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Question 1. [p 13. #5]

Use the well–ordering property to show that
√

3 is irrational.

Solution: Since 1 < 3 < 4, it follows from the order properties of the integers that 1 <
√

3 < 2.

Now suppose that
√

3 is rational, then there exist positive integers m and n such that

√
3 =

m

n
.

Let S be the set of all positive integers n such that
√

3 =
m

n
for some positive integer m, then S 6= ∅, and by

the well–ordering property, S has a smallest element, say b, and therefore
√

3 =
a

b
for some positive integer

a.

Now, since 1 <
a

b
< 2, then b < a < 2b, that is, 0 < a − b < b, and a − b is a positive integer less than b.

But,
√

3 =
a

b
implies that 3b2 = a2, so that 3b2 − ab = a2 − ab, that is, b(3b− a) = a(a − b), and since a, b,

and a − b are all positive, then 3b − a > 0, and

√
3 =

a

b
=

3b − a

a − b
.

Therefore, we have written
√

3 as a ratio of two integers with positive integer denominator a − b which is
less than b. This contradicts the choice of b, however. Therefore,

√
3 is irrational.

Question 2. [p 13. #19]

Show that
⌊

√

bxc
⌋

=
⌊√

x
⌋

whenever x is a nonnegative real number.

Solution: Let x be a nonnegative real number and let m = b√xc , so that

m ≤ √
x < m + 1.

Since m ≥ 0, from the order properties of the nonnegative real numbers we have

m2 ≤ x < (m + 1)2,

and from the properties of the greatest integer function we have

m2 ≤ bxc < (m + 1)2.

Again, from the order properties of the nonnegative real numbers, this implies that

m ≤
√

bxc < m + 1,

which implies that m =
⌊

√

bxc
⌋

, so that
⌊

√

bxc
⌋

= b√xc .



Question 3. [p 21. #5]

Find and prove a formula for
n
∑

k=1

⌊√
k
⌋

in terms of n and b√nc .

Solution: Note that if a1, a2, · · · , an are nonnegative integers, and we let

f(1) denote the number of them that are greater than or equal to 1,

f(2) denote the number of them that are greater than or equal to 2,

f(3) denote the number of them that are greater than or equal to 3,

...

then
a1 + a2 + · · · + an = f(1) + f(2) + f(3) + · · ·

since ak contributes 1 to each of the numbers f(1), f(2), · · · , f(ak).

For this particular problem, we take ak =
⌊√

k
⌋

for 1 ≤ k ≤ n, and note that:

• f(1) is the number of ak’s such that
√

k ≥ 1, that is, the number of k’s with 1 ≤ k ≤ n such that k ≥ 1,
so that f(1) = n.

• f(2) is the number of ak’s such that
√

k ≥ 2, that is, the number of k’s with 1 ≤ k ≤ n such that
k ≥ 22 = 4, so that f(2) = n − 3.

• f(3) is the number of ak’s such that
√

k ≥ 3, that is, the number of k’s with 1 ≤ k ≤ n such that
k ≥ 32 = 9, so that f(2) = n − 8.

...

In general, if 1 ≤ m ≤ b√nc , then

• f(m) is the number of k’s such that
√

k ≥ m, that is, the number of k’s with 1 ≤ k ≤ n such that k ≥ m2,
so that f(m) = n − (m2 − 1).

Therefore,

n
∑

k=1

⌊√
k
⌋

=

∞
∑

m=1

f(m) =

b√nc
∑

m=1

[

n − (m2 − 1)
]

,

so that

n
∑

k=1

⌊√
k
⌋

= (n + 1)
⌊√

n
⌋

−
b√nc
∑

m=1

m2 = (n + 1)
⌊√

n
⌋

− b√nc (b√nc + 1)(2 b√nc + 1)

6
.

An easy induction argument shows that this is correct, the details are omitted.



Question 4. [p 27. #5]

Conjecture a formula for An where A =

(

1 1
0 1

)

. Prove your conjecture using mathematical induction.

Solution: For small values of n we have

A1 = A =

(

1 1
0 1

)

A2 = A · A =

(

1 1
0 1

)(

1 1
0 1

)

=

(

1 2
0 1

)

A3 = A · A2 =

(

1 1
0 1

)(

1 2
0 1

)

=

(

1 3
0 1

)

A4 = A · A3 =

(

1 1
0 1

)(

1 3
0 1

)

=

(

1 4
0 1

)

A5 = A · A4 =

(

1 1
0 1

)(

1 4
0 1

)

=

(

1 5
0 1

)

...

and it appears that

An =

(

1 n
0 1

)

(∗)

for all positive integers n. We prove this conjecture using mathematical induction.

Base Case : We have seen above that (∗) is true for n = 1, 2, 3, 4, 5.

Inductive Step : Let n be an arbitrary positive integer, with n ≥ 1, and suppose that (∗) is true for n, then

An+1 = A · An =

(

1 1
0 1

)(

1 n
0 1

)

=

(

1 n + 1
0 1

)

,

and (∗) is also true for n + 1.

Therefore, from the principle of mathematical induction, (∗) is true for all integers n ≥ 1.

Question 5. [p 27. #8]

Use mathematical induction to prove that

n
∑

k=1

k3 = 13 + 23 + 33 + · · · + n3 =
n2(n + 1)2

4
(∗∗)

for every positive integer n.

Solution: We prove that (∗∗) is true using the principle of mathematical induction:

Base Case : For n = 1,
1
∑

k=1

k3 = 13 =
12(1 + 1)2

4

so that (∗∗) is true for n = 1.



Inductive Step : Now suppose that (∗∗) is true for some n ≥ 1, then

n+1
∑

k=1

k3 =

n
∑

k=1

k3 + (n + 1)3 =
n2(n + 1)2

4
+ (n + 1)3

=
n2(n + 1)2 + 4(n + 1)3

4

=
(n + 1)2

4

[

n2 + 4(n + 1)
]

=
(n + 1)2(n + 2)2

4

so that (∗∗) is true for n+1. Therefore, by the principle of mathematical induction, (∗∗) is true for all n ≥ 1.

Question 6. [p 28. #20]

Use mathematical induction to prove that 2n < n! for n ≥ 4.

Solution: For n = 4 we have 24 = 16 < 24 = 4!, and the result is true for the base case n = 4.

Assuming the result is true for some integer n ≥ 4, we have

(n + 1)! = (n + 1) · n! > (n + 1) · 2n > 2 · 2n = 2n+1

since n ≥ 4. Therefore the result is also true for n + 1.

By the principle of mathematical induction, 2n < n! for all n ≥ 4.

Question 7. [p 34. #16]

Prove that
f1f2 + f2f3 + · · · + f2n−1f2n = f2

2n (∗ ∗ ∗)
if n is a positive integer.

Solution: We will prove (∗ ∗ ∗) using the principle of mathematical induction.

Base Case : For n = 1, we have f1f2 = 1 · 1 = f2
2 , and (∗ ∗ ∗) holds for n = 1.

Inductive Step : Assume that (∗ ∗ ∗) is true for some n ≥ 1, then from the inductive hyposthesis we have

f1f2 + f2f3 + · · ·+f2n−1f2n + f2nf2n+1 + f2n+1f2n+2

= f2
2n

+ f2nf2n+1 + f2n+1f2n+2

= f2n(f2n + f2n+1) + f2n+1f2n+2

= f2nf2n+2 + f2n+1f2n+2

= (f2n + f2n+1)f2n+2

= f2
2n+2,

and (∗ ∗ ∗) is true for n + 1 also. By the principle of mathematical induction, (∗ ∗ ∗) is true for all integers
n ≥ 1.



We can also give a direct proof using Cassini’s identity. For k ≥ 1, we have

f2
k

= (fk+1 − fk−1)
2 = f2

k+1 − 2fk+1fk−1 + f2
k−1,

so that

f2
k+1 − f2

k = 2fk+1fk−1 − f2
k−1

= fk+1fk−1 + fk−1(fk+1 − fk−1)

= fk+1fk−1 + fk−1fk

= (−1)k + f2
k + fk−1fk

= (−1)k + fk(fk + fk−1)

= (−1)k + fkfk+1.

Note that this also holds for k = 0, so that

f2
k+1 − f2

k
= (−1)k + fkfk+1

for all k ≥ 0, and summing over k, we have

2n−1
∑

k=0

(

f2
k+1 − f2

k

)

=

2n−1
∑

k=0

(−1)k +

2n−1
∑

k=0

fkfk+1.

The sum on the left telescopes to f 2
2n and the first sum on the right is 0, so that

f2
2n =

2n−1
∑

k=0

fkfk+1

for all n ≥ 1.

Question 8. [p 35. #31]

Show that fn ≤ αn−1 for every integer n with n ≥ 2, where α = (1 +
√

5)/2.

Solution: We will use the strong principle of mathematical induction to show that

fn ≤ αn−1 (∗ ∗ ∗∗)

for all n ≥ 2.

Note first that

α2 =

(

1 +
√

5

2

)2

=
3 +

√
5

2
= 1 + α.

Base Case : For n = 2 we have f2 = 1 < α2−1 = α, since
√

5 > 1. For n = 3 we have f3 = 2 and
f3 = 2 < 1 + α = α2 = α3−1. Therefore (∗ ∗ ∗∗) is true for both n = 2 and n = 3.



Inductive Step : Now let n be a positive integer with n ≥ 3, and assume that (∗ ∗ ∗∗) is true for all integers
k with 3 ≤ k ≤ n, then from the inductive hypothesis

fn+1 = fn + fn−1 ≤ αn−1 + αn−2 = αn−2(1 + α) = αn−2α2 = αn,

so that (∗ ∗ ∗∗) is true for n + 1 also. By the strong principle of mathematical induction (∗ ∗ ∗∗) is true for
all integers n ≥ 2.

Question 9. [p 35. #33]

Prove that whenever n is a nonnegative integer,

n
∑

k=1

(

n

k

)

fk = f2n,

where fk is the kth Fibonacci number.

Solution: We use Binet’s formula for the Fibonacci numbers and the binomial theorem. First note that

α =
1 +

√
5

2
and β =

1 −
√

5

2

are the distinct real roots of the quadratic x2 = 1 + x, and Binet’s formula for fk is

fk =
1√
5

[

αk − βk
]

.

Since f0 = 0, then from the binomial theorem we have

n
∑

k=1

(

n

k

)

fk =

n
∑

k=0

(

n

k

)

fk

=
1√
5

n
∑

k=0

(

n

k

)

αk − 1√
5

n
∑

k=0

(

n

k

)

βk

=
1√
5

(1 + α)
n − 1√

5
(1 + β)

n

=
1√
5

[

(α2)n − (β2)n
]

=
1√
5

[

α2n − β2n
]

= f2n

for all n ≥ 0.



Question 10. [p 40. #21]

Show that the number of positive integers less than or equal to x, where x is a positive real number, that
are divisible by the positive integer d equals bx/dc .

Solution:

Solution: Let k be the number of positive integers less than or equal to x that are divisible by d, then

0 < 1 · d < 2 · d < 3 · d < · · · < k · d ≤ x

but (k + 1) · d > x, that is,
k · d ≤ x < (k + 1) · d,

so that
k ≤ x

d
< k + 1,

and k =
⌊x

d

⌋

.

Question 11. [p 41. #34]

Use mathematical induction to show that n7 − n is divisible by 7 for every positive integer n.

Solution: For n = 1, n7 − n = 0, and 7
∣

∣ 0.

Now assume that 7
∣

∣ n7 − n, for some integer n ≥ 1, then

(n + 1)7 − (n + 1) = n7 + 7n6 + 21n5 + 35n4 + 35n3 + 21n2 + 7n + 1− n − 1,

that is,
(n + 1)7 − (n + 1) = n7 − n + (7n6 + 21n5 + 35n4 + 35n3 + 21n2 + 7n),

so that 7 | (n+1)7 − (n+1). Therefore, by the principle of mathematical induction, 7 | n7−n for all positive
integers n.

Question 12. [p 41. #36]

Let fn denote the nth Fibonacci number. Show that fn is even if and only if n is divisible by 3.

Solution: For any integer n ≥ 0, we have

fn+3 = fn+2 + fn+1 = fn+1 + fn + fn+1 = 2fn+1 + fn,

so that fn+3 is even if and only if fn is even.

Now, since f0 = 0 is even, the above implies that f3n is even for all n ≥ 0. However, since f1 = 1 and f2 = 1
are odd, then f3n+1 and f3n+2 are odd for all n ≥ 0.

Therefore fn is even if and only if n is divisible by 3.

Question 13. [p 41 #40]

Show that
fn+m = fmfn+1 + fm−1fn

whenever m and n are positive integers with m > 1. Use this result to show that fn

∣

∣ fm when m and n are

positive integers with n
∣

∣m.

Solution: Letting A =

(

1 1
1 0

)

, an easy induction argument shows that

Ak =

(

fk+1 fk

fk fk−1

)

for all integers k ≥ 1.



Therefore,

Am+m =





fm+n+1 fm+n

fm+n fm+n−1





for all positive integers m and n. On the other hand, Am+n = Am · An, so that

Am+n =





fm+1 fm

fm fm−1









fn+1 fn

fn fn−1



 =





fm+1fn+1 + fmfn fm+1fn + fmfn−1

fmfn+1 + fm−1fn fmfn + fm−1fn−1





and equating the entries in the second row and the first column, we have

fm+n = fmfn+1 + fm−1fn.

Now note that if d is a positive common divisor of fn and fn+1, since fn−1 = fn+1 − fn, then d is a positive
divisor of fn−1 also. An easy induction argument then shows that d must be a positive divisor of f2 = 1,
that is, d = 1. Therefore any two consecutive Fibonacci numbers must be relatively prime.

If m and n are positive integers with m > 1, then fn

∣

∣ fm+n if and only if fn

∣

∣ fmfn+1, and since fn and fn+1

are relatively prime, then fn

∣

∣ fm+n if and only if fn

∣

∣ fm.

We will show by induction that whenever n
∣

∣m, so that m = k · n for some integer k ≥ 1, then fn

∣

∣ fm.

Base Case : For k = 1, we have fn

∣

∣ f1·n and the result is true for k = 1.

Inductive Step : Assume now that m = k · n for some integer k ≥ 1, and that fn

∣

∣ fk·n, that is, fn

∣

∣ fm, from
the above, this implies that

fn

∣

∣ fm+n,

that is, fn

∣

∣ f(k+1)n, and so the result is true for k + 1 also.

Therefore by the principle of mathematical induction, fn

∣

∣ fm whenever m and n are positive integers such

that n
∣

∣m.

Question 14. [p 41. #45]

Show that
⌊

(2 +
√

3)n
⌋

is odd whenever n is a nonnegative integer.

Solution: For any n ≥ 0,

(2 +
√

3)n + (2 −
√

3)n =

n
∑

k=0

(

n

k

)

2k · (
√

3)n−k +

n
∑

k=0

(

n

k

)

2k(−1)n−k(
√

3)n−k

= 2 ·
n
∑

k=0
n−k even

(

n

k

)

2k · (
√

3)n−k,

so that (2 +
√

3)n + (2 −
√

3)n is an even integer for n ≥ 0.

For n = 0, (2 +
√

3)0 = 1, so that
⌊

(2 +
√

3)0
⌋

= 1 is odd.

For n ≥ 1, let N = (2 +
√

3)n + (2 −
√

3)n, so that N is an even integer. Since 0 < 2 −
√

3 < 1, then

0 < (2 −
√

3)n < 1, for all n ≥ 1, and

(2 +
√

3)n = N − (2 −
√

3)n = N − 1 + 1 − (2 −
√

3)n,

where 0 ≤ 1 − (2 −
√

3)n < 1. Therefore,
⌊

(2 +
√

3)n
⌋

= N − 1 is an odd integer for all n ≥ 0.



Question 15. [p 50. #29]

A Cantor expansion of a positive integer n is a sum

n = amm! + am−1(m − 1)! + · · · + a22! + a11!,

where each ak is an integer with 0 ≤ ak ≤ k and am 6= 0.

Show that every positive integer has a unique Cantor expansion. (Hint: For each positive integer n there
is a positive integer m such that m! ≤ n < (m + 1)!. For am, take the quotient from the division algorithm
when n is divided by m!, then iterate.)

Solution:

Existence: Following the hint, if n > 0, from the well-ordering property, there is a unique positive integer m
such that

m! ≤ n < (m + 1)!.

Now we use the division algorithm to divide n by m! to get

n = am · m! + rm

where the quotient am satisfies 0 ≤ am ≤ m, and the remainder rm satisfies

0 ≤ rm < m!.

We use the division algorithm again to divide rm by (m − 1)! to get

rm = (m − 1)! · am−1 + rm−1

where the quotient am−1 satisfies 0 ≤ am−1 ≤ m − 1, and the remainder rm−1 satisfies

0 ≤ rm−1 < (m − 1)!.

Next use the division algorithm to divide rm−1 by (m − 2)! to get

rm−1 = (m − 2)! · am−2 + rm−2

where the quotient am−2 satisfies 0 ≤ am−2 ≤ m − 2, and the remainder rm−2 satisfies

0 ≤ rm−2 < (m − 2)!.

By the well-ordering property of the nonnegative integers, this process must stop after at most m steps, and
the result is the representation

n = am · m! + am−1 · (m − 1)! + · · · + a2 · 2! + a1 · 1!,

where each ak is an integer with 0 ≤ ak ≤ k and am 6= 0.

Uniqueness: Suppose that n is a positive integer which has two different Cantor expansions, say

n = amm! + am−1(m − 1)! + · · · + a22! + a11! = bmm! + bm−1(m − 1)! + · · · + b22! + b11!, (+)

where ak and bk are integers with 0 ≤ ak, bk ≤ k for k = 1, 2, . . . , m.



Let k0 be the largest positive integer such that ak0
6= bk0

, and assume that ak0
> bk0

, since these are integers,
this implies that ak0

≥ bk0
+ 1. Cancelling terms that are equal in (+), we have

ak0
k0! + ak0−1(k0 − 1)! + · · · + a22! + a11! = bk0

k0! + bk0−1(k0 − 1)! + · · · + b22! + b11!,

and using the identity
1 · 1! + 2 · 2! + · · · + k0 · k0! = (k0 + 1)! − 1,

we have

bk0
k0! + bk0−1(k0 − 1)! + · · · + b22! + b11! ≤ bk0

k0! + (k0 − 1) · (k0 − 1)! + · · · + 2 · 2! + 1 · 1!

= bk0
k0! + k0! − 1

= (bk0
+ 1)k0! − 1

< ak0
k0!,

which is a contradiction. Therefore the Cantor expansion of a positive integer is unique.

This representation of a positive integer n is also called the factorial representation of n and the ai’s are
called the factorial digits of n.


