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Question 1. [p 221. #14]
Using Fermat’s little theorem, find the last digit of the base 7 expansion of 3100,
SOLUTION: From Fermat’s little theorem, since 7 is prime, we have
3% = 1 (mod 7)

(393" = (3%)° = 22 = 4 (mod 7),

3100 —

so that

so the last digit of the base 7 expansion of 3% is 4
—1 (mod p)

Question 2. [p 221. #23]
Prtgpor=tgpge-lgp g (p—1)Pt =

Show that
whenever p is prime. (It has been conjectured that the converse of this is also true.)
SOLUTION: Since p is prime and (k,p) =1 for 1 < k < p — 1, then Fermat’s little theorem implies that

kEP~1 = 1 (mod p)
for 1 <k < p—1, and therefore
Pttt (p—1)P P = 141441 =p—1= —1(mod p).
p—1 times
Question 3. [p 222. #28]
Show that if p and ¢ are distinct primes, then
p? ' +¢?71 = 1 (mod pq).

SOLUTION: By Fermat’s little theorem, since ¢ is prime and q* p, then
P! = 1 (mod q),

so that p?=! = 1 4+ k - ¢ for some integer k, that is,
q|p"t T -1

Pl T -1

gl | P+ -1,

Similarly,
1 (mod pq).

Therefore,
qul 4 qpfl

but [p,q] = p- q, so that



Question 4. [p 222. #39]

2
(a) Show that if p is a prime, then < p) = 2 (mod p?).
p

2
(b) Can you show that if p is prime, then ( p) = 2 (mod p?®)?
p

SOLUTION:

(a) Suppose that p is a prime, from the binomial theorem,
2p 9
()

2
and the coefficient of z? in this expansion is ( p).
p

Also,

o =raprar = [(0)+ (Das o (O)e)[(2)+ (D)as o+ (0],

e 62%1)25;5@)(];91)+@(pp2)+...+(;1)@)42)(5)

that is,

so that

and since p ‘ (Z) for 1 <k < p—1, then p?

2
< p> — 2, that is,
p

(2p> = 2 (mod p?).

p

(b) In Mathematische Intelligencer 10 (1988), # 3, page 42, it is shown that if p > 3 is a prime, then

(2p B 1) = 1 (mod p?).

p

The proof of (x) uses
Wolstenholme’s Theorem: If p is a prime with p > 5, then

1 1 1
(p—l)!{1—|—§+§+...+pTl} = 0 (mod p?).



Using Wolstenholme’s congruence, we can, in fact, prove that if p is a prime with p > 5, and m is any

positive integer, then
-1
(n;p_ ) ) = 1 (mod p?). (%)

Note that (xx) reduces to (x) for m = 2.
(2p> (2p)! (2p —1)! (2p — 1)
= = 2 = 2 5
p/) ppt pp—1) p

() =) -

Show that if n is a positive integer with n > 2, then n does not divide 2™ — 1.

Now

7

and from () we have

2 (mod p?).

Question 5. [p 222. #46]

SOLUTION: Suppose to the contrary, that n > 2 and n | 2™ — 1. Let p be the smallest prime divisor of n and
let 0 be the smallest positive integer such that p | 29 — 1 (8 exists, since p | n and n ‘ 2" — 1 implies that
P ‘ 2™ — 1, now use the well-ordering property).

Now, since p > 1, then we must have 6 > 1. Next we note that p ‘ 2™ — 1 implies that 0 | n. To see that this
is the case, suppose that n = § - k +r, where 0 < r < ¢, then 2" — 1 = 2¥9 .27 — 1, and since p ‘ 20 1
implies that 2° = 1 (mod p), then 2" —1 = 2" — 1 (mod p). But p | 2" — 1 implies that p | 2" — 1 with
0 < r < 4, and this contradicts the choice of §. Therefore, & | n.

By Fermat’s little theorem, p } 2P~1 — 1, and this implies (from the definition of §) that § < p— 1. Therefore,
l1<d<pand§ ’ n. But then 0 has a prime divisor which is less than p, and which divides n. However, this
contradicts the definition of p.

Therefore, if n is a positive integer with n > 2, then n* 2n —1.

Question 6. [p 236. #2]
Find a reduced residue system modulo 2™, where m is a positive integer.

SoLUTION: First note that
p(2m) =2m"1(2-1)=2m"1

and for 1 < k < 2™ only the odd integers are relatively prime to 2™. There are 2~ ! of them, and no two
of them are congruent modulo 2™.

Therefore, the set of odd integers
1,3,5,...,2m -1

form a reduced residue system modulo 2™.



Question 7. [p 236. #6]

Find the last digit of the decimal expansion of 7999:999,
SoLuTION: We have
72 = 9 (mod 10)
73 = 3 (mod 10)

7% = 1 (mod 10)
and 999,999 = 299,999 - 4 + 1, so that
7999999 = (74999 71 = 7 (mod 10)
and the last digit of 7999999 ig a 7.
Question 8. [p 236. #10]

Show that a®® 4+ b#(®) = 1 (mod ab) if a and b are relatively prime positive integers.

SoLuTION: If (a,b) = 1, from Euler’s theorem,
a®® = 1 (mod b),

SO
a®?® =14+k-b

for some integer k, so that
b | a®® 4 pPla) _ 1.

Similarly,
a | a®® 4 pdla@) _q,

Therefore,
[a, b] ‘ a®® 4 pela) _ 1,

and since (a,b) = 1, then [a, b] = ab, so that

a®® + @ = 1 (mod ab).

Question 9. [p 236. #20]
Show that if m is a positive integer, m > 1, then a™ = a™ (™) (mod m) for all positive integers a.

SOLUTION: Let m = pi"p5? - - - pp* be the canonical prime power factorization of m, then
¢(m) = pi~H(p1 — ps*(p2 — 1) - pp* " (pr — 1),

Note that p2* ™ (p; — 1) = $(pS) } ¢(m) fori=1,2,... k.

a®®’t) — 1, and since

(a) If (a,p;) = 1, then (a,p;") = 1, and from Euler’s theorem we have p{*
o(pf") | ¢(m), then pf* | a?m) —1
(use the fact that

a"t—1= (aT)S —-1= (aT — 1) ((a’”)sfl + (@) 244 a" + 1)

a®(m) — 1,

for positive integers r and s). Therefore, if (a,p;) = 1, then p;*



(b) Now, if @ and p > 2 are positive integers, then p®~! > « (prove this by induction). However, for
i =1,2,...,k, we have p&* ! } m and p? } ¢(m), so that pi~! | m — ¢(m). Also, m — ¢(m) > 0
for m > 1, so that m — ¢(m) > p?i_l > q; for i =1,2,... k. If (a,p;) > 1, that is, if p; | a, then
ps p;n_(b(m) and p;"_d’(m) | am=¢(™) | therefore, pf | a™=¢(m).

am™= (M) (q?(m) — 1) for i = 1,2,..., k. Therefore,

(c) So that for any positive integer a we have p;*
a™ = a™ ™ (mod m) for all positive integers a.

Question 10. [p 246. #14]

For which positive integers n does ¢(n) ‘ n?

SOLUTION: Suppose that n is a positive integer and let
n = pflllpgtz .. .pzk
be the prime power decomposition of n, then

o(n) =pi* TIP3 T o = Doz = 1) - (o — 1),

If ¢(n) | n, then
p1 D2 Dk
. e 1
pr—1 pp—1 pp—1 M
is a positive integer, and since the numerator can have at most one factor of 2, this implies that the
denominator can contain at most one factor (p; — 1) where p; is an odd prime.

Therefore, in the prime power decomposition of n, either n = 2% or n = 2% p?, where p is an odd prime, and
a>0and 3> 0.

case (i): If n = 2% where o > 0, then for &« = 0, we have n = 1 and ¢(n) = 1, while for @ > 1, we have

n=2%and ¢(n) =212 -1)=2"1 = g

case (ii): If n = 2%pP, where p is an odd prime, and 3 > 1, then

2-1 p-i
¢(”)—”'T'T

and since ¢(n) | n, then
o 2
¢(n)  p—1

is an integer, so that p — 1 = 2, that is, p = 3, and n = 2%3% where o > 0 and 5 > 1.

Therefore, the only positive integers n for which ¢(n) | n are given by
n=1, 2% 2%3°

where o, 6 > 1.



