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Question 1. [p 246. #21]

Show that if m and n are positive integers and (m, n) = p, where p is prime, then

φ(m n) =
p φ(m) φ(n)

p − 1
.

Solution: Since (m, n) = p, then p | m and p | n, and p divides one of the two integers m and n exactly
once, otherwise (m, n) ≥ p2, which is a contradiction.

Assume that p | n but p2
∣

∣6 n, then there exists an integer k such that n = kp and (k, p) = 1, and since
p = (m, n), then (m, k) = 1 also, and therefore

φ(n) = φ(kp) = φ(k)φ(p) = φ(k)(p − 1).

Now, if m = pαpα1

1 · · · pαr

r is the prime power decomposition of m, then

φ(mp) = pα(p − 1)pα1−1(p1 − 1) · · · pαr−1
r (pr − 1)

= p · pα−1(p − 1)pα1−1(p1 − 1) · · · pαr−1
r (pr − 1)

= p · φ(m),

so that
φ(mp) = pφ(m),

and

φ(mn) = φ(mkp) = φ(mp)φ(k) =
pφ(m)φ(n)

p − 1
.

Question 2. [p 246. #22]

Show that if m and k are positive integers, then

φ(mk) = mk−1φ(m).

Solution: Let m = pα1

1 pα2

2 · · · pαr

r be the prime power decomposition of m, then

φ(m) = pα1−1
1 (p1 − 1)pα2−1

2 (p2 − 1) · · · pαr−1
r (pr − 1).

Since mk = pkα1

1 pkα2

2 · · · pkαr

r , then

φ(mk) = pkα1−1
1 (p1 − 1)pkα2−1

2 (p2 − 1) · · · pkαr−1
r (pr − 1)

= p
(k−1)α1+α1−1
1 (p1 − 1)p

(k−1)α2+α2−1
2 (p2 − 1) · · · p(k−1)αr+αr−1

r (pr − 1)

= p
(k−1)
1 pα1−1

1 (p1 − 1)p
(k−1)
2 pα2−1

2 (p2 − 1) · · · p(k−1)
r pαr−1

r (pr − 1)

= mk−1pα1−1
1 (p1 − 1)pα2−1

2 (p2 − 1) · · · pαr−1
r (pr − 1)

= mk−1φ(m),

so that φ(mk) = mk−1φ(m).



Question 3. [p 246. #23]

Show that if a and b are positive integers and d = (a, b), then

φ(a b) =
d φ(a) φ(b)

φ(d)
.

Conclude that if d > 1, then φ(a b) > φ(a) φ(b).

Solution: Let p1, p2, . . . , pr be those primes dividing a but not b, let q1, q2, . . . , qs be those primes dividing
b but not a, and let r1, r2, . . . , rt be those primes dividing both a and b.

Define

P =

r
∏

k=1

(

1 − 1

pk

)

, Q =

s
∏

k=1

(

1 − 1

qk

)

, and R =

t
∏

k=1

(

1 − 1

rk

)

,

then

φ(a b) = abPQR =
aPR bQR

R
=

φ(a)φ(b)

R
.

However,
φ ((a, b)) = (a, b)R

so that

R =
φ(d)

d

since d = (a, b), and therefore

φ(a b) =
d φ(a) φ(b)

φ(d)
.

Note that if d > 1, then φ(d) ≤ d − 1 < d, so that

d

φ(d)
> 1,

and

φ(a b) =
d φ(a) φ(b)

φ(d)
> φ(a) φ(b).

Question 4. [p 247. #30]

Show that if n is a positive integer with n 6= 2 and n 6= 6, then φ(n) ≥ √
n.

Solution: Note first that if p is an odd prime and α > 1, then

φ(p) = p − 1 >
√

p

and

φ(2pα) = φ(2)φ(pα) = pα−1(p − 1) ≥ 2pα−1 ≥ 2p
α
2 ≥

√

2pα.

Now let p be any prime and let α > 1, then

φ(pα) = pα−1(p − 1) ≥ pα−1 ≥ p
α
2 =

√
pα

and the result is true for any prime power pα with α > 1.



Now, if p is any prime with p > 4, then p2 + 1 > 4p, so that

(p − 1)2 = p2 − 2p + 1 > 4p − 2p = 2p,

and
φ(2p) = p − 1 ≥

√

2p.

Now let n be a positive integer, and suppose the prime power decomposition of n is given by

n = 2α0pα1

1 pα2

2 · · · pαr

r ,

if α0 6= 1, since the φ-function and the square root function are both multiplicative, from the results above,
we have

φ(n) =

r
∏

k=0

φ(pαk

k ) ≥
r
∏

k=0

√

pαk

k =
√

n.

If α0 = 1, be rearranging the primes, we may assume that pα1

1 has either α1 > 1 or p1 > 4, and again since
the φ-function and the square root function are both multiplicative, from the results above, we have

φ(n) = φ(2pα1

1 )

r
∏

k=2

φ(pαk

k ) ≥
√

2pα1

1

r
∏

k=2

√

pαk

k =
√

n.

The only remaining cases are when n is exactly divisible by 2, not divisible by a prime greater than 4, and
not divisible by a prime to a power greater than 1. These are exactly the cases n = 2 and n = 6, which are
the only exceptions.

Question 5. [p 247. #32]

Show that if m and n are positive integers with m | n, then φ(m) | φ(n).

Solution: Let m and n be positive integers and suppose that m | n, if the prime power decomposition of
n is given by

n = pα1

1 pα2

2 · · · pαr

r ,

then the prime power decomposition of m is given by

m = p
β1

i1
p

β2

i2
· · · pβs

is
,

where 1 ≤ βk ≤ αik
for 1 ≤ k ≤ s.

Therefore,
φ(n) = pα1−1

1 (p1 − 1)pα2−1
2 (p2 − 1) · · · pαr−1

r (pr − 1)

and
φ(m) = p

β1−1
i1

(pi1 − 1)pβ2−1
i2

(pi2 − 1) · · · pβs−1
is

(pis
− 1),

where 1 ≤ βk ≤ αik
for 1 ≤ k ≤ s, and clearly φ(m) | φ(n).



Question 6. [p 253. #4]

For which positive integers n is the sum of divisors of n odd?

Solution: We will show first that σ(n) is odd if n is a power of 2. Suppose that n = 2α, then

σ (2α) =
∑

d | 2α

d = 1 + 2 + 22 + · · · + 2α =
2α+1 − 1

2 − 1
= 2α+1 − 1,

and σ (2α) = 2α+1 − 1 is odd for all integers α ≥ 0.

Next suppose that p is an odd prime and that α is a positive integer, then

σ (pα) = 1 + p + p2 + · · · + pα =
pα+1 − 1

p − 1
,

and σ (pα) is odd if and only if the sum contains an odd number of terms, that is, if and only if α is an even
integer.

From the Fundamental Theorem of Arithmetic, we see that σ(n) is odd if and only if in the prime power
decomposition of n, every odd prime occurs to an even power, that is, if and only if n is perfect square or n

is 2 times a perfect square.

Question 7. [p 254. #21,#22,#23]

Let σk(n) denote the sum of the kth powers of the divisors of n, so that

σk(n) =
∑

d|n

dk.

(a) Find a formula for σk(p), where p is a prime.

(b) Find a formula for σk(pα), where p is a prime and α is a positive integer.

(c) Show that the arithmetic function σk is multiplicative.

Solution:

(a) If p is a prime, then

σk(p) = 1 + pk =
p2k − 1

pk − 1

since the only positive divisors of p are 1 and p itself.

(b) If p is a prime and α is a positive integer, then

σk(pα) =
∑

d|pα

dk =

α
∑

i=0

pki =
pk(α+1) − 1

pk − 1

since the positive divisors of pα are 1, p, . . . , pα.

(c) Define the arithmetic function fk(n) = nk, then f is multiplicative, since if (m, n) = 1, then

fk(mn) = (mn)k = mknk = fk(m)fk(n).

Therefore the function
σk(n) =

∑

d|n

dk

is also multiplicative.



Question 8. [p 254. #27]

Show that the number of ordered pairs of positive integers with least common multiple equal to the positive
integer n is τ(n2).

Solution: Clearly the result is true if n = 1, since then τ(n2) = 1, and the only ordered pair of positive
integers with least common multiple 1 is (1, 1).

Let n be a positive integer with n > 1, and suppose the prime power decomposition of n is given by

n = pα1

1 pα2

2 · · · pαr

r

where p1 < p2 < · · · < pr are distinct primes and αk ≥ 1 for 1 ≤ k ≤ r.

Now suppose that b and c are positive integers such that [b, c] = n, then b | n and c | n, so that their prime
power decompositions are given by

b = p
β1

1 p
β2

2 · · · pβr

r and c = p
γ1

1 p
γ2

2 · · · pγr

r

where 0 ≤ βk ≤ αk and 0 ≤ γk ≤ αk for 1 ≤ k ≤ r.

Since [b, c] = n, then we must have max{βk, γk} = αk for 1 ≤ k ≤ r, so that for each such k, one of βk or γk

must be equal to αk, while the other can be any one of the integers 0 ≤ ` ≤ αk.

Therefore, for each k with 1 ≤ k ≤ r, the number of ways to choose the ordered pair (βk, γk) such that
exactly one or both of βk and γk equals αk is equal to

αk + αk + 1 = 2αk + 1,

and the number of ways to choose the exponents

β1, β2, . . . , βr, γ1, γ2, . . . , γr

is equal to
(2α1 + 1)(2α2 + 1) · · · (2αr + 1) = τ(n2).

Thus, the number of ordered pairs of positive integers (b, c) such that [b, c] = n is equal to τ(n2).

Question 9. [p 256. #34]

Show that if n is a positive integer, then

(

∑

d|n

τ(d)

)2

=
∑

d|n

τ(d) 3.

Solution: Let

F (n) =

(

∑

d |n

τ(d)

)2

and G(n) =
∑

d |n

τ(d)3

for n ≥ 1, then F and G are multiplicative since τ is multiplicative, and in order to show that the equality
F (n) = G(n) holds for all n ≥ 1, we need only show it is true for n = pα where p is a prime and α ≥ 1.



Now, the divisors of pα are 1, p, p2, · · · , pα, and

τ(1) = 1, τ(p) = 2, τ(p2) = 3, . . . , τ(pα) = α + 1,

so that

F (pα) =

(

α+1
∑

k=1

k

)2

=

α+1
∑

k=1

k3 = G(pα).

Question 10. [p 256. #35]

Show that if n is a positive integer, then

τ(n2) =
∑

d|n

2ω(d),

where ω(n) equals the number of prime divisors of n.

Solution: Let ω(n) be the number of distinct primes dividing the positive integer n, we will show that
ω(n) is an additive function, in the sense that it satisfies

ω(mn) = ω(m) + ω(n)

whenever m and n are relatively prime positive integers.

To see this, suppose that (m, n) = 1, and the prime power decompositions of m and n are given by

m = pα1

1 pα2

2 · · · pαr

r and n = q
β1

1 q
β2

2 · · · qβs

s

where p1 < p2 < · · · < pr and q1 < q2 < · · · < qs are distinct primes, with pi 6= qj for any i and j, and
αi ≥ 1, βj ≥ 1 for all i and j.

The prime power decomposition of mn is given by

mn = pα1

1 pα2

2 · · · pαr

r q
β1

1 q
β2

2 · · · qβs

s

and clearly
ω(mn) = r + s = ω(m) + ω(n).

From the above we see that
f(n) = 2ω(n)

is multiplicative, since if m and n are relatively prime, then

f(mn) = 2ω(mn) = 2ω(m)+ω(n) = 2ω(m)2ω(n) = f(m)f(n).

Therefore,

F (n) =
∑

d|n

2ω(d)

is multiplicative.



Now let G(n) = τ(n2), then G is multiplicative, since if (m, n) = 1, then (m2, n2) = 1 also, and

G(mn) = τ(m2n2) = τ(m2)τ(n2) = G(m)G(n).

Since F and G are multiplicative, in order to show that F (n) = G(n) for all n ≥ 1, we need only show that
F (pα) = G(pα) whenever p is a prime and α is a positive integer.

Let p be a prime and α ≥ 1, then

F (pα) =
∑

d|pα

2ω(d) =

α
∑

k=0

2ω(pk) = 1 +

α
∑

k=1

21 = 2α + 1

since ω(p0) = ω(1) = 0, while
τ
(

(pα)2
)

= τ(p2α) = 2α + 1.

Therefore, from the fundamental theorem of arithmetic we have

τ(n2) =
∑

d|n

2ω(d)

for all n ≥ 1.


