MATH 324 Summer 2010
Elementary Number Theory
Solutions to Assignment 3
Due: Wednesday July 28, 2010

Question 1. [p 139. #13]
Which combinations of pennies, dimes, and quarters have a total value of 99¢ 7

SOLUTION: Let x = # of pennies, y = # of dimes, z = #of quarters, then we want to solve the linear
diophantine equation
x4+ 10y + 252 =99 (%)

in nonnegative integers.
Let a =1, b=10, ¢ =25, and d = (a,b,c) =1, then d | 99 so there are solutions to (x). Setting

20+ 5z =1 (**)

then 1 =2-(—2)+5-1, so that t = 2- (—2t) + 5 - ¢, and a particular solution to (xx) is yo = —2¢, 29 = ¢,
and so the general solution to () is

y = —2t+ bs
z = t—2s

where s,t € Z.

But then z = 99 — 10y — 25z becomes x = 99 — 5¢, and the general solution to (x) is

r =99 — 5t
y=—2t+5s
z= t—2s

where s,t € Z.

Since z,y, z have to be nonnegative, then (s,¢) must lie in the region of the s,¢—plane determined by the
inequalities:

99 -5t >0
—2t+55>0
t—2s>0.
That is,

t<19

2t < bs

2s <t

So we need to find the lattice points (i.e. points with integer coordinates) (s,t) which lie inside the region
shown.



19 t=19
\\\ A\
t=52s /é/\\\\\ \
\ t=2s
0 s
This is most easily done by starting with ¢ = 0, then ¢ = 1, ... and finally ¢ = 19, and for each ¢ value,

determining the values of s so that (s,t) is in the region. For example,

If t =0, then s = 0, and this implies that x =99, y =0, z = 0.

If t =19, then s =8 or s = 9, and this implies that t =4, y=2, 2=3 orz =4, y=7, z=1.

Question 2. [p 149. #5]
Show that if a is an odd integer, then a*> = 1 (mod 8).

SOLUTION:
If @ = 1 (mod 8), then a®> = 12 = 1 (mod 8).
If @ = 3 (mod 8), then a®> = 32 = 9 = 1 (mod 8).
If a = 5 (mod 8), then a?> = 52 = 25 = 1 (mod 8).
If a = 7 (mod 8), then a?> = 7?2 = 49 = 1 (mod 8).
Therefore, a> = 1 (mod 8) for any odd integer a since every odd integer is congruent to 1, 3, 5, or 7

modulo 8.

Question 3. [p 149. #6]

Find the least nonnegative residue modulo 13 of each of the following integers.

(a) 22 (d) -1
(b) 100 (e) —100
(c) 1001 (f) —1000
SOLUTION:

22 = 9 (mod 13).

)

) 100 = 9 (mod 13).

) 1001 = 0 (mod 13).
d) =1 = 12 (mod 13).

) —100 = 4 (mod 13).

) —1000 = 1 (mod 13).



Question 4. [p 149. #7]
Find the least positive residue of 1! + 2! 4 - -+ 4+ 100! modulo each of the following integers.

(a) 2 (c) 12
(b) 7 (d) 25
SOLUTION:

(a) 11 +214---+100! = 1 (mod 2)
all =0 (mod 2)
(b) 114+ 20 431+ 415 46!+ 71 +---+1000 = 1+2+6+24+120+720 = 5 (mod 7)
all =0 (mod 7)
() 1420431 +414 ... +100! = 9 (mod 12)
all =0 (mod 12)
(d) ' +2! -+ 9+ 100+ --- + 100! = 11+ 2! +--- +9! (mod 25)

all =0 (mod 25)

Now,
1! = 1 (mod 25), 2! = 2 (mod 25), 3! = 6 (mod 25), 4! = 24 = —1 (mod 25),
5 = —5(mod 25), 6! = —30 = —5 (mod 25), 7l = —35 = 15 (mod 25),
8 = 120 = —5 (mod 25), 9! = —45 = 5 (mod 25),

and therefore 1!+ 2! +-+100! = 1+24+6—-1-5—-5415—-5+5 = 13 (mod 25).

Question 5. [p 150. #21]

For which positive integers n is it true that

12422432+ 4+ (n—1)* = 0 (modn)?

SOLUTION:
Recall that
s (n—=1)n(2n-1)

?+2° 43+ +(n—1) : :

and since (n,n — 1) =1 and (n,2n — 1) = 1, then

n (n 1)716(271 ) if and only if 6 ‘ (n—1)(2n—1).

Also, since (n —1,2n — 1) = 1, then 6 | (n —1)(2n — 1) if and only if either (i) 6 | n — 1, or (ii) 2| n — 1 and
3|2n—1.

(i) 6 | n— 1if and only if n = 6k + 1, that is, if and only if n = 1 (mod 6).

(ii) 2 } n—1and 3 } 2n — 1 if and only if n = 2k + 1 and 2n = 3] + 1. Now, 2n is even, so that [ is odd,
say, [ = 2m + 1. Thus, 2n = 6m + 4, or n = 3m + 2. But since n is odd, then m must be odd, say,
m = 2q — 1, so that n = 6¢ — 1, that is, n = —1 (mod 6).

Therefore, 12 4+22+3%2 + ...+ (n—1)?2 = 0 (mod n) if and only if n = 41 (mod 6).



Question 6. [p 150. #25]

Show that if n = 3 (mod 4), then n cannot be the sum of the squares of two integers.
SOLUTION:

If @ = 0 (mod 4) then a®> = 0 (mod 4)

If @ = 1 (mod 4) then a®> = 1 (mod 4)

If @ = 2 (mod 4) then a®> = 0 (mod 4)

If @ = 3 (mod 4) then a®> = 1 (mod 4)

Therefore, if n = a? + b2, thenn = 0, 1, or 2 (mod 4 ), but n # 3 (mod 4).

Question 7. [p 150. #20]

Show that if n is an odd positive integer or if n is a positive integer divisible by 4, then
P4+2°43°+... 4+ (n—1)* = 0 (mod n).

Is this statement true if n is even but not divisible by 47

SOLUTION: Recall that
3 _ ”2(” - 1)2

P4+22 43+ +(n—1) YR

2(7’1, _ 1)2

n
so that if n is an odd positive integer, then n — 1 is even and 4 ’ (n—1)2,s0t hat n ’ 1 , and

B4+2°43%+... 4+ (n—1)% = 0 (mod n).

2 -1 2
If n is a multiple of 4, then % is an integer, and n | nn—1)

P4+2°43°+... 4+ (n—1)* = 0 (mod n).
in this case also.
If n is even, but 4 Xn, then n = 2k where k is an odd int eger, and n — 1 is also odd, so that

n%(n—1)>2

_ 12 12
— =k (2k-1)

is an odd integer, and since n is even, then

PB+22 433+ 4 (n—1)3 # 0 (mod n).

Question 8. [p 157. #18]

Show that if p is an odd prime and a is a positive integer which is not divisible by p, then the congruence

2?2 = a (mod p) has either no solution or exactly two incongruent solutions.

SoLuTION: Note first that if 22 = a (mod p), then (—z0)> = a (mod p), so that —z is also a solution.

Now note that xg £ —xo (mod p), since this implies that 2z = 0 (mod p), which is impossible since p is
odd and p [ o, since 23 = a (mod p) and p [ a.



To see that there are no more than two incongruent solutions, assume that x = z¢ and x = z; are both
solutions to 22 = a (mod p), then 23 = 22 = a (mod p), so that

ap — a7 = (20 —x1)(z0 +21) = 0 (mod p),

so that p|xg — x1 or p|xo + 21, that is,
x1 = xo (mod p) or x1 = —xg (mod p).
Thus, if there is a solution to 22 = a (mod p), then there are exactly two incongruent solutions.

Question 9. [p 167. #33]

The three children in a family have feet that are 5 inches, 7 inches, and 9 inches long. When they measure
the length of the dining room of their house using their feet, they each find that there are 3 inches left over.
How long is the dining room?

SOLUTION: Let n be the length of the dining room (in inches), we solve the following simultaneous congru-
ences using the Chinese remainder theorem:

n = 3 (mod 5)
= 3 (mod 7)
= 3 (mod 9).
Here
a1 ) az = 3’ as
mi = o, mo= 77 m3 = J,
and

M =7-9=63, My=5-9=45, Ms=5-7=35.
Also, solving the congrences
Mlyl = 1(H10d ml)

Mayo
Msys = 1 (mod m3)

1 (mod msy)

for the inverses y1, y2, and ys3, we have
y1 = 2 (mod 5), y2 = 5 (mod 7), y3 = 8 (mod 9),
and the unique solution modulo 5 -7 -9 is given by
n = a1 Myy1 + aaMays + agMszys =3-63-24+3-45-53-35-9 =378 4+ 675+ 945 = 1998 = 3 (mod 315).
Therefore a reasonable answer would be n = 3 + 315 = 318 inches, or 26 feet, 6 inches.

Question 10. [p 221. #12]
Using Fermat’s little theorem, find the least positive residue of 21000090 modulo 17.

SOLUTION: Since p = 17 is prime and 17} 2, then by Fermat’s little theorem, 2'6 = 1 (mod 17).



Now, 1000000 = 219 4 218 4 217 4 216 4 914 | 99 4 96 o that

91000000 _ 2219 . 2218 . 2217 ) 2216 . 2214 . 229 ) 226

d
o 51000000 _ (224)215 , (224)214 , (224)213 , (224)212 , (224)210 , (224)25 , (224)22

so that 21000000 = 1 (mod 17).



