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Question 1. [p 139. #16]

A piggy bank contains 24 coins, all of which are nickels, dimes, or quarters. If the total value of the coins is
two dollars, what combinations of coins are possible?

Solution: Let x be the number of nickels, y be the number of dimes, and z be the number of quarters,
since there are 24 coins in the piggy bank, then

x + y + z = 24,

and since there are two dollars in the piggy bank, then

5x + 10y + 25z = 200.

From the first equation we have
5x + 5y + 5z = 120,

and subtracting this from the second equation, we have

5y + 20z = 80,

that is,
y + 4z = 16. (∗)

A particular solution to (∗) is y0 = 16 and z0 = 0, so the general solution to (∗) is

y = 16 − 4t

z = t

where t is a nonnegative integer. Since we need 0 ≤ t ≤ 4, there are 5 solutions to the original diophantine
equation:

(1) For t = 0, we have y = 16, z = 0, and x = 24 − y − z = 8.

(2) For t = 1, we have y = 12, z = 1, and x = 24 − y − z = 11.

(3) For t = 2, we have y = 8, z = 2, and x = 24− y − z = 14.

(4) For t = 3, we have y = 4, z = 3, and x = 24− y − z = 17.

(5) For t = 4, we have y = 0, z = 4, and x = 24− y − z = 20.



Question 2. [p 139. #19]

Let a and b be relatively prime positive integers, and let n be a positive integer. A solution (x, y) of the
linear diophantine equation ax + by = n is nonnegative when both x and y are nonnegative.

Show that whenever n ≥ (a − 1)(b − 1), there is a nonnegative solution of ax + by = n.

Solution: We will show that for ab − a − b < n < ab there is exactly one solution (x, y) to the linear
diophantine equation ax + by = n with x > 0 and y > 0.

We consider the parallelogram with vertices

(b, 0), (0, a), (b − 1,−1), (−1, a− 1)

shown below.
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The equation of the line joining (0, a) and (b, 0) is

ax + by = ab,

while the equation of the line joining (−1, a− 1) and (b − 1,−1) is

ax + by = ab − a − b.

Let i, j and k be the unit vectors in the x−, y−, and z− directions respectively, and let

u = i + j and v = b i− a j,

then
u× v = −(a + b)k,

and the area of the parallelogram is given by

Area = ‖u× v‖ = a + b.

Note that the line segment joining (0, a) and (−1, a − 1) has no lattice points in its interior, since if it did,
the x-component x0 would satisfy −1 < x0 < 0, which is impossible. Similarly, the line segment joining
(b, 0) and (b − 1,−1) has no lattice points in its interior.



Next we note that there are no lattice points in the interior of the line segment joining (0, a) and (b, 0).
Suppose that (x, y) is a lattice point on ax + by = ab, with x > 0 and y > 0, since x0 = 0 and y0 = a is a
particular solution, the general solution to the diophantine equation gives

x = 0 + bt = bt and y = a − at

for some t ∈ Z. Now, x > 0 implies that t > 0 (since b > 0), and y > 0 implies that a(1 − t) > 0, or t < 1
(since a > 0). Thus, 0 < t < 1, which is a contradiction, since t is an integer.

Also we note that there are no lattice points in the interior of the line segment joining (−1, a − 1) and
(b − 1,−1). Suppose that (x, y) is a lattice point on the line ax + by = ab − a − b, with x > 0 and y > 0,
since x0 = −1 and y0 = a− 1 is a particular solution, the general solution to the diophantine equation gives

x = −1 + bt and y = a − 1 − at

for some t ∈ Z. Now, x > 0 implies that t ≥ 1 (since b ≥ 1), and y > 0 implies that t < (a−1)/a = 1−1/a < 1,
which is a contradiction.

Therefore, the only lattice points on the boundary of the parallelogram are the vertices

(b, 0), (0, a), (b − 1,−1), (−1, a − 1).

From Pick’s theorem, we have
Area = I + 1

2
B − 1,

where B is the number of lattice points on the boundary of the parallelogram and I is the number of lattice
points in the interior of the parallelogram. Since B = 4 and Area = a + b, then the number of lattice points
in the interior of the parallelogram is

I = a + b − 1.

Since the distance between adjacent lattice points on any of the lines

ax + by = c

is
√

a2 + b2, and this is the length of the line segment joining points on the ends of the parallelogram, we
see that for each integer c with

ab − a − b < c < ab,

there can be at most 1 lattice point on the line ax + by = c which is interior to the parallelogram.

Therefore, for each of the a + b − 1 integers n with ab − a − b + 1 ≤ n ≤ ab − 1, exactly 1 of the a + b − 1
lattice points in the interior of the parallelogram lies on the line ax + by = n.

Also, from the general solution to the linear diophantine equation

x = x0 + bt and y = yo − at,

by taking t = 1, we see that the distance between adjacent lattice points on the line ax + by = n is

D0 =
√

a2 + b2.



Since the length of the line segment joining the intercepts is
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√
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)2

+
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b

)2

=
n

ab

√

a2 + b2,

we see that if D ≥ D0, then the equation has a nonnegative solution, that is, if n ≥ ab, then the equation
has a nonnegative solution.

Combining this with the result above, we see that the linear diophantine equation ax + by = n has a
nonnegative solution whenever n ≥ ab − a − b + 1 = (a − 1)(b − 1).

Question 3. [p 139. #20]

Let a and b be relatively prime positive integers, and let n be a positive integer. Show that if n = ab−a− b,
then there are no nonnegative solutions of ax + by = n.

Solution: If we set x = −1, then we have

−a + by = ab − a − b,

so that y = a − 1, and a particular solution is x0 = −1, y0 = a − 1, so the general solution is

x = −1 + bt and y = a − 1 − at

where t ∈ Z.

Now if x = −1 + bt ≥ 0, then we have bt ≥ 1, and since b ≥ 1 and t is an integer, this implies that t ≥ 1.

Also, if y = a − 1 − at ≥ 0, then we have t ≤ a − 1

a
= 1 − 1

a
< 1, which contradicts the fact that t ≥ 1.

Therefore, if n = ab−a−b, there are no nonnegative solutions to the linear diophantine equation ax = by = n.

Question 4. [p 139. #21]

Show that there are exactly (a − 1)(b − 1)/2 nonnegative integers n < ab − a − b such that the equation
ax + by = n has a nonnegative solution.

Solution: Here we note that the line
ax + by = ab − a − b

bisects the rectangle with vertices

(−1, a − 1), (−1,−1), (b − 1, a − 1), (b − 1,−1),

but contains no lattice points.
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Therefore, half of the interior points of the rectangle are below the line and half are above the line, and since
the number of interior points is

(a + 1)(b + 1) − 2(a + 1) − 2(b + 1) + 4 = ab − a − b + 1 = (a − 1)(b − 1),

then there are (a− 1)(b− 1)/2 integers n < ab− a− b such that the equation ax + by = n has a nonnegative
solution.

Question 5. [p 150. #17]

What can you conclude if a2 ≡ b2 (mod p), where a and b are integers and p is a prime?

Solution: If a2 ≡ b2 (mod p), then p
∣

∣ (a − b)(a + b), and since p is a prime, this implies that

p
∣

∣a − b or p
∣

∣a + b,

so that either a ≡ b (mod p) or a ≡ −b (mod p).

Question 6. [p 150. #19]

Show that if n is an odd positive integer, then

1 + 2 + 3 + · · · + (n − 1) ≡ 0 (mod n).

Is this statement true if n is even?

Solution: Recall that

1 + 2 + 3 + · · · + (n − 1) =
n(n − 1)

2
,

and if n is odd, then n − 1 is even, so that
n − 1

2
is an integer and n

∣

∣

∣

∣

n(n − 1)

2
, that is,

1 + 2 + 3 + · · · + (n − 1) ≡ 0 (mod n)

in this case.

On the other hand, if n is even, then n = 2k for some integer k and
n(n − 1)

2
= k(n − 1). However,

gcd(n, n − 1) = 1, and 1 ≤ k < n, so that n 6
∣

∣ k, and therefore n 6
∣

∣ k(n − 1), so

1 + 2 + 3 + · · · + (n − 1) 6≡ 0 (mod n)

in this case.



Question 7. [p 150. #20]

Show that if n is an odd positive integer or if n is a positive integer divisible by 4, then

13 + 23 + 33 + · · · + (n − 1)3 ≡ 0 (mod n).

Is this statement true if n is even but not divisible by 4?

Solution: Recall that

13 + 23 + 33 + · · · + (n − 1)3 =
n2(n − 1)2

4
,

so that if n is an odd positive integer, then n − 1 is even and 4
∣

∣ (n − 1)2, so that n
∣

∣

n2(n − 1)2

4
, and

13 + 23 + 33 + · · · + (n − 1)3 ≡ 0 (mod n).

If n is a multiple of 4, then
n

4
is an integer, and n

∣

∣

n2(n − 1)2

4
, so that

13 + 23 + 33 + · · · + (n − 1)3 ≡ 0 (mod n).

in this case also.

If n is even, but 4 6
∣

∣ n, then n = 2k where k is an odd integer, and n − 1 is also odd, so that

n2(n − 1)2

4
= k2(2k − 1)2

is an odd integer, and since n is even, then

13 + 23 + 33 + · · · + (n − 1)3 6≡ 0 (mod n).

Question 8. [p 150. #21]

For which positive integers n is it true that

12 + 22 + 32 + · · · + (n − 1)2 ≡ 0 (mod n)?

Solution: Recall that

12 + 22 + 32 + · · · + (n − 1)2 =
(n − 1)n(2n − 1)

6
,

and since (n, n − 1) = 1 and (n, 2n − 1) = 1, then

n

∣

∣

∣

∣

(n − 1)n(2n − 1)

6
if and only if 6

∣

∣ (n − 1)(2n− 1).

Also, since (n− 1, 2n− 1) = 1, then 6
∣

∣ (n− 1)(2n− 1) if and only if either (i) 6
∣

∣ n− 1, or (ii) 2
∣

∣ n− 1 and

3
∣

∣ 2n − 1.

(i) 6
∣

∣ n − 1 if and only if n = 6k + 1, that is, if and only if n ≡ 1 (mod 6).

(ii) 2
∣

∣ n − 1 and 3
∣

∣ 2n − 1 if and only if n = 2k + 1 and 2n = 3l + 1. Now, 2n is even, so that l is odd,
say, l = 2m + 1. Thus, 2n = 6m + 4, or n = 3m + 2. But since n is odd, then m must be odd, say,
m = 2q − 1, so that n = 6q − 1, that is, n ≡ −1 (mod 6).

Therefore, 12 + 22 + 32 + · · · + (n − 1)2 ≡ 0 (mod n) if and only if n ≡ ±1 (mod 6).



Question 9. [p 157. #18]

Show that if p is an odd prime and a is a positive integer which is not divisible by p, then the congruence
x2 ≡ a (mod p) has either no solution or exactly two incongruent solutions.

Solution: Note first that if x2

0
≡ a (mod p), then (−x0)

2 ≡ a (mod p), so that −x0 is also a solution.

Now note that x0 6≡ −x0 (mod p), since this implies that 2x0 ≡ 0 (mod p), which is impossible since p is
odd and p 6

∣

∣ x0, since x2

0
≡ a (mod p) and p 6

∣

∣ a.

To see that there are no more than two incongruent solutions, assume that x = x0 and x = x1 are both
solutions to x2 ≡ a (mod p), then x2

0
≡ x2

1
≡ a (mod p), so that

x2

0
− x2

1
≡ (x0 − x1)(x0 + x1) ≡ 0 (mod p),

so that p
∣

∣x0 − x1 or p
∣

∣x0 + x1, that is,

x1 ≡ x0 (mod p) or x1 ≡ −x0 (mod p).

Thus, if there is a solution to x2 ≡ a (mod p), then there are exactly two incongruent solutions.

Question 10. [p 167. #33]

The three children in a family have feet that are 5 inches, 7 inches, and 9 inches long. When they measure
the length of the dining room of their house using their feet, they each find that there are 3 inches left over.
How long is the dining room?

Solution: Let n be the length of the dining room (in inches), we solve the following simultaneous congru-
ences using the Chinese remainder theorem:

n ≡ 3 (mod 5)

n ≡ 3 (mod 7)

n ≡ 3 (mod 9).

Here

a1 = 3, a2 = 3, a3 = 3

m1 = 5, m2= 7, m3 = 9,

and
M1 = 7 · 9 = 63, M2 = 5 · 9 = 45, M3 = 5 · 7 = 35.

Also, solving the congrences

M1y1 ≡ 1 (mod m1)

M2y2 ≡ 1 (mod m2)

M3y3 ≡ 1 (mod m3)

for the inverses y1, y2, and y3, we have

y1 ≡ 2 (mod 5), y2 ≡ 5 (mod 7), y3 ≡ 8 (mod 9),

and the unique solution modulo 5 · 7 · 9 is given by

n = a1M1y1 + a2M2y2 + a3M3y3 = 3 · 63 · 2 + 3 · 45 · 53 · 35 · 9 = 378 + 675 + 945 = 1998 ≡ 3 (mod 315).

Therefore a reasonable answer would be n = 3 + 315 = 318 inches, or 26 feet, 6 inches.


