6 inches.

Question 10. [p 221. #12]

Using Fermat’s little theorem, find the least positive residue of 21000000 modulo 17.

Solution: Since p = 17 is prime and 17
∣
∣6 2, then by Fermat’s little theorem, 216 ≡ 1 (mod 17).



Now, 1000000 = 219 + 218 + 217 + 216 + 214 + 29 + 26, so that

21000000 = 2219

· 2218

· 2217

· 2216

· 2214

· 229

· 226

and

21000000 =
(
224)215

·
(
224)214

·
(
224)213

·
(
224)212

·
(
224)210

·
(
224)25

·
(
224)22

so that 21000000 ≡ 1 (mod 17).


