MATHEMATICS 324 (B1)

ELEMENTARY NUMBER THEORY

SUMMER SESSION 2006

INSTRUCTOR: I. E. Leonard, CAB 679 e-mail: eleonard@math.ualberta.ca or isaac@math.ualberta.ca

OFFICE HOURS: T B A

GRADING SCHEME:	Assignments	10%
	Quizzes	$\dots 10\%$
	Midterm Exam	$\dots 30\%$
	Final Exam	$\dots 50\%$

- ASSIGNMENTS: There will be 5 assignments, and you are encouraged to work together and discuss the solutions with your fellow students. Of course, the assignment that you submit for grading should be your own version, not a carbon copy of an assignment submitted by another student. Assignments are to be handed in before 5:00 pm on the date due, in the box provided on the 3rd floor in CAB.. Because of the rather tight schedule during summer session, late assignments will <u>not</u> be accepted.
- QUIZZES: There will be 5 quizzes, one each Friday for the first 5 weeks of class. The quizzes will consist of simple problems that test your understanding of the material covered during the week, and should require 10 minutes or less to complete.

EXAMINATIONS:	Midterm Examination: Monday, July 31, in class.
	Final Examination: Friday, August $18, 11:30 - 1:30$

SOLUTIONS: Solutions to the assignments and examinations will be posted on my home page on the web:

http://www.math.ualberta.ca/~isaac/

TEXTBOOKS: **Required:** Elementary Number Theory and its Applications, Fifth Edition by Kenneth H. Rosen **Optional:** Number Theory by George E. Andrews

CALENDAR DESCRIPTION:

MATH 324 Elementary Number Theory

Divisibility, prime numbers, congruences, quadratic residues, quadratic reciprocity, arithmetic functions and diophantine equations; sums of squares. Prerequisites: MATH 228 (or 128, 223).

Elementary Number Theory and its Applications Topics Selected From

Appendix A:	\blacktriangleright Axioms for the Set of Integers
Appendix B:	► Binomial Coefficients
Chapter 1:	 The Integers ▶ 1.1 Numbers, Sequences ▶ 1.2 Sums and Products ▶ 1.3 Mathematical Induction ▶ 1.4 The Fibonacci Numbers ▶ 1.5 Divisibility
Chapter 2:	 Integer Representations and Operations ▶ 2.1 Representation of Integers 2.2 Computer Operations with Integers 2.3 Complexity of Integer Operations
Chapter 3:	 Primes and Greatest Common Divisors 3.1 Prime Numbers 3.2 The Distribution of Primes 3.3 Greatest Common Divisors 3.4 The Euclidean Algorithm 3.5 The Fundamental Theorem of Arithmetic 3.6 Factorization Methods and the Fermat Numbers 3.7 Linear Diophantine Equations
Chapter 4:	 Congruences 4.1 Introduction to Congruences 4.2 Linear Congruences 4.3 The Chinese Remainder Theorem 4.4 Solving Polynomial Congruences 4.5 Systems of Linear Congruences 4.6 Factoring using the Pollard Rho Method
Chapter 5:	Applications of Congruences 5.1 Divisibility Tests 5.2 The Perpetual Calendar 5.3 Round-Robin Tournaments 5.4 Hashing Functions 5.5 Check Digits
Chapter 6:	 Some Special Congruences ▶ 6.1 Wilson's Theorem and Fermat's Little Theorem 6.2 Pseudoprimes ▶ 6.3 Euler's Theorem
Chapter 7:	 Multiplicative Functions ▶ 7.1 The Euler Phi Function ▶ 7.2 The Sum and Number of Divisors ▶ 7.3 Perfect Numbers and Mersenne Primes ▶ 7.4 Möbius Inversion

Chapter 8:	Cryptology 8.1 Character Ciphers 8.2 Block and Stream Ciphers 8.3 Exponentiation Ciphers 8.4 Public-Key Cryptography 8.5 Knapsack Ciphers 8.6 Cryptographic Protocols and Applications
Chapter 9:	 Primitive Roots ▶ 9.1 The Order of an Integer and Primitive Roots ▶ 9.2 Primitive Roots for Primes ▶ 9.3 Existence of Primitive Roots 9.4 Index Arithmetic 9.5 Primality Tests Using Orders of Integers and Primitive Roots 9.6 Universal Exponents
Chapter 10:	Applications of Primitive Roots and the Order of an Integer 10.1 Pseudorandom Numbers 10.2 The ElGamal Cryptosystem 10.3 An Application to the Splicing of Telephone Cables
Chapter 11:	 Quadratic Residues ▶ 11.1 Quadratic Residues and Nonresidues ▶ 11.2 The Law of Quadratic Reciprocity ▶ 11.3 The Jacobi symbol 11.4 Euler Pseudoprimes 11.5 Zero-Knowledge Proofs
Chapter 12:	 Decimal Fractions and Continued Fractions 12.1 Decimal Fractions 12.2 Finite Continued Fractions 12.3 Infinite Continued Fractions 12.4 Periodic Continued Fractions 12.5 Factoring Using Continued Fractions
Chapter 13:	 Some Nonlinear Diophantine Equations* ▶ 13.1 Pythagorean Triples ▶ 13.2 Fermat's Last Theorem ▶ 13.3 Sums of Squares ▶ 13.4 Pell's Equation
Chapter 14:	The Gaussian Integers 14.1 Gaussian Integers and Gaussian Primes 14.2 Greatest Common Divisors and Unique Factorization 14.3 Gaussian Integers and Sums of Squares

* Time permitting.