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Question 1. [p 221. #14]

Using Fermat’s little theorem, find the last digit of the base 7 expansion of 3100.

Solution: From Fermat’s little theorem, since 7 is prime, we have

36 ≡ 1 (mod 7)

so that
3100 ≡

(
36

)16
· 34 ≡

(
32

)2
≡ 22 ≡ 4 (mod 7),

so the last digit of the base 7 expansion of 3100 is 4.

Question 2. [p 221. #23]

Show that
1p−1 + 2p−1 + 3p−1 + · · · + (p − 1)p−1 ≡ −1 (mod p)

whenever p is prime. (It has been conjectured that the converse of this is also true.)

Solution: Since p is prime and (k, p) = 1 for 1 ≤ k ≤ p − 1, then Fermat’s little theorem implies that

kp−1 ≡ 1 (mod p)

for 1 ≤ k ≤ p − 1, and therefore

1p−1 + 2p−1 + · · · + (p − 1)p−1 ≡ 1 + 1 + · · · + 1
︸ ︷︷ ︸

p−1 times

≡ p − 1 ≡ −1 (mod p).

Question 3. [p 222. #28]

Show that if p and q are distinct primes, then

pq−1 + qp−1 ≡ 1 (mod pq).

Solution: By Fermat’s little theorem, since q is prime and q
∣
∣6 p, then

pq−1 ≡ 1 (mod q),

so that pq−1 = 1 + k · q for some integer k, that is,

q
∣
∣ pq−1 + qp−1 − 1.

Similarly,
p

∣
∣ pq−1 + qp−1 − 1.

Therefore,
[p, q]

∣
∣ pq−1 + qp−1 − 1,

but [p, q] = p · q, so that
pq−1 + qp−1 ≡ 1 (mod pq).



Question 4. [p 222. #39]

(a) Show that if p is a prime, then

(
2p

p

)

≡ 2 (mod p2).

(b) Can you show that if p is prime, then

(
2p

p

)

≡ 2 (mod p3)?

Solution:

(a) Suppose that p is a prime, from the binomial theorem,

(1 + x)2p =

2p
∑

k=0

(
2p

k

)

xk,

and the coefficient of xp in this expansion is

(
2p

p

)

.

Also,

(1 + x)2p = (1 + x)p(1 + x)p =

[(
p

0

)

+

(
p

1

)

x + · · · +

(
p

p

)

xp

][(
p

0

)

+

(
p

1

)

x + · · · +

(
p

p

)

xp

]

,

and the coefficient of xp is

(
p

0

)(
p

p

)

+

(
p

1

)(
p

p − 1

)

+

(
p

2

)(
p

p − 2

)

+ · · · +

(
p

p − 1

)(
p

1

)

+

(
p

p

)(
p

0

)

,

that is,
(

2p

p

)

=

p
∑

k=0

(
p

k

)(
p

p − k

)

=

p
∑

k=0

(
p

k

)2

,

so that
(

2p

p

)

= 2 +

p−1
∑

k=1

(
p

k

)2

,

and since p

∣
∣
∣
∣

(
p

k

)

for 1 ≤ k ≤ p − 1, then p2

∣
∣
∣
∣

(
2p

p

)

− 2, that is,

(
2p

p

)

≡ 2 (mod p2).

(b) In Mathematische Intelligencer 10 (1988), # 3, page 42, it is shown that if p > 3 is a prime, then

(
2p − 1

p

)

≡ 1 (mod p3). (∗)

The proof of (∗) uses

Wolstenholme’s Theorem: If p is a prime with p ≥ 5, then

(p − 1)!

{

1 +
1

2
+

1

3
+ · · · +

1

p − 1

}

≡ 0 (mod p2).



Using Wolstenholme’s congruence, we can, in fact, prove that if p is a prime with p ≥ 5, and m is any
positive integer, then

(
mp − 1

p − 1

)

≡ 1 (mod p3). (∗∗)

Note that (∗∗) reduces to (∗) for m = 2.

Now,
(

2p

p

)

=
(2p)!

p! p!
= 2

(2p − 1)!

p! (p− 1)!
= 2

(
2p− 1

p

)

,

and from (∗) we have
(

2p

p

)

≡ 2

(
2p − 1

p

)

≡ 2 · 1 ≡ 2 (mod p3).

Question 5. [p 222. #46]

Show that if n is a positive integer with n ≥ 2, then n does not divide 2n − 1.

Solution: Suppose to the contrary, that n ≥ 2 and n
∣
∣ 2n − 1. Let p be the smallest prime divisor of n and

let δ be the smallest positive integer such that p
∣
∣ 2δ − 1 (δ exists, since p

∣
∣ n and n

∣
∣ 2n − 1 implies that

p
∣
∣ 2n − 1, now use the well–ordering property).

Now, since p > 1, then we must have δ > 1. Next we note that p
∣
∣ 2n − 1 implies that δ

∣
∣ n. To see that this

is the case, suppose that n = δ · k + r, where 0 < r < δ, then 2n − 1 = 2k·δ · 2r − 1, and since p
∣
∣ 2δ − 1

implies that 2δ ≡ 1 (mod p), then 2n − 1 ≡ 2r − 1 (mod p). But p
∣
∣ 2n − 1 implies that p

∣
∣ 2r − 1 with

0 < r < δ, and this contradicts the choice of δ. Therefore, δ
∣
∣ n.

By Fermat’s little theorem, p
∣
∣ 2p−1 −1, and this implies (from the definition of δ) that δ ≤ p−1. Therefore,

1 < δ < p and δ
∣
∣ n. But then δ has a prime divisor which is less than p, and which divides n. However, this

contradicts the definition of p.

Therefore, if n is a positive integer with n ≥ 2, then n
∣
∣6 2n − 1.

Question 6. [p 236. #2]

Find a reduced residue system modulo 2m, where m is a positive integer.

Solution: First note that
φ(2m) = 2m−1(2 − 1) = 2m−1

and for 1 ≤ k ≤ 2m, only the odd integers are relatively prime to 2m. There are 2m−1 of them, and no two
of them are congruent modulo 2m.

Therefore, the set of odd integers
1, 3, 5, . . . , 2m − 1

form a reduced residue system modulo 2m.



Question 7. [p 236. #6]

Find the last digit of the decimal expansion of 7999,999.

Solution: We have

72 ≡ 9 (mod 10)

73 ≡ 3 (mod 10)

74 ≡ 1 (mod 10)

and 999, 999 = 299, 999 · 4 + 1, so that

7999,999 ≡
(
74

)299,999
· 71 ≡ 7 (mod 10),

and the last digit of 7999,999 is a 7.

Question 8. [p 236. #10]

Show that aφ(b) + bφ(a) ≡ 1 (mod ab) if a and b are relatively prime positive integers.

Solution: If (a, b) = 1, from Euler’s theorem,

aφ(b) ≡ 1 (mod b),

so
aφ(b) = 1 + k · b

for some integer k, so that
b

∣
∣ aφ(b) + bφ(a) − 1.

Similarly,
a

∣
∣ aφ(b) + bφ(a) − 1.

Therefore,
[a, b]

∣
∣ aφ(b) + bφ(a) − 1,

and since (a, b) = 1, then [a, b] = ab, so that

aφ(b) + bφ(a) ≡ 1 (mod ab).

Question 9. [p 236. #20]

Show that if m is a positive integer, m > 1, then am ≡ am−φ(m) (mod m) for all positive integers a.

Solution: Let m = pα1

1 pα2

2 · · · pαk

k be the canonical prime power factorization of m, then

φ(m) = pα1−1
1 (p1 − 1)pα2−1

2 (p2 − 1) · · · pαk−1
k (pk − 1).

Note that pαi−1
i (pi − 1) = φ(pαi

i )
∣
∣ φ(m) for i = 1, 2, . . . , k.

(a) If (a, pi) = 1, then (a, pαi

i ) = 1, and from Euler’s theorem we have pαi

i

∣
∣ aφ(p

αi

i
) − 1, and since

φ(pαi

i )
∣
∣ φ(m), then pαi

i

∣
∣ aφ(m) − 1

(use the fact that

ar·s − 1 =
(
ar

)s
− 1 =

(
ar − 1

)(
(ar)s−1 + (ar)s−2 + · · · + ar + 1

)

for positive integers r and s). Therefore, if (a, pi) = 1, then pαi

i

∣
∣ aφ(m) − 1.



(b) Now, if α and p ≥ 2 are positive integers, then pα−1 ≥ α (prove this by induction). However, for
i = 1, 2, . . . , k, we have pαi−1

i

∣
∣ m and pαi−1

i

∣
∣ φ(m), so that pαi−1

i

∣
∣ m − φ(m). Also, m − φ(m) > 0

for m > 1, so that m − φ(m) ≥ pαi−1
i ≥ αi for i = 1, 2, . . . , k. If (a, pi) > 1, that is, if pi

∣
∣ a, then

pαi

i

∣
∣ p

m−φ(m)
i and p

m−φ(m)
i

∣
∣ am−φ(m), therefore, pαi

i

∣
∣ am−φ(m).

(c) So that for any positive integer a we have pαi

i

∣
∣ am−φ(m)(aφ(m) − 1) for i = 1, 2, . . . , k. Therefore,

am ≡ am−φ(m) (mod m) for all positive integers a.

Question 10. [p 246. #14]

For which positive integers n does φ(n)
∣
∣ n?

Solution: Suppose that n is a positive integer and let

n = pα1

1 pα2

2 · · · pαk

k

be the prime power decomposition of n, then

φ(n) = pα1−1
1 pα2−1

2 · · · pαk−1
k (p1 − 1)(p2 − 1) · · · (pk − 1).

If φ(n)
∣
∣ n, then

p1

p1 − 1
·

p2

p2 − 1
· · ·

pk

pk − 1
(†)

is a positive integer, and since the numerator can have at most one factor of 2, this implies that the
denominator can contain at most one factor (pi − 1) where pi is an odd prime.

Therefore, in the prime power decomposition of n, either n = 2α or n = 2α pβ , where p is an odd prime, and
α ≥ 0 and β ≥ 0.

case (i) : If n = 2α where α ≥ 0, then for α = 0, we have n = 1 and φ(n) = 1, while for α ≥ 1, we have

n = 2α and φ(n) = 2α−1(2 − 1) = 2α−1 =
n

2
.

case (ii) : If n = 2αpβ , where p is an odd prime, and β ≥ 1, then

φ(n) = n ·
2 − 1

2
·
p − 1

p

and since φ(n)
∣
∣ n, then

k =
n

φ(n)
=

2p

p − 1

is an integer, so that p − 1 = 2, that is, p = 3, and n = 2α3β where α ≥ 0 and β ≥ 1.

Therefore, the only positive integers n for which φ(n)
∣
∣ n are given by

n = 1, 2α, 2α 3β

where α, β ≥ 1.


