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Question 1. [p 13. #5]

Use the well-ordering property to show that /3 is irrational.

vi=

SOLUTION: Since 1 < 3 < 4, it follows from the order properties of the integers that 1 < /3 < 2.

Now suppose that v/3 is rational, then there exist positive integers m and n such that
m

m
Let S be the set of all positive integers n such that v/3 = — for some positive integer m, then S # (), and by
n

the well-ordering property, S has a smallest element, say b, and therefore v/3 = 2 for some positive integer

a
Now, since 1 < — < 2, then b < a < 2b, that is, 0 < a —b < b, and a — b is a positive integer less than b.

b
and a — b are all positive, then 3b —a > 0, and
a 3b—a
3 = — =
V3 b a—>b
Therefore, we have written /3 as a ratio of two integers with positive integer denominator a — b which is

less than b. This contradicts the choice of b, however. Therefore, v/3 is irrational.

But, V3 = 4 implies that 3b? = a?, so that 3b? — ab = a? — ab, that is, b(3b — a) = a(a — b), and since a, b,

|VI=]] = |va)

Question 2. [p 13. #19]
Show that
whenever x is a nonnegative real number.
SOLUTION: Let z be a nonnegative real number and let m = | /x|, so that
m <z <m+1.

Since m > 0, from the order properties of the nonnegative real numbers we have
m? <z < (m+1)?

and from the properties of the greatest integer function we have
m? < |z| < (m+1)%

m<+/|z] <m+1,
= [Vz].

Again, from the order properties of the nonnegative real numbers, this implies that

which implies that m = L\/EJ , so that { LzJJ



Question 3. [p 21. #35]

Find and prove a formula for

> []

k=1
in terms of n and |y/n] .

SoLuTIiON: Note that if ay, as, - -+, a, are nonnegative integers, and we let

f(1) denote the number of them that are greater than or equal to 1,
f(2) denote the number of them that are greater than or equal to 2,

f(3) denote the number of them that are greater than or equal to 3,

then
ayt+as+--+a,=f(1)+f2)+f3)+---

since ay, contributes 1 to each of the numbers f(1), f(2), ---, f(ax).

For this particular problem, we take ay = {\/EJ for 1 < k < n, and note that:

e f(1) is the number of ay’s such that Vk > 1, that is, the number of k’s with 1 < k < n such that k > 1,
so that f(1) =n.

e f(2) is the number of ai’s such that Vk > 2, that is, the number of k’s with 1 < k
k > 22 =4, so that f(2) =n — 3.

e f(3) is the number of a’s such that vk > 3, that is, the number of k’s with 1 < k
k> 32 =9, so that f(2) =n —8.

n such that

IN

n such that

IN

In general, if 1 <m < [\/n], then

e f(m) is the number of k’s such that Vi > m, that is, the number of k’s with 1 < k < n such that k > m?,
so that f(m) =n — (m? —1).

Therefore,
STVE| =Y sy = > [n-(m* - 1)),
k=1 m=1 m=1

so that
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> |VE| =41 [va] -

k=1
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An easy induction argument shows that this is correct, the details are omitted.



Question 4. [p 27. #35]

1

Conjecture a formula for A™ where A = < 0 1

> . Prove your conjecture using mathematical induction.

SOLUTION: For small values of n we have

vea(3 )

eeaa (3 (DG )
cean=( (-
cean-( (- Y
cean-( (- ()

and it appears that

-3 1)

for all positive integers n. We prove this conjecture using mathematical induction.
Base Case: We have seen above that (x) is true for n = 1,2,3,4,5.

Inductive Step: Let n be an arbitrary positive integer, with n > 1, and suppose that (x) is true for n, then

1 1 1 n 1 n+4+1
n+1l __ AT — _
wr—aw=(01) (6 1= ")

and (x) is also true for n + 1.

Therefore, from the principle of mathematical induction, (x) is true for all integers n > 1.

Question 5. [p 27. #8]

Use mathematical induction to prove that

n 2 12
Zk3=13+23+33+---+n3:"("+) (%)

k=1
for every positive integer n.
SOLUTION: We prove that (xx) is true using the principle of mathematical induction:

Base Case: Forn =1,

so that (xx) is true for n = 1.



Inductive Step: Now suppose that (#x) is true for some n > 1, then

n+1 n 2 2

1
YR =S k3+(n+1)3zm+)+(n+l)3
k=1 k=1

n?(n+1)2+4(n+1)3
4

(n+1)%(n + 2)?
4

so that (xx) is true for n+ 1. Therefore, by the principle of mathematical induction, (xx) is true for all n > 1.

Question 6. [p 28. #20]
Use mathematical induction to prove that 2™ < n! for n > 4.
SOLUTION: For n = 4 we have 2 = 16 < 24 = 4!, and the result is true for the base case n = 4.

Assuming the result is true for some integer n > 4, we have
n+1)!=m+1)-n>Mn+1)-2">2.2" =27
since n > 4. Therefore the result is also true for n + 1.

By the principle of mathematical induction, 2" < n! for all n > 4.

Question 7. [p 34. #16]

Prove that
fife+ fofs+ -+ fon1fon = fan (o * x)

if n is a positive integer.
SoLUTION: We will prove (x * x) using the principle of mathematical induction.
Base Case: For n =1, we have f1fo = 1-1= f2, and ( * *) holds for n = 1.
Inductive Step: Assume that (x x %) is true for some n > 1, then from the inductive hyposthesis we have
fife+ fafs + -+ fon1fon + fonfoni1 + fony1fonae
= f3n + fonfon+1 + font1font2
= fon(fon + font1) + font1font2
= fonfon+2 + fon+1font2
= (fon + font1) font2
= f22n+2a

and (x * %) is true for n + 1 also. By the principle of mathematical induction, (* * ) is true for all integers
n>1.



We can also give a direct proof using Cassini’s identity. For k& > 1, we have

fi = (s = fom1)® = fipr = 2fuer fomr + fiy,
so that
fivr = I = 2fwr1 o1 — fia

= fes1fr—1 + fo-1(foer — fr—1)

= fer1fi—1 + fo-1fr

= (=D + fi + frmr fi

= (=D + fulfx + fr-1)

= (=" + fuforr-
Note that this also holds for k£ = 0, so that

fin = 1 = COP + frfin

for all £ > 0, and summing over k, we have

2n—1 2n—1 2n—1
Z (fl?Jrl - fl?) = Z (—1)k + Z S fra1-
k=0 k=0 k=0

The sum on the left telescopes to f3, and the first sum on the right is 0, so that
2n—1

fon =" frfrn
k=0

for all n > 1.

Question 8. [p 35. #31]
Show that f, < o™~ for every integer n with n > 2, where o = (1 + \/5)/2

SoLuTION: We will use the strong principle of mathematical induction to show that
fn<a™? (o * %)

for all n > 2.

Note first that

5 = =1+a.

o <1+\/5>2 3+V5
B 2

Base Case: For n = 2 we have fo = 1 < o®>~! = q, since v/5 > 1. For n = 3 we have f3 = 2 and
fz=2<1+a=a?=a3"" Therefore (x x +*) is true for both n = 2 and n = 3.



Inductive Step: Now let n be a positive integer with n > 3, and assume that (x * %x) is true for all integers
k with 3 < k < n, then from the inductive hypothesis

fn+1 _ fn +fn71 S an—l +an—2 _ an—2(1 +a) _ an—2a2 _ an,

so that (x # #x) is true for n 4+ 1 also. By the strong principle of mathematical induction (x * #x) is true for
all integers n > 2.

Question 9. [p 35. #33]

Prove that whenever n is a nonnegative integer,

Z (Z).fk = f2n7

k=1
where fi is the kth Fibonacci number.
SoLUTION: We use Binet’s formula for the Fibonacci numbers and the binomial theorem. First note that

L1tV 1-+5
2 2

and I}

are the distinct real roots of the quadratic 2 = 1 + z, and Binet’s formula for f; is

Es ) Ex )
- e - (A

= = [ - ()]

= 75 o 7]

= fon

for all n > 0.



Question 10. [p 40. #21]

Show that the number of positive integers less than or equal to x, where x is a positive real number, that
are divisible by the positive integer d equals |2/d] .

SOLUTION:

SOLUTION: Let k£ be the number of positive integers less than or equal to = that are divisible by d, then
0<1l-d<2-d<3-d<---<k-d<z
but (k+1)-d > z, that is,

ked<az<(k+1)-d,

so that

E<—-<k+1,

g

and k — EJ .

Question 11. [p 41. #34]
Use mathematical induction to show that n” — n is divisible by 7 for every positive integer n.
SoLuTION: Forn =1, n" —n =20, and 7| 0.
Now assume that 7 | n’ — n, for some integer n > 1, then

(n+1)" = (n+1)=n"+ 705 +21n° + 350 + 350> + 21n* + Tn +1—n — 1,
that is,

(n+1)7"—(n+1)=n" —n+ (Tn® + 21n° + 350" + 35n3 + 21n? + Tn),

so that 7 | (n+1)7 — (n+1). Therefore, by the principle of mathematical induction, 7 | n” —n for all positive
integers n.
Question 12. [p 41. #36]
Let f, denote the nth Fibonacci number. Show that f, is even if and only if n is divisible by 3.

SOLUTION: For any integer n > 0, we have

fn+3 - fn+2 + fnJrl - fnJrl + fn + fnJrl - 2fn+1 + fn;

so that f, 13 is even if and only if f,, is even.

Now, since fo = 0 is even, the above implies that f3, is even for all n > 0. However, since f1 =1 and fo =1
are odd, then f3, 1 and f3,42 are odd for all n > 0.

Therefore f,, is even if and only if n is divisible by 3.

Question 13. [p 41 #40]
Show that
fn+m = fmfnJrl + fmflf'n,
whenever m and n are positive integers with m > 1. Use this result to show that f, ’ fm when m and n are

positive integers with n ’ m.

1

SOLUTION: Letting A = (1 0

) , an easy induction argument shows that

k_ ( ferr fr
A _< Tk fk1>

for all integers k > 1.



Therefore,
Am+m — fm+n+1 fern
fm-i-n fm-l—n—l

for all positive integers m and n. On the other hand, A™*t"™ = A™ . A" so that

Amtn — fm-l-l fm fn-l-l fn — fm+lfn+l+fmfn fm+lfn+fmfn—l
fm fmfl fn fnfl fmfnJrl"’fmflfn fmfn"’fmflfnfl

and equating the entries in the second row and the first column, we have

fm+n = fmfn-i—l + fm—lfn-

Now note that if d is a positive common divisor of f, and f,,+1, since f,—1 = fn+1 — fn, then d is a positive
divisor of f,_1 also. An easy induction argument then shows that d must be a positive divisor of fo = 1,
that is, d = 1. Therefore any two consecutive Fibonacci numbers must be relatively prime.

If m and n are positive integers with m > 1, then f, ‘ fm+n if and only if f, ‘ fmfnt1, and since f,, and f 1
are relatively prime, then f, ’ fm4n if and only if f, } fm-

We will show by induction that whenever n | m, so that m = k - n for some integer k£ > 1, then f, } fm-
Base Case: For k =1, we have f, ’ f1.n and the result is true for k = 1.

Inductive Step: Assume now that m = k - n for some integer k£ > 1, and that f, ’ fin, that is; f, ’ fm, from
the above, this implies that

fn | ferm
that is, f, | J(k+1)n, and so the result is true for k + 1 also.

Therefore by the principle of mathematical induction, f, | fm whenever m and n are positive integers such
that n | m.

Question 14. [p 41. #45]
Show that |(2 4+ v/3)"| is odd whenever n is a nonnegative integer.

SOLUTION: For any n > 0,

2+V3)"+(2-V3)" = Zn: <n> 2k . (v3)"F 4 zn: <”> ok (_1)n—k(y/3)nF

k k
k=0 k=0
" n
—9 k. n—k
> < k> 2k . (V)" 7k,
k=0
n—k even

so that (24 v/3)" + (2 — /3)" is an even integer for n > 0.
For n =0, (2+v/3)? =1, so that [(2+ v/3)°| =1 is odd.

For n > 1,let N = (2 4+ v3)" + (2 — v/3)", so that N is an even integer. Since 0 < 2 — /3 < 1, then
0<(2—+3)" <1, foralln>1, and

2+V3)"=N-(2-V3)"=N-1+1-(2—-V3)",

where 0 <1— (2 — \/§)” < 1. Therefore, L(? + \/§)"J = N — 1 is an odd integer for all n > 0.



Question 15. [p 50. #29]

A Cantor expansion of a positive integer n is a sum
n=amm! +am_1(m—1+- 4+ a2+ a1,

where each ay, is an integer with 0 < ax < k and a,, # 0.

Show that every positive integer has a unique Cantor expansion. (Hint: For each positive integer n there
is a positive integer m such that m! < n < (m + 1)!. For a,,, take the quotient from the division algorithm
when n is divided by m!, then iterate.)

SOLUTION:

Exzistence: Following the hint, if n > 0, from the well-ordering property, there is a unique positive integer m
such that
m! <n<(m+1)L

Now we use the division algorithm to divide n by m! to get
n=Cam- -m +r,
where the quotient a,, satisfies 0 < a,,, < m, and the remainder r,, satisfies

0<r, <ml.

We use the division algorithm again to divide r,, by (m — 1)! to get
Tm=(m—1! am_1+rm_
where the quotient a.,,_1 satisfies 0 < a,,—1 < m — 1, and the remainder r,,_; satisfies
0<7rmo1 < (m-—1)0"L
Next use the division algorithm to divide r,,,—1 by (m — 2)! to get
Tm—1=(m—2)am_o+rm_2
where the quotient a,,_o satisfies 0 < a,,_2 < m — 2, and the remainder r,,_5 satisfies

0<r, o< (m - 2)'

By the well-ordering property of the nonnegative integers, this process must stop after at most m steps, and
the result is the representation

N=apy -m4am1-(m—1+-+ay-21+ay-1),

where each ay is an integer with 0 < ay < k and a,, # 0.

Uniqueness: Suppose that n is a positive integer which has two different Cantor expansions, say
n=apm! +am_1(m—1)+ 4+ a2! +a11! = bypym! + b1 (m — )1+ - + 522! + by 11 (+)

where ay and by are integers with 0 < ag, by < k for k=1,2,...,m.



Let ko be the largest positive integer such that ax, # bx,, and assume that ay, > bg,, since these are integers,
this implies that ax, > by, + 1. Cancelling terms that are equal in (+), we have

akok()! + ako,l(ko — 1)' + -4 a22! + 0,11! = bkokO! + bkofl(ko — 1)' + -4 b22' + 611!,

and using the identity
-1 42214+ + ko - kol = (ko +1)! — 1,

we have

= bryko! + kol — 1
= (bko + 1)/€0! -1
< akokol,

which is a contradiction. Therefore the Cantor expansion of a positive integer is unique.

This representation of a positive integer n is also called the factorial representation of n and the a;’s are
called the factorial digits of n.



