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Question 1. [p 74. #6]

Show that no integer of the form n3 + 1 is a prime, other than 2 = 13 + 1.

Solution: If n3 + 1 is a prime, since

n3 + 1 = (n + 1)(n2 − n + 1),

then either n + 1 = 1 or n2 − n + 1 = 1. The n + 1 = 1 is impossible, since n ≥ 1, and therefore we must
have n2 − n + 1 = 1, that is, n(n − 1) = 0, so that n = 1.

Question 2. [p 74. #7]

Show that if a and n are positive integers with n > 1 and an − 1 is prime, then a = 2 and n is prime.

Hint : Use the identity ak` − 1 = (ak − 1)(ak(`−1) + ak(`−2) + · · · + ak + 1).

Solution: Suppose that an − 1 is prime, where n > 1. Since

an − 1 = (a − 1)(an−1 + an−2 + · · · + a + 1)

and the second factor is clearly greater than 1, it follows that a − 1 = 1, that is, a = 2. Otherwise, the first
factor would also be greater than 1 and an − 1 would be composite.

Also, if n is composite, so that n = k · `, with k > 1 and ` > 1, then we can factor 2n − 1 as in the hint:

2k` − 1 = (2k − 1)(2k(`−1) + 2k(`−2) + · · · + 2k + 1).

and each factor on the right is clearly greater than 1. which is a contradiction, so n must be prime.

Question 3. [p 74. #10]

Using Euclid’s proof that there are infinitely many primes, show that the nth prime pn does not exceed 22n−1

whenever n is a positive integer. Conclude that when n is a positive integer, there are at least n + 1 primes
less than 22n

.

Solution: The proof is by strong induction.

Base Case : If n = 1, then p1 = 2 ≤ 220

= 2.

Inductive Step : Now assume that pk ≤ 22k−1

for k = 1, 2, . . . , n. If M = p1p2 · · · pn + 1, since M has a prime
divisor p which is different from each pi, with 1 ≤ i ≤ n, then

pn+1 ≤ p ≤ M = p1p2 · · · pn+1 ≤ 220

221 · · · 22n−1

+1 = 220+21+···+2n−1

+1 = 22n−1+1 < 22n−1+22n−1 = 22n

.

By the principle of mathematical induction pn ≤ 22n−1

for all n ≥ 1.

From the above, pn+1 ≤ 22n

, and since 22n

cannot be prime if n > 0, there must be n + 1 primes which are
strictly less than 22n

.



Question 4. [p 74. #12]

Show that if pk is the kth prime, where k is a positive integer, then pn ≤ p1p2 · · · pn−1 + 1 for all integers n
with n ≥ 3.

Solution: Let M = p1p2 · · · pn−1 +1, where pk is the kth prime, from Euler’s proof, some prime p different
from p1, p2, . . . , pn−1 divides M, so that

pn ≤ p ≤ M = p1p2 · · · pn−1 + 1

for all n ≥ 3.

Question 5. [p 74. #13]

Show that if the smallest prime factor p of the positive integer n exceeds 3
√

n, then
n

p
must be prime or 1.

Solution: Let p be the smallest prime factor of n, and assume that p > 3
√

n.

Case 1 : If n is prime, then the smallest prime factor of n is p = n, and in this case
n

p
= 1.

Case 2 : If n > 1 is not prime, then n must be composite, so that

n = p · n

p
,

and since p > 3
√

n, then
n

p
<

n
3
√

n
=

(
3
√

n
)2

.

Now, if
n

p
is not prime then

n

p
has a prime factor q with

q <

√
n

p
< 3

√
n < p

and this prime factor q is also a divisor of n, which contradicts the definition of p. Therefore,
n

p
must be

prime.

Question 6. [p 87. #12]

Show that every integer greater than 11 is the sum of two composite integers.

Solution: If n > 11 and n is even, then n − 4 is even and n − 4 > 7, so that n − 4 ≥ 8. Therefore,

n = (n − 4) + 4

is the sum of two composite integers

If n > 11 and n is odd, then n − 9 is even and n − 9 > 2, so that n − 9 ≥ 4. Therefore,

n = (n − 9) + 9

is the sum of two composite integers.



Question 7. [p 87. #22]

Let n be a positive integer greater than 1 and let p1, p2, . . . , pt be the primes not exceeding n. Show that

p1p2 · · · pt < 4n. (∗)

Solution: The proof is by strong induction.

Base Case : if n = 2, then p1 = 2 is the only prime less than or equal to 2, and

2 < 42 = 16

so that (∗) is true for n = 2.

Inductive Step : Now suppose that (∗) is true for 2, 3, . . . , n − 1 where n ≥ 3.

Note that we can restrict our attention to odd n, since if n is even, then

∏

p≤n

p =
∏

p≤n−1

p < 4n−1 < 4n.

Setting n = 2m + 1, we have
(

2m + 1

m

)

=
(2m + 1)!

m!(m + 1)!

and this is divisible by every prime p with m + 2 ≤ p ≤ 2m + 1, so that

∏

p≤2m+1

p ≤
(

2m + 1

m

)
∏

p≤m+1

p <

(
2m + 1

m

)

4m+1

by the inductive hypothesis.

Now, the binomial coefficients
(

2m + 1

m

)

and

(
2m + 1

m + 1

)

are equal and both occur in the expansion of the binomial (1 + 1)2m+1, so that

(
2m + 1

m

)

≤ 1

2
· 22m+1 = 4m,

and therefore ∏

p≤2m+1

p < 4m · 4m+1 = 42m+1

and (∗) is true for n = 2m + 1 also.

By the Principle of Mathematical Induction

∏

p≤n

p < 4n

for all positive integers n ≥ 2.



Question 8. [p 87. #23]

Let n be a positive integer greater than 3 and let p be a prime such that 2n/3 < p ≤ n. Show that p does

not divide the binomial coefficient

(
2n

n

)

.

Solution: Note that the restrictions on n are such that

(a) p > 2

(b) p and 2p are the only multiples of p which are less than or equal to 2n, since 3p > 2n

(c) p itself is the only multiple of p which is less than or equal to n

From (a) and (b) we have
p2

∣
∣ (2n)! but p3 6

∣
∣ (2n)!,

while from (c),
p2

∣
∣ (n!)2 but p3 6

∣
∣ (n!)2.

Therefore,

p 6
∣
∣

(2n)!

(n!)2
,

that is,

p 6
∣
∣

(
2n

n

)

.

Question 9. [p 87. #24]

Use Exercises 22 and 23 to show that if n is a positive integer, then there exists a prime p such that
n < p < 2n. (This is Bertrand’s conjecture.)

Solution: You can easily check using the Sieve of Eratosthenes that the result holds for 2 ≤ n ≤ 127.

Now let n ≥ 128, and suppose that there is no prime between n and 2n. Let

(
2n

n

)

=
∏

p≤2n

prp

be the prime power decomposition of

(
2n

n

)

. By assumption there are no primes between n and 2n, so that

(
2n

n

)

=
∏

p≤n

prp .

If p is a prime with
2n

3
< p ≤ n, then

n <
4n

3
< 2p < 2n and 2n < 3p < 3n,

so that p divides n! exactly once and p divides (2n)! exactly twice, and so

p 6
∣
∣

(
2n

n

)

.



Therefore,
(

2n

n

)

=
∏

p≤
√

2n

prp

∏

√
2n<p≤2n/3

prp ≤
∏

p≤
√

2n

2n
∏

p≤2n/3

p

since if
√

2n < p ≤ 2n/3, then p divides

(
2n

n

)

exactly once.

Now, the number of primes less than
√

2n is less than the number of odd integers less than
√

2n, that is,
less than

√
2n/2 − 1 =

√

n/2− 1, therefore

∏

p≤
√

2n

2n ≤ (2n)
√

n/2−1.

From Question 7, we have (replace n by b2n/3c)
∏

p≤b2n/3c
p < 4b2n/3c,

which implies that
∏

p≤2n/3

p < 42n/3,

so that (
2n

n

)

< (2n)
√

n/2−142n/3.

Since

(
2n

n

)

is the largest of the 2n + 1 terms in the binomial expansion of (1 + 1)2n, we have

(2n + 1)

(
2n

n

)

> (2n)

(
2n

n

)

> 22n,

so that
1

2n
22n <

(
2n

n

)

< (2n)
√

n/2−142n/3,

which implies that

22n/3 < (2n)
√

n/2.

Taking logarithms and dividing by
√

2n/6, we get

√
8n log 2 − 3 log(2n) < 0. (∗∗)

Now define the function f : N → R by

f(n) =
√

8n log 2 − 3 log(2n),

and differentiate to get

f ′(n) =

√
2n log 2 − 3

n
.

Note that f(128) = 8 log 2 > 0, and f ′(n) > 0 for n ≥ 128, so that f(n) is increasing and therefore positive
for n ≥ 128. However, this contradicts the inequality (∗∗).
Therefore, for any positive integer n > 1, there is a prime p satisfying n < p < 2n.



Question 10. [p 87. #26] (Extra Credit)

Use Bertrand’s postulate to show that every positive integer n with n ≥ 7 is the sum of distinct primes.

Solution: First note that the result is true for all positive integers n with 7 ≤ n ≤ 16 :

7 = 2 + 5 12 = 5 + 7

8 = 3 + 5 13 = 2 + 11

9 = 2 + 7 14 = 3 + 11

10 = 3 + 7 15 = 3 + 5 + 7

11 = 11 16 = 3 + 13

Now let n be a positive integer with n ≥ 17, and let n1 = n, from Bertrand’s postulate, there is a prime p1

with ⌊
n1 − 7

2

⌋

< p1 ≤ 2

⌊
n1 − 7

2

⌋

,

or since

⌊
n1 − 5

2

⌋

=

⌊
n1 − 7

2

⌋

+ 1,

⌊
n1 − 5

2

⌋

≤ p1 ≤ 2

⌊
n1 − 7

2

⌋

.

Now let n2 = n1 − p1, and if n2 ≥ 17, we repeat the above procedure. By Bertrand’s postulate there exists
a prime p2 with

⌊
n2 − 5

2

⌋

≤ p2 ≤ 2

⌊
n2 − 7

2

⌋

.

Now let n3 = n2 − p2, and if n3 ≥ 17, we repeat the above procedure. By Bertrand’s postulate there exists
a prime p3 with

⌊
n3 − 5

2

⌋

≤ p3 ≤ 2

⌊
n3 − 7

2

⌋

.

Continuing in this way, at each stage if nj ≥ 17, Bertrand’s postulate guarantees the existence of a prime pj

such that ⌊
nj − 5

2

⌋

≤ pj ≤ 2

⌊
nj − 7

2

⌋

.

This process will stop when j = k and nk+1 ≤ 16.

Now,

nk+1 = nk − pk = nk−1 − pk−1 − pk = · · · = nj −
k∑

i=j

pi < nj − pj ,

and

⌊
nj − 5

2

⌋

≤ pj implies that

nj − 5

2
<

⌊
nj − 5

2

⌋

+ 1 ≤ pj + 1,

so that

nj − pj − 1 < nj −
nj − 5

2
=

nj + 5

2
.



Therefore,

nk+1 ≤ nj − pj − 1 ≤ nj + 5

2
,

so that

nk+1 ≤
⌊

nj + 5

2

⌋

<

⌊
nj + 6

2

⌋

.

Also, since

pj ≤ 2

⌊
nj − 7

2

⌋

≤ 2
nj − 7

2
= nj − 7,

for 1 ≤ j ≤ k, then
nk+1 = nk − pk ≥ 7.

Therefore, the final value nk+1 will satisfy

7 ≤ nk+1 ≤ 16.

Note that the above argument has shown that for each j with 1 ≤ j ≤ k, we have

pj+1 ≤ 2

⌊
nj − 7

2

⌋

≤ 2

⌊(⌊
nj + 6

2

⌋

− 7

)

/2

⌋

≤
⌊

nj − 8

2

⌋

<

⌊
nj − 5

2

⌋

≤ pj ,

and the sequence {pj} will be decreasing with no duplicates.

Now we note that
nj ≤ 2pj + 6.

In fact, since ⌊
nj − 5

2

⌋

≤ pj

then there exists a real number θ with 0 ≤ θ < 1 such that

nj − 5

2
=

⌊
nj − 5

2

⌋

+ θ,

so that
nj − 5

2
− θ ≤ pj ,

that is,
nj ≤ 2pj + 5 + 2θ < 2pj + 7,

and since nj is an integer, then
nj ≤ 2pj + 6.

Therefore, since nj > 16 for j ≤ k, then pj > 5, so that pk, the smallest of the pj ’s will be at least 7.

Also note that:

if pj = 7, then nj ≤ 20 and nj+1 ≤ 13

if pj = 11, then nj ≤ 28 and nj+1 ≤ 17

if pj = 13, then nj ≤ 32 and nj+1 ≤ 19.

Now all that is left is to show that n can be written as a sum of distinct primes when

nk+1 = 16, 15, . . . , 9, 8, 7

and we do this by considering each of these cases in turn.



case 1: If nk+1 = 16, then 16 = nk − pk ≤ 2pk + 6 − pk = pk + 6, so that pk ≥ 10, and since pk is prime, this
implies pk ≥ 11.

Since 16 = 13 + 3 = 11 + 5, we only need to be concerned with the case that pk = 11 and pk−1 = 13. If
this happens, then

nk−1 ≤ 2pk−1 + 6 = 26 + 6 = 32,

and
nk+1 = nk−1 − pk−1 − pk ≤ 32− 13 − 11 = 8,

which contradicts the fact that nk+1 = 16, so we cannot have both pk = 11 and pk−1 = 13. Therefore,
using either 16 = 13 + 3 or 16 = 11 + 5 we have a partition of n into distinct primes.

case 2: If nk+1 = 15, then again 15 = nk − pk ≤ 2pk + 6− pk, so that pk ≥ 9, and since pk is prime, this implies
that pk ≥ 11. Since 15 = 7 + 5 + 3, we have a partition of n into distinct primes.

case 3: If nk+1 = 14, then again 14 = nk − pk ≤ 2pk + 2− pk, so that pk ≥ 8, and since pk is prime, this implies
that pk ≥ 11. Since 14 = 7 + 5 + 2, we have a partition of n into distinct primes.

case 4: If nk+1 = 13, then 13 = nk − pk ≤ 2pk + 6 − pk, so that pk ≥ 7. We cannot have both pk−1 = 13 and
pk = 11, since this implies

nk−1 ≤ 2pk−1 + 6 = 26 + 6 = 32,

so that
nk+1 = nk−1 − pk−1 − pk ≤ 32 − 13− 11 = 8

which is a contradiction. Using either 13 = 13 or 13 = 11 + 2 we have a partition of n into distinct
primes.

case 5: If nk+1 = 12, then 12 = nk − pk ≤ 2pk + 6 − pk, so that pk ≥ 6, and so pk ≥ 7.

if pk > 7, since 12 = 7 + 5, we have a partition of n into distinct primes.

if pk = 7, then nk+1 = nk − pk implies that nk = 12 + 7 = 19. We cannot also have pk−1 = 11, since
this implies that

nk−1 ≤ 2 · 11 + 6 = 28,

so that nk+1 ≤ 28 − 11− 7 = 10, which is a contradiction.

Therefore, 19 = 11 + 5 + 3, and we have a partition of n into distinct primes.

case 6: If nk+1 = 11, then 11 = nk − pk ≤ 2pk + 6 − pk implies that pk ≥ 5, so in fact we must have
pk ≥ 7. We cannot have both pk = 7 and pk−1 = 11, otherwise, nk−1 ≤ 2pk−1 + 6 = 28, so that
nk+1 = nk−1 − pk − pk−1 ≤ 28− 7− 11 = 10, which is a contradiction. So if pk = 7 or pk > 11, we have
a partition of n into distinct primes.

If pk = 11, then nk+1 = nk − pk imples that nk = 11 + 11 = 22, and we cannot also have pk−1 = 13,
since then 11 = nk−1−pk−1−pk ≤ 32−11−13 = 8, which is a contradiction. Thus, with 22 = 13+7+2
we have a partition of n into distinct primes.

case 7: If nk+1 = 10, since pk ≥ 7 and 10 = 5 + 3 + 2, we have a partition of n into distinct primes.

case 8: If nk+1 ≤ 9, and pk = 7, then nk = nk+1 + pk ≤ 16, which is a contradiction, since we constructed the
sequence so that nk ≥ 17. Therefore, we must have pk > 7, and with 9 = 7 + 2, 8 = 5 + 3, or 7 = 7, we
have a partition of n into distinct primes.

Note: This result was first proven by H. E. Richert in 1950, a proof by induction can be found in the book
Elementary Theory of Numbers by Sierpiński.



Question 11. [p 87. #27]

Use Bertrand’s postulate to show that

1

n
+

1

n + 1
+ · · · + 1

n + m

does not equal an integer when n and m are positive integers. In particular,

1 +
1

2
+

1

3
+ · · · + 1

n
=

n∑

k=1

1

k

is never an integer for n > 1.

Solution:

Case 1 : If m < n, then m ≤ n − 1, so that n + m ≤ 2n − 1, and

1

n
+

1

n + 1
+ · · · + 1

n + m
≤ 1

n
+

1

n + 1
+ · · · + 1

n + m
+ · · · + 1

2n − 1

<
1

n
+

1

n
+ · · · + 1

n
︸ ︷︷ ︸

n times

= n · 1

n
= 1,

and the sum cannot be an integer in this case.

Case 2 : If m ≥ n, from Bertrand’s postulate, there is a prime p such that n < p < 2n ≤ n + m.

Let p be the largest prime such that
n < p < n + m,

then n + m < 2p, since if not, there would be a prime q with p < q < 2p ≤ n + m, which contradicts the
choice of p.

Now suppose that
1

n
+

1

n + 1
+ · · · + 1

n + m
= N (†)

where N is an integer. Since n < p < n+m < 2p, then p occurs as a factor in only one of the denominators.

Define

M =

n+m∏

k=n

k, and Mk =
M

k
for n ≤ k ≤ n + m,

and multipy (†) by M to get
Mn + Mn+1 + · · · + Mn+m = M · N, (††)

and solving for Mp, we have

Mp = M · N −
m+n∑

k=1
k 6=p

Mk.

Now note that every term on the right is divisible by p, which implies that p
∣
∣Mp, which is a contradiction.

Therefore,
1

n
+

1

n + 1
+ · · · + 1

n + m

is never an integer for any positive integers m and n.



Question 12.

Use the prime number theorem

lim
x→∞

π(x)

x/ log x
= 1

where π(x) is the number of primes less than or equal to x, to show that if pn is the nth prime, then

lim
n→∞

pn

n logn
= 1,

so that pn ∼ n log n for large n.

Solution: Suppose that the prime number theorem is true, so that

lim
x→∞

π(x)

x/ log x
= 1,

if we let x = pn for n ≥ 1, then π(pn) = n, so that

lim
n→∞

n log pn

pn
= 1. (+)

The natural logarithm is a continuous function on R+, so that

lim
n→∞

{log n + log log pn − log pn} = 0,

and

lim
n→∞

log pn

{
log n

log pn
+

log log pn

log pn
− 1

}

= 0.

Now, since lim
n→∞

log pn = +∞, this implies that

lim
n→∞

{
log n

log pn
+

log log pn

log pn
− 1

}

= 0,

and since lim
n→∞

log log pn

log pn
= 0, we have

lim
n→∞

{
log n

log pn
− 1

}

= 0,

that is,

lim
n→∞

log n

log pn
= 1.

From (+), this implies that

lim
n→∞

n log n

pn
= lim

n→∞
n log pn

pn
· log n

log pn
= lim

n→∞
n log pn

pn
= 1,

and therefore pn ∼ n log n when n is large.


