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Question 1. [p 74. #6]
Show that no integer of the form n? + 1 is a prime, other than 2 = 13 + 1.

SoLUTION: If n? 4 1 is a prime, since
nP4+1=mn+1n?>—n+1),

then either n +1 =1orn? —n+1=1. The n+ 1 = 1 is impossible, since n > 1, and therefore we must
have n? —n +1 = 1, that is, n(n — 1) = 0, so that n = 1.
Question 2. [p 74. #7]
Show that if @ and n are positive integers with n > 1 and a™ — 1 is prime, then a = 2 and n is prime.
Hint: Use the identity a® — 1 = (aF — 1)@~V + a2 + ... £ aF +1).
SOLUTION: Suppose that a™ — 1 is prime, where n > 1. Since
a"—1=(a—-1)(a" ' +a" 2+ +a+1)
and the second factor is clearly greater than 1, it follows that a — 1 = 1, that is, a = 2. Otherwise, the first

factor would also be greater than 1 and a™ — 1 would be composite.

Also, if n is composite, so that n = k - £, with £ > 1 and £ > 1, then we can factor 2" — 1 as in the hint:
okt 1 = (2F — 1) (2P k(=) L g ok 1),
and each factor on the right is clearly greater than 1. which is a contradiction, so n must be prime.

Question 3. [p 74. #10]

Using Euclid’s proof that there are infinitely many primes, show that the n'® prime p,, does not exceed 22"

whenever n is a positive integer. Conclude that when n is a positive integer, there are at least n + 1 primes
less than 22".

SOLUTION: The proof is by strong induction.

Base Case: If n =1, then p; =2 < 22" — 9.

Inductive Step: Now assume that py < 22" for k= 1,2,...,n. If M = pips---pp+1, since M has a prime
divisor p which is different from each p;, with 1 < i < n, then

Prst <SPS M =pipy-- potl <2202 22" g = 920220 g L 92Ty 921 921 92"

By the principle of mathematical induction p,, < 22" for all n > 1.

From the above, p,11 < 22", and since 22" cannot be prime if n > 0, there must be n + 1 primes which are
strictly less than 22",



Question 4. [p 74. #12]

Show that if py, is the k' prime, where k is a positive integer, then p, < pips---pn_1 + 1 for all integers n
with n > 3.

SOLUTION: Let M = p1ps - - pn_1 + 1, where py, is the k™ prime, from Euler’s proof, some prime p different
from p1,po,...,pn_1 divides M, so that

Pn <pSM=pip2-prn-1+1
for all n > 3.

Question 5. [p 74. #13]

n
Show that if the smallest prime factor p of the positive integer n exceeds ¢/n, then — must be prime or 1.
p

SOLUTION: Let p be the smallest prime factor of n, and assume that p > ¥/n.

n
Case 1: If n is prime, then the smallest prime factor of n is p = n, and in this case — = 1.
p

Case 2: If n > 1 is not prime, then n must be composite, so that

and since p > ¥/n, then
P

n n
Now, if — is not prime then — has a prime factor ¢ with
p p

n
q< \/j <In<p
p
n
and this prime factor ¢ is also a divisor of n, which contradicts the definition of p. Therefore, — must be

prime.

Question 6. [p 87. #12]
Show that every integer greater than 11 is the sum of two composite integers.

SOLUTION: If n > 11 and n is even, then n — 4 is even and n — 4 > 7, so that n — 4 > 8. Therefore,
n=(n-4)+4

is the sum of two composite integers

If n > 11 and n is odd, then n — 9 is even and n — 9 > 2, so that n — 9 > 4. Therefore,
n=mn-9)+9

is the sum of two composite integers.



Question 7. [p 87. #22]

Let n be a positive integer greater than 1 and let pi, p2,...,p: be the primes not exceeding n. Show that

pip2 - pr < 47

SOLUTION: The proof is by strong induction.

Base Case: if n =2, then p; = 2 is the only prime less than or equal to 2, and
2<4*=16

so that (x) is true for n = 2.

Inductive Step: Now suppose that (k) is true for 2, 3, ..., n — 1 where n > 3.

Note that we can restrict our attention to odd n, since if n is even, then

sz H p<4nl < 4m,

p<n p<n—1

Setting n = 2m + 1, we have
<2m + 1> ~ (2m+1)!

m  m!(m +1)!
and this is divisible by every prime p with m + 2 < p < 2m + 1, so that

H p< (2mm+ 1) H - (2mm+ 1)4m+1

p<2m+1 p<m+1
by the inductive hypothesis.
Now, the binomial coefficients
<2m + 1> <2m + 1)
and
m m+1
are equal and both occur in the expansion of the binomial (1 + 1)?2™*! so that

<2m—|—1

<1.22m+1:4m
m -2 ’

and therefore
H P < 4m . 4m+1 — 42m+1
p<2m+1

and (x) is true for n = 2m + 1 also.

By the Principle of Mathematical Induction

Hp<4”

p<n

for all positive integers n > 2.

(%)



Question 8. [p 87. #23]

Let n be a positive integer greater than 3 and let p be a prime such that 2n/3 < p < n. Show that p does
2

not divide the binomial coefficient ( n)
n

SoLuUTION: Note that the restrictions on n are such that

(a) p>2

(b) p and 2p are the only multiples of p which are less than or equal to 2n, since 3p > 2n
(c) p itself is the only multiple of p which is less than or equal to n

From (a) and (b) we have
p* | (2n)! but  p* f (2n),

while from (c),
p*| (n!)? but  p* J (n!)?

Therefore,

that is,

Question 9. [p 87. #24]

Use Exercises 22 and 23 to show that if n is a positive integer, then there exists a prime p such that
n < p < 2n. (This is Bertrand’s conjecture.)

SOLUTION: You can easily check using the Sieve of Eratosthenes that the result holds for 2 < n < 127.

Now let n > 128, and suppose that there is no prime between n and 2n. Let

)11

p<2n

2n
be the prime power decomposition of ( ) By assumption there are no primes between n and 2n, so that
n

2n -
= | | p P,
n
p<n
. . ., 2n
If p is a prime with 3 < p < n, then

4
n<?n<2p<2n and 2n < 3p < 3n,

so that p divides n! exactly once and p divides (2n)! exactly twice, and so

o1 ()



Therefore,

()= T T s Mo 0T

p<V2n V2n<p<2n/3 p<v2n  p<2n/3
2
since if v/2n < p < 2n/3, then p divides ( n) exactly once.
n

Now, the number of primes less than +/2n is less than the number of odd integers less than +/2n, that is,

less than v2n/2 — 1 = y/n/2 — 1, therefore

H on < (2n)V/2L
p<v2n

From Question 7, we have (replace n by |2n/3])
H p < al2n/sl,
p<[2n/3]

which implies that
H p< 4277./37

p<2n/3

so that

(2"> < (2n)V/21y2n/3,

n

2
Since ( n) is the largest of the 2n + 1 terms in the binomial expansion of (1 + 1)2", we have
n

(2n+1) (2:> > (2n) (2:> S g2

i22n < (2”) < (271),/71/2—14%/37

so that

2n n

which implies that

22n/3 < (2771)‘/"/2.

Taking logarithms and dividing by v/2n/6, we get

V8nlog2 — 3log(2n) < 0. (xx)

Now define the function f: N — R by
f(n) = v8nlog2 — 3log(2n),

and differentiate to get
~ V2nlog2—3
- .

f'(n)

Note that f(128) = 8log2 > 0, and f'(n) > 0 for n > 128, so that f(n) is increasing and therefore positive
for n > 128. However, this contradicts the inequality ().

Therefore, for any positive integer n > 1, there is a prime p satisfying n < p < 2n.



Question 10. [p 87. #26] (Extra Credit)
Use Bertrand’s postulate to show that every positive integer n with n > 7 is the sum of distinct primes.

SoLUTION: First note that the result is true for all positive integers n with 7 <n < 16:

7T=24+5 12=54+7
8=3+5 13=2+411
9=2+4+7 14=3+11
10=3+47 15=3+5+7
11=11 16=3+13

Now let n be a positive integer with n > 17, and let n; = n, from Bertrand’s postulate, there is a prime p;

with . .
ny — ny —
<2

. ni—95 n—7
— - 1
orsmce{ 5 J—{ 5 J—i— ,

ny — 5 ny — 7
<p <2 .
] s 2]
Now let no = ny — p1, and if ny > 17, we repeat the above procedure. By Bertrand’s postulate there exists

a prime py with
n2—5 < <9 n2—7
2 | == 2 |-

Now let ng = no — p2, and if ng > 17, we repeat the above procedure. By Bertrand’s postulate there exists
a prime ps with

n3—5 TL3—7
<p3 <2
5 | =P= 2

Continuing in this way, at each stage if n; > 17, Bertrand’s postulate guarantees the existence of a prime p;
such that

nj -5 nj -7
<p;: <2
L 2 - - pj - (- 2 -
This process will stop when 7 =k and ngyq < 16.
Now,
k
Nk+1 = Nk — Pk = Nk—1 — Pk—1 — Pk = "+ =N —Zpi <n; —pj,
i=j

i—5
and {nJQ J < p; implies that

nj—5
2

5
< Vﬂ2 J+1§pj+1,

so that

ni—5 n;+>5
nj—pj—1<nj— ]2 :]T



Therefore,

ngt1 <nj—p; —1< nj;57
so that . 6

22 <[5
Also, since

for 1 < j <k, then
Ngt1 =Nk — Pk > 7

Therefore, the final value ny1 will satisfy

7 < npgr < 16.

Note that the above argument has shown that for each j with 1 < j <k, we have

mas2 || (|25 1) o < [ < [P e

and the sequence {p;} will be decreasing with no duplicates.

Now we note that

In fact, since

then there exists a real number 6 with 0 < 8 < 1 such that

nj—5 nj—5
= 0
)

so that
nj -5

2

—9§Pj7
that is,
15 §2pj—|—5+29<2pj—|—7,

and since n; is an integer, then
n; < 2p; + 6.

Therefore, since n; > 16 for j < k, then p; > 5, so that pj, the smallest of the p;’s will be at least 7.
Also note that:

if p; =7, then n; <20 and n;4 <13

if p; = 11, then n; <28 and n;4 <17

if p; = 13, then n; < 32 and n;j4q < 19.

Now all that is left is to show that n can be written as a sum of distinct primes when
ng+1 = 16,15, ...,9,8, 7

and we do this by considering each of these cases in turn.



case 1:

case 2:

case 3:

case 4:

case b:

case 6:

case 7:

case 8:

If ngy1 = 16, then 16 = ng — pr < 2pr + 6 — px = pr + 6, so that pp > 10, and since py is prime, this
implies py > 11.

Since 16 = 13 + 3 = 11 4 5, we only need to be concerned with the case that pr = 11 and py_; = 13. If
this happens, then
Nngp—1 < 2pp_1+6=26+6=32,

and
Ngy1 =Ng—1 — Pr—1 —Pr <32 —-13-11=38,

which contradicts the fact that ngy1 = 16, so we cannot have both py = 11 and pg_1 = 13. Therefore,
using either 16 = 13 + 3 or 16 = 11 + 5 we have a partition of n into distinct primes.

If ngy1 = 15, then again 15 = ny — pr, < 2pg + 6 — pg, so that pi > 9, and since py, is prime, this implies
that pr > 11. Since 15 =7+ 5 + 3, we have a partition of n into distinct primes.

If ng+1 = 14, then again 14 = ng — pr < 2pr + 2 — pg, so that pr > 8, and since py, is prime, this implies
that py > 11. Since 14 = 7 + 5 + 2, we have a partition of n into distinct primes.

If ngy1 = 13, then 13 = ny — pr, < 2pi + 6 — P, so that pi > 7. We cannot have both pr_; = 13 and
pr = 11, since this implies
Ng—1 < 2pp—1 +6 =26+6 = 32,

so that
Ngy1 =Ng—1 —Pr—1 —Pr <32—-13-11=38

which is a contradiction. Using either 13 = 13 or 13 = 11 + 2 we have a partition of n into distinct
primes.

If ng41 = 12, then 12 = ny, — pr, < 2pi + 6 — pg, so that pp > 6, and so py, > 7.
if pr > 7, since 12 = 7 4 5, we have a partition of n into distinct primes.

if pr, = 7, then ng41 = ng — pr implies that ny = 124+ 7 = 19. We cannot also have py_1; = 11, since
this implies that
ng—1 < 2-11+6 =28,

so that ngy; <28 — 11 — 7 = 10, which is a contradiction.
Therefore, 19 = 11 + 5 + 3, and we have a partition of n into distinct primes.

If ngy1 = 11, then 11 = ng — pr < 2pr + 6 — pr implies that py > 5, so in fact we must have
pr > 7. We cannot have both py, = 7 and pr_1 = 11, otherwise, nx_1 < 2pr_1 + 6 = 28, so that
Ng+1 = Nk—1 — Pk — Pk—1 < 28 =7 — 11 = 10, which is a contradiction. So if py = 7 or py > 11, we have
a partition of n into distinct primes.

If pr = 11, then ngy1 = ng — pr imples that ny = 11 4+ 11 = 22, and we cannot also have py_; = 13,
since then 11 = ng_1 —pr_1 —pr < 32—11—13 = &8, which is a contradiction. Thus, with 22 = 13+ 742
we have a partition of n into distinct primes.

If ng41 = 10, since p, > 7 and 10 = 5 + 3 4 2, we have a partition of n into distinct primes.

If ngy1 <9, and p = 7, then ngy = ngy1 + pr < 16, which is a contradiction, since we constructed the
sequence so that ng > 17. Therefore, we must have p, > 7, and with 9=7+2, 8 =5+3, or 7 =7, we
have a partition of n into distinct primes.

Note: This result was first proven by H. E. Richert in 1950, a proof by induction can be found in the book
Elementary Theory of Numbers by Sierpinski.



Question 11. [p 87. #27]
Use Bertrand’s postulate to show that

1 1 1

+ + -4
n n+1 n+m

does not equal an integer when n and m are positive integers. In particular,

is never an integer for n > 1.
SOLUTION:
Case 1: If m < n, then m <n —1,so that n+m < 2n —1, and

1 1 1 1 1 1
n n+1 n+m n n+1 n+m 2n—1
1 1 1
< —4+—+-+ -
n o n n
—_———
n times
1
=n-—=1,
n

and the sum cannot be an integer in this case.
Case 2: If m > n, from Bertrand’s postulate, there is a prime p such that n < p <2n <n 4+ m.

Let p be the largest prime such that

n<p<n+m,
then n + m < 2p, since if not, there would be a prime ¢ with p < ¢ < 2p < n + m, which contradicts the
choice of p.

Now suppose that
1 1 1

n ' n+l n—l—m:N ()

where N is an integer. Since n < p < n+m < 2p, then p occurs as a factor in only one of the denominators.

Define

n+m

M
M:Hk:, and My = — for n<k<n+m,
k=n k

and multipy (1) by M to get

and solving for M), we have
m-+n
M,=M-N—= > M.
k=1
k#p

Now note that every term on the right is divisible by p, which implies that p | M, which is a contradiction.

Therefore,
1 1 1

n n4+1 n+m

is never an integer for any positive integers m and n.




Question 12.

Use the prime number theorem
lim &)y
z—oo x/logx

where 7(z) is the number of primes less than or equal to z, to show that if p,, is the n*® prime, then

lim —2% — 1
n—oo nlogn

7

so that p, ~ nlogn for large n.
SOLUTION: Suppose that the prime number theorem is true, so that

()

z—oo x/logx

)

if we let = p,, for n > 1, then 7(p,) = n, so that

. nlogpn
lim

n=oe P

=1

The natural logarithm is a continuous function on R+, so that
lim {logn + loglogp, — logp,} =0,
n—oo

and

logn  loglogp, 1} _o

lim logp,
n—o0 log p, log p,

Now, since lim logp, = 400, this implies that
n—oo

1 log log py,
lim { ogn | 0B0EP —1}:0,
n—oo | logpy log pn,

log 1
and since lim 08 08Pn _ 0, we have

w5 logpn

1
lim { osn —1}:0,
w5 log pr

logn

that is,

lim

=1.
n—co logpy,

From (+), this implies that

. nlogn . nlogp, logn . nlogp,
lim = lim —— = lim ——

n—oo P n—oo  Pn log pn, n—oo Dy

=1

)

and therefore p, ~ nlogn when n is large.



