

MATH 324 Summer 2006
Elementary Number Theory
Solutions to Assignment 1
Due: Wednesday July 19, 2006

Department of Mathematical and Statistical Sciences
University of Alberta

Question 1. [p 13. #5]

Use the well-ordering property to show that $\sqrt{3}$ is irrational.

SOLUTION: Since $1 < 3 < 4$, it follows from the order properties of the integers that $1 < \sqrt{3} < 2$.

Now suppose that $\sqrt{3}$ is rational, then there exist positive integers m and n such that

$$\sqrt{3} = \frac{m}{n}.$$

Let S be the set of all positive integers n such that $\sqrt{3} = \frac{m}{n}$ for some positive integer m , then $S \neq \emptyset$, and by the well-ordering property, S has a smallest element, say b , and therefore $\sqrt{3} = \frac{a}{b}$ for some positive integer a .

Now, since $1 < \frac{a}{b} < 2$, then $b < a < 2b$, that is, $0 < a - b < b$, and $a - b$ is a positive integer less than b .

But, $\sqrt{3} = \frac{a}{b}$ implies that $3b^2 = a^2$, so that $3b^2 - ab = a^2 - ab$, that is, $b(3b - a) = a(a - b)$, and since a , b , and $a - b$ are all positive, then $3b - a > 0$, and

$$\sqrt{3} = \frac{a}{b} = \frac{3b - a}{a - b}.$$

Therefore, we have written $\sqrt{3}$ as a ratio of two integers with positive integer denominator $a - b$ which is less than b . This contradicts the choice of b , however. Therefore, $\sqrt{3}$ is irrational.

Question 2. [p 13. #19]

Show that

$$\left\lfloor \sqrt{\lfloor x \rfloor} \right\rfloor = \lfloor \sqrt{x} \rfloor$$

whenever x is a nonnegative real number.

SOLUTION: Let x be a nonnegative real number and let $m = \lfloor \sqrt{x} \rfloor$, so that

$$m \leq \sqrt{x} < m + 1.$$

Since $m \geq 0$, from the order properties of the nonnegative real numbers we have

$$m^2 \leq x < (m + 1)^2,$$

and from the properties of the greatest integer function we have

$$m^2 \leq \lfloor x \rfloor < (m + 1)^2.$$

Again, from the order properties of the nonnegative real numbers, this implies that

$$m \leq \sqrt{\lfloor x \rfloor} < m + 1,$$

which implies that $m = \left\lfloor \sqrt{\lfloor x \rfloor} \right\rfloor$, so that $\left\lfloor \sqrt{\lfloor x \rfloor} \right\rfloor = \lfloor \sqrt{x} \rfloor$.

Question 3. [p 21. #5]

Find and prove a formula for

$$\sum_{k=1}^n \lfloor \sqrt{k} \rfloor$$

in terms of n and $\lfloor \sqrt{n} \rfloor$.

SOLUTION: Note that if a_1, a_2, \dots, a_n are nonnegative integers, and we let

$f(1)$ denote the number of them that are greater than or equal to 1,

$f(2)$ denote the number of them that are greater than or equal to 2,

$f(3)$ denote the number of them that are greater than or equal to 3,

\vdots

then

$$a_1 + a_2 + \dots + a_n = f(1) + f(2) + f(3) + \dots$$

since a_k contributes 1 to each of the numbers $f(1), f(2), \dots, f(a_k)$.

For this particular problem, we take $a_k = \lfloor \sqrt{k} \rfloor$ for $1 \leq k \leq n$, and note that:

- $f(1)$ is the number of a_k 's such that $\sqrt{k} \geq 1$, that is, the number of k 's with $1 \leq k \leq n$ such that $k \geq 1$, so that $f(1) = n$.
- $f(2)$ is the number of a_k 's such that $\sqrt{k} \geq 2$, that is, the number of k 's with $1 \leq k \leq n$ such that $k \geq 2^2 = 4$, so that $f(2) = n - 3$.
- $f(3)$ is the number of a_k 's such that $\sqrt{k} \geq 3$, that is, the number of k 's with $1 \leq k \leq n$ such that $k \geq 3^2 = 9$, so that $f(2) = n - 8$.

\vdots

In general, if $1 \leq m \leq \lfloor \sqrt{n} \rfloor$, then

- $f(m)$ is the number of k 's such that $\sqrt{k} \geq m$, that is, the number of k 's with $1 \leq k \leq n$ such that $k \geq m^2$, so that $f(m) = n - (m^2 - 1)$.

Therefore,

$$\sum_{k=1}^n \lfloor \sqrt{k} \rfloor = \sum_{m=1}^{\infty} f(m) = \sum_{m=1}^{\lfloor \sqrt{n} \rfloor} [n - (m^2 - 1)],$$

so that

$$\sum_{k=1}^n \lfloor \sqrt{k} \rfloor = (n+1) \lfloor \sqrt{n} \rfloor - \sum_{m=1}^{\lfloor \sqrt{n} \rfloor} m^2 = (n+1) \lfloor \sqrt{n} \rfloor - \frac{\lfloor \sqrt{n} \rfloor (\lfloor \sqrt{n} \rfloor + 1)(2 \lfloor \sqrt{n} \rfloor + 1)}{6}.$$

An easy induction argument shows that this is correct, the details are omitted.

Question 4. [p 27. #5]

Conjecture a formula for A^n where $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. Prove your conjecture using mathematical induction.

SOLUTION: For small values of n we have

$$\begin{aligned} A^1 &= A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \\ A^2 &= A \cdot A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \\ A^3 &= A \cdot A^2 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix} \\ A^4 &= A \cdot A^3 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 4 \\ 0 & 1 \end{pmatrix} \\ A^5 &= A \cdot A^4 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 4 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 5 \\ 0 & 1 \end{pmatrix} \\ &\vdots \end{aligned}$$

and it appears that

$$A^n = \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix} \quad (*)$$

for all positive integers n . We prove this conjecture using mathematical induction.

Base Case: We have seen above that $(*)$ is true for $n = 1, 2, 3, 4, 5$.

Inductive Step: Let n be an arbitrary positive integer, with $n \geq 1$, and suppose that $(*)$ is true for n , then

$$A^{n+1} = A \cdot A^n = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & n+1 \\ 0 & 1 \end{pmatrix},$$

and $(*)$ is also true for $n + 1$.

Therefore, from the principle of mathematical induction, $(*)$ is true for all integers $n \geq 1$.

Question 5. [p 27. #8]

Use mathematical induction to prove that

$$\sum_{k=1}^n k^3 = 1^3 + 2^3 + 3^3 + \cdots + n^3 = \frac{n^2(n+1)^2}{4} \quad (**)$$

for every positive integer n .

SOLUTION: We prove that $(**)$ is true using the principle of mathematical induction:

Base Case: For $n = 1$,

$$\sum_{k=1}^1 k^3 = 1^3 = \frac{1^2(1+1)^2}{4}$$

so that $(**)$ is true for $n = 1$.

Inductive Step: Now suppose that $(**)$ is true for some $n \geq 1$, then

$$\begin{aligned}
 \sum_{k=1}^{n+1} k^3 &= \sum_{k=1}^n k^3 + (n+1)^3 = \frac{n^2(n+1)^2}{4} + (n+1)^3 \\
 &= \frac{n^2(n+1)^2 + 4(n+1)^3}{4} \\
 &= \frac{(n+1)^2}{4} [n^2 + 4(n+1)] \\
 &= \frac{(n+1)^2(n+2)^2}{4}
 \end{aligned}$$

so that $(**)$ is true for $n+1$. Therefore, by the principle of mathematical induction, $(**)$ is true for all $n \geq 1$.

Question 6. [p 28. #20]

Use mathematical induction to prove that $2^n < n!$ for $n \geq 4$.

SOLUTION: For $n = 4$ we have $2^4 = 16 < 24 = 4!$, and the result is true for the base case $n = 4$.

Assuming the result is true for some integer $n \geq 4$, we have

$$(n+1)! = (n+1) \cdot n! > (n+1) \cdot 2^n > 2 \cdot 2^n = 2^{n+1}$$

since $n \geq 4$. Therefore the result is also true for $n+1$.

By the principle of mathematical induction, $2^n < n!$ for all $n \geq 4$.

Question 7. [p 34. #16]

Prove that

$$f_1 f_2 + f_2 f_3 + \cdots + f_{2n-1} f_{2n} = f_{2n}^2 \quad (***)$$

if n is a positive integer.

SOLUTION: We will prove $(***)$ using the principle of mathematical induction.

Base Case: For $n = 1$, we have $f_1 f_2 = 1 \cdot 1 = f_2^2$, and $(***)$ holds for $n = 1$.

Inductive Step: Assume that $(***)$ is true for some $n \geq 1$, then from the inductive hypothesis we have

$$\begin{aligned}
 f_1 f_2 + f_2 f_3 + \cdots + f_{2n-1} f_{2n} + f_{2n} f_{2n+1} + f_{2n+1} f_{2n+2} \\
 &= f_{2n}^2 + f_{2n} f_{2n+1} + f_{2n+1} f_{2n+2} \\
 &= f_{2n}(f_{2n} + f_{2n+1}) + f_{2n+1} f_{2n+2} \\
 &= f_{2n} f_{2n+2} + f_{2n+1} f_{2n+2} \\
 &= (f_{2n} + f_{2n+1}) f_{2n+2} \\
 &= f_{2n+2}^2,
 \end{aligned}$$

and $(***)$ is true for $n+1$ also. By the principle of mathematical induction, $(***)$ is true for all integers $n \geq 1$.

We can also give a direct proof using Cassini's identity. For $k \geq 1$, we have

$$f_k^2 = (f_{k+1} - f_{k-1})^2 = f_{k+1}^2 - 2f_{k+1}f_{k-1} + f_{k-1}^2,$$

so that

$$\begin{aligned} f_{k+1}^2 - f_k^2 &= 2f_{k+1}f_{k-1} - f_{k-1}^2 \\ &= f_{k+1}f_{k-1} + f_{k-1}(f_{k+1} - f_{k-1}) \\ &= f_{k+1}f_{k-1} + f_{k-1}f_k \\ &= (-1)^k + f_k^2 + f_{k-1}f_k \\ &= (-1)^k + f_k(f_k + f_{k-1}) \\ &= (-1)^k + f_kf_{k+1}. \end{aligned}$$

Note that this also holds for $k = 0$, so that

$$f_{k+1}^2 - f_k^2 = (-1)^k + f_kf_{k+1}$$

for all $k \geq 0$, and summing over k , we have

$$\sum_{k=0}^{2n-1} (f_{k+1}^2 - f_k^2) = \sum_{k=0}^{2n-1} (-1)^k + \sum_{k=0}^{2n-1} f_kf_{k+1}.$$

The sum on the left telescopes to f_{2n}^2 and the first sum on the right is 0, so that

$$f_{2n}^2 = \sum_{k=0}^{2n-1} f_kf_{k+1}$$

for all $n \geq 1$.

Question 8. [p 35. #31]

Show that $f_n \leq \alpha^{n-1}$ for every integer n with $n \geq 2$, where $\alpha = (1 + \sqrt{5})/2$.

SOLUTION: We will use the strong principle of mathematical induction to show that

$$f_n \leq \alpha^{n-1} \quad (***)$$

for all $n \geq 2$.

Note first that

$$\alpha^2 = \left(\frac{1 + \sqrt{5}}{2}\right)^2 = \frac{3 + \sqrt{5}}{2} = 1 + \alpha.$$

Base Case: For $n = 2$ we have $f_2 = 1 < \alpha^{2-1} = \alpha$, since $\sqrt{5} > 1$. For $n = 3$ we have $f_3 = 2$ and $f_3 = 2 < 1 + \alpha = \alpha^2 = \alpha^{3-1}$. Therefore $(***)$ is true for both $n = 2$ and $n = 3$.

Inductive Step: Now let n be a positive integer with $n \geq 3$, and assume that $(***)$ is true for all integers k with $3 \leq k \leq n$, then from the inductive hypothesis

$$f_{n+1} = f_n + f_{n-1} \leq \alpha^{n-1} + \alpha^{n-2} = \alpha^{n-2}(1 + \alpha) = \alpha^{n-2}\alpha^2 = \alpha^n,$$

so that $(***)$ is true for $n + 1$ also. By the strong principle of mathematical induction $(***)$ is true for all integers $n \geq 2$.

Question 9. [p 35. #33]

Prove that whenever n is a nonnegative integer,

$$\sum_{k=1}^n \binom{n}{k} f_k = f_{2n},$$

where f_k is the k th Fibonacci number.

SOLUTION: We use Binet's formula for the Fibonacci numbers and the binomial theorem. First note that

$$\alpha = \frac{1 + \sqrt{5}}{2} \quad \text{and} \quad \beta = \frac{1 - \sqrt{5}}{2}$$

are the distinct real roots of the quadratic $x^2 = 1 + x$, and Binet's formula for f_k is

$$f_k = \frac{1}{\sqrt{5}} [\alpha^k - \beta^k].$$

Since $f_0 = 0$, then from the binomial theorem we have

$$\begin{aligned} \sum_{k=1}^n \binom{n}{k} f_k &= \sum_{k=0}^n \binom{n}{k} f_k \\ &= \frac{1}{\sqrt{5}} \sum_{k=0}^n \binom{n}{k} \alpha^k - \frac{1}{\sqrt{5}} \sum_{k=0}^n \binom{n}{k} \beta^k \\ &= \frac{1}{\sqrt{5}} (1 + \alpha)^n - \frac{1}{\sqrt{5}} (1 + \beta)^n \\ &= \frac{1}{\sqrt{5}} [(\alpha^2)^n - (\beta^2)^n] \\ &= \frac{1}{\sqrt{5}} [\alpha^{2n} - \beta^{2n}] \\ &= f_{2n} \end{aligned}$$

for all $n \geq 0$.

Question 10. [p 40. #21]

Show that the number of positive integers less than or equal to x , where x is a positive real number, that are divisible by the positive integer d equals $\lfloor x/d \rfloor$.

SOLUTION:

SOLUTION: Let k be the number of positive integers less than or equal to x that are divisible by d , then

$$0 < 1 \cdot d < 2 \cdot d < 3 \cdot d < \cdots < k \cdot d \leq x$$

but $(k+1) \cdot d > x$, that is,

$$k \cdot d \leq x < (k+1) \cdot d,$$

so that

$$k \leq \frac{x}{d} < k+1,$$

and $k = \left\lfloor \frac{x}{d} \right\rfloor$.

Question 11. [p 41. #34]

Use mathematical induction to show that $n^7 - n$ is divisible by 7 for every positive integer n .

SOLUTION: For $n = 1$, $n^7 - n = 0$, and $7 \mid 0$.

Now assume that $7 \mid n^7 - n$, for some integer $n \geq 1$, then

$$(n+1)^7 - (n+1) = n^7 + 7n^6 + 21n^5 + 35n^4 + 35n^3 + 21n^2 + 7n + 1 - n - 1,$$

that is,

$$(n+1)^7 - (n+1) = n^7 - n + (7n^6 + 21n^5 + 35n^4 + 35n^3 + 21n^2 + 7n),$$

so that $7 \mid (n+1)^7 - (n+1)$. Therefore, by the principle of mathematical induction, $7 \mid n^7 - n$ for all positive integers n .

Question 12. [p 41. #36]

Let f_n denote the n th Fibonacci number. Show that f_n is even if and only if n is divisible by 3.

SOLUTION: For any integer $n \geq 0$, we have

$$f_{n+3} = f_{n+2} + f_{n+1} = f_{n+1} + f_n + f_{n+1} = 2f_{n+1} + f_n,$$

so that f_{n+3} is even if and only if f_n is even.

Now, since $f_0 = 0$ is even, the above implies that f_{3n} is even for all $n \geq 0$. However, since $f_1 = 1$ and $f_2 = 1$ are odd, then f_{3n+1} and f_{3n+2} are odd for all $n \geq 0$.

Therefore f_n is even if and only if n is divisible by 3.

Question 13. [p 41 #40]

Show that

$$f_{n+m} = f_m f_{n+1} + f_{m-1} f_n$$

whenever m and n are positive integers with $m > 1$. Use this result to show that $f_n \mid f_m$ when m and n are positive integers with $n \mid m$.

SOLUTION: Letting $A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$, an easy induction argument shows that

$$A^k = \begin{pmatrix} f_{k+1} & f_k \\ f_k & f_{k-1} \end{pmatrix}$$

for all integers $k \geq 1$.

Therefore,

$$A^{m+n} = \begin{pmatrix} f_{m+n+1} & f_{m+n} \\ f_{m+n} & f_{m+n-1} \end{pmatrix}$$

for all positive integers m and n . On the other hand, $A^{m+n} = A^m \cdot A^n$, so that

$$A^{m+n} = \begin{pmatrix} f_{m+1} & f_m \\ f_m & f_{m-1} \end{pmatrix} \begin{pmatrix} f_{n+1} & f_n \\ f_n & f_{n-1} \end{pmatrix} = \begin{pmatrix} f_{m+1}f_{n+1} + f_m f_n & f_{m+1}f_n + f_m f_{n-1} \\ f_m f_{n+1} + f_{m-1} f_n & f_m f_n + f_{m-1} f_{n-1} \end{pmatrix}$$

and equating the entries in the second row and the first column, we have

$$f_{m+n} = f_m f_{n+1} + f_{m-1} f_n.$$

Now note that if d is a positive common divisor of f_n and f_{n+1} , since $f_{n-1} = f_{n+1} - f_n$, then d is a positive divisor of f_{n-1} also. An easy induction argument then shows that d must be a positive divisor of $f_2 = 1$, that is, $d = 1$. Therefore any two consecutive Fibonacci numbers must be relatively prime.

If m and n are positive integers with $m > 1$, then $f_n \mid f_{m+n}$ if and only if $f_n \mid f_m f_{n+1}$, and since f_n and f_{n+1} are relatively prime, then $f_n \mid f_{m+n}$ if and only if $f_n \mid f_m$.

We will show by induction that whenever $n \mid m$, so that $m = k \cdot n$ for some integer $k \geq 1$, then $f_n \mid f_m$.

Base Case: For $k = 1$, we have $f_n \mid f_{1 \cdot n}$ and the result is true for $k = 1$.

Inductive Step: Assume now that $m = k \cdot n$ for some integer $k \geq 1$, and that $f_n \mid f_{k \cdot n}$, that is, $f_n \mid f_m$, from the above, this implies that

$$f_n \mid f_{m+n},$$

that is, $f_n \mid f_{(k+1)n}$, and so the result is true for $k + 1$ also.

Therefore by the principle of mathematical induction, $f_n \mid f_m$ whenever m and n are positive integers such that $n \mid m$.

Question 14. [p 41. #45]

Show that $\lfloor (2 + \sqrt{3})^n \rfloor$ is odd whenever n is a nonnegative integer.

SOLUTION: For any $n \geq 0$,

$$\begin{aligned} (2 + \sqrt{3})^n + (2 - \sqrt{3})^n &= \sum_{k=0}^n \binom{n}{k} 2^k \cdot (\sqrt{3})^{n-k} + \sum_{k=0}^n \binom{n}{k} 2^k (-1)^{n-k} (\sqrt{3})^{n-k} \\ &= 2 \cdot \sum_{\substack{k=0 \\ n-k \text{ even}}}^n \binom{n}{k} 2^k \cdot (\sqrt{3})^{n-k}, \end{aligned}$$

so that $(2 + \sqrt{3})^n + (2 - \sqrt{3})^n$ is an *even integer* for $n \geq 0$.

For $n = 0$, $(2 + \sqrt{3})^0 = 1$, so that $\lfloor (2 + \sqrt{3})^0 \rfloor = 1$ is odd.

For $n \geq 1$, let $N = (2 + \sqrt{3})^n + (2 - \sqrt{3})^n$, so that N is an even integer. Since $0 < 2 - \sqrt{3} < 1$, then $0 < (2 - \sqrt{3})^n < 1$, for all $n \geq 1$, and

$$(2 + \sqrt{3})^n = N - (2 - \sqrt{3})^n = N - 1 + 1 - (2 - \sqrt{3})^n,$$

where $0 \leq 1 - (2 - \sqrt{3})^n < 1$. Therefore, $\lfloor (2 + \sqrt{3})^n \rfloor = N - 1$ is an odd integer for all $n \geq 0$.

Question 15. [p 50. #29]

A **Cantor expansion** of a positive integer n is a sum

$$n = a_m m! + a_{m-1} (m-1)! + \cdots + a_2 2! + a_1 1!,$$

where each a_k is an integer with $0 \leq a_k \leq k$ and $a_m \neq 0$.

Show that every positive integer has a unique Cantor expansion. (*Hint:* For each positive integer n there is a positive integer m such that $m! \leq n < (m+1)!$. For a_m , take the quotient from the division algorithm when n is divided by $m!$, then iterate.)

SOLUTION:

Existence: Following the hint, if $n > 0$, from the well-ordering property, there is a unique positive integer m such that

$$m! \leq n < (m+1)!.$$

Now we use the division algorithm to divide n by $m!$ to get

$$n = a_m \cdot m! + r_m$$

where the quotient a_m satisfies $0 \leq a_m \leq m$, and the remainder r_m satisfies

$$0 \leq r_m < m!.$$

We use the division algorithm again to divide r_m by $(m-1)!$ to get

$$r_m = (m-1)! \cdot a_{m-1} + r_{m-1}$$

where the quotient a_{m-1} satisfies $0 \leq a_{m-1} \leq m-1$, and the remainder r_{m-1} satisfies

$$0 \leq r_{m-1} < (m-1)!.$$

Next use the division algorithm to divide r_{m-1} by $(m-2)!$ to get

$$r_{m-1} = (m-2)! \cdot a_{m-2} + r_{m-2}$$

where the quotient a_{m-2} satisfies $0 \leq a_{m-2} \leq m-2$, and the remainder r_{m-2} satisfies

$$0 \leq r_{m-2} < (m-2)!.$$

By the well-ordering property of the nonnegative integers, this process must stop after at most m steps, and the result is the representation

$$n = a_m \cdot m! + a_{m-1} \cdot (m-1)! + \cdots + a_2 \cdot 2! + a_1 \cdot 1!,$$

where each a_k is an integer with $0 \leq a_k \leq k$ and $a_m \neq 0$.

Uniqueness: Suppose that n is a positive integer which has two different Cantor expansions, say

$$n = a_m m! + a_{m-1} (m-1)! + \cdots + a_2 2! + a_1 1! = b_m m! + b_{m-1} (m-1)! + \cdots + b_2 2! + b_1 1!, \quad (+)$$

where a_k and b_k are integers with $0 \leq a_k, b_k \leq k$ for $k = 1, 2, \dots, m$.

Let k_0 be the largest positive integer such that $a_{k_0} \neq b_{k_0}$, and assume that $a_{k_0} > b_{k_0}$, since these are integers, this implies that $a_{k_0} \geq b_{k_0} + 1$. Cancelling terms that are equal in (+), we have

$$a_{k_0}k_0! + a_{k_0-1}(k_0-1)! + \cdots + a_22! + a_11! = b_{k_0}k_0! + b_{k_0-1}(k_0-1)! + \cdots + b_22! + b_11!,$$

and using the identity

$$1 \cdot 1! + 2 \cdot 2! + \cdots + k_0 \cdot k_0! = (k_0 + 1)! - 1,$$

we have

$$\begin{aligned} b_{k_0}k_0! + b_{k_0-1}(k_0-1)! + \cdots + b_22! + b_11! &\leq b_{k_0}k_0! + (k_0-1) \cdot (k_0-1)! + \cdots + 2 \cdot 2! + 1 \cdot 1! \\ &= b_{k_0}k_0! + k_0! - 1 \\ &= (b_{k_0} + 1)k_0! - 1 \\ &< a_{k_0}k_0!, \end{aligned}$$

which is a contradiction. Therefore the Cantor expansion of a positive integer is unique.

This representation of a positive integer n is also called the **factorial representation** of n and the a_i 's are called the **factorial digits** of n .