

MATH 324 Summer 2006

Elementary Number Theory

Notes on the Integers

Department of Mathematical and Statistical Sciences
University of Alberta

Properties of the Integers

The set of all integers is the set

$$\mathbb{Z} = \{\dots, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, \dots\},$$

and the subset of \mathbb{Z} given by

$$\mathbb{N} = \{0, 1, 2, 3, 4, \dots\},$$

is the set of *nonnegative integers* (also called the *natural numbers* or the *counting numbers*).

We assume that the notions of addition (+) and multiplication (\cdot) of integers have been defined, and note that \mathbb{Z} with these two binary operations satisfy the following.

Axioms for Integers

- **Closure Laws:** if $a, b \in \mathbb{Z}$, then

$$a + b \in \mathbb{Z} \quad \text{and} \quad a \cdot b \in \mathbb{Z}.$$

- **Commutative Laws:** if $a, b \in \mathbb{Z}$, then

$$a + b = b + a \quad \text{and} \quad a \cdot b = b \cdot a.$$

- **Associative Laws:** if $a, b, c \in \mathbb{Z}$, then

$$(a + b) + c = a + (b + c) \quad \text{and} \quad (a \cdot b) \cdot c = a \cdot (b \cdot c).$$

- **Distributive Law:** if $a, b, c \in \mathbb{Z}$, then

$$a \cdot (b + c) = a \cdot b + a \cdot c \quad \text{and} \quad (a + b) \cdot c = a \cdot c + b \cdot c.$$

- **Identity Elements:** There exist integers 0 and 1 in \mathbb{Z} , with $1 \neq 0$, such that

$$a + 0 = 0 + a = a \quad \text{and} \quad a \cdot 1 = 1 \cdot a = a$$

for all $a \in \mathbb{Z}$.

- **Additive Inverse:** For each $a \in \mathbb{Z}$, there is an $x \in \mathbb{Z}$ such that

$$a + x = x + a = 0,$$

x is called the **additive inverse** of a or the **negative** of a , and is denoted by $-a$.

The set \mathbb{Z} together with the operations of $+$ and \cdot satisfying these axioms is called a **commutative ring with identity**.

We can now prove the following results concerning the integers.

Theorem. For any $a \in \mathbb{Z}$, we have $0 \cdot a = a \cdot 0 = 0$.

Proof. We start with the fact that $0 + 0 = 0$. Multiplying by a , we have

$$a \cdot (0 + 0) = a \cdot 0$$

and from the distributive law we have,

$$a \cdot 0 + a \cdot 0 = a \cdot 0.$$

If $b = -(a \cdot 0)$, then

$$(a \cdot 0 + a \cdot 0) + b = a \cdot 0 + b = 0,$$

and from the associative law,

$$a \cdot 0 + (a \cdot 0 + b) = 0,$$

that is,

$$a \cdot 0 + 0 = 0,$$

and finally,

$$a \cdot 0 = 0.$$

□

Theorem. For any $a \in \mathbb{Z}$, we have $-a = (-1) \cdot a$.

Proof. Let $a \in \mathbb{Z}$, then

$$0 = 0 \cdot a = [1 + (-1)] \cdot a = 1 \cdot a + (-1) \cdot a,$$

so that

$$-a + 0 = -a + (a + (-1) \cdot a),$$

that is,

$$-a = (-a + a) + (-1) \cdot a,$$

that is,

$$-a = 0 + (-1) \cdot a,$$

and finally, $-a = (-1) \cdot a$.

□

Theorem. $(-1) \cdot (-1) = 1$.

Proof. We have

$$(-1) \cdot (-1) + (-1) = (-1) \cdot (-1) + (-1) \cdot 1 = (-1) \cdot [(-1) + 1] = (-1) \cdot 0 = 0,$$

so that

$$[(-1) \cdot (-1) + (-1)] + 1 = 0 + 1 = 1,$$

that is,

$$(-1) \cdot (-1) + [(-1) + 1] = 1,$$

or,

$$(-1) \cdot (-1) + 0 = 1.$$

Therefore, $(-1) \cdot (-1) = 1$.

□

We can define an ordering on the set of integers \mathbb{Z} using the set of positive integers $\mathbb{N}^+ = \{1, 2, 3, \dots\}$.

Definition. If $a, b \in \mathbb{Z}$, then we define $a < b$ if and only if $b - a \in \mathbb{N}^+$.

Note: By $b - a$ we mean $b + (-a)$, and if $a < b$ we also write $b > a$. Also, we note that a is a positive integer if and only if $a > 0$, since by definition $a > 0$ if and only if $a = a - 0 \in \mathbb{N}^+$.

Order Axioms for the Integers

- **Closure Axioms for \mathbb{N}^+ :** If $a, b \in \mathbb{N}^+$, then

$$a + b \in \mathbb{N}^+ \quad \text{and} \quad a \cdot b \in \mathbb{N}^+.$$

- **Law of Trichotomy:** For every integer $a \in \mathbb{Z}$, exactly one of the following is true:

$$a \in \mathbb{N}^+ \quad \text{or} \quad -a \in \mathbb{N}^+ \quad \text{or} \quad a = 0.$$

Exercise. Use the Law of Trichotomy together with the fact that $(-1) \cdot (-1) = 1$ to show that $1 > 0$.

Definition. We say that an integer a is a **zero divisor** or **divisor of zero** if and only if $a \neq 0$ and there exists an integer $b \neq 0$ such that $a \cdot b = 0$.

Now we can show that \mathbb{Z} with the usual notion of addition and multiplication has no zero divisors.

Theorem. If $a, b \in \mathbb{Z}$ and $a \cdot b = 0$, then either $a = 0$ or $b = 0$.

Proof. Suppose that $a, b \in \mathbb{Z}$ and $a \cdot b = 0$. If $a \neq 0$ and $b \neq 0$, since

$$a \cdot b = (-a) \cdot (-b) \quad \text{and} \quad -a \cdot b = (-a) \cdot b = a \cdot (-b),$$

by considering all possible cases, the fact that \mathbb{N}^+ is closed under multiplication and the Law of Trichotomy imply that $a \cdot b \neq 0$, which is a contradiction. Therefore, if $a \cdot b = 0$, then either $a = 0$ or $b = 0$. \square

Thus, \mathbb{Z} with the usual notion of addition and multiplication is a commutative ring with identity which has no zero divisors, such a structure is called an **integral domain**, and we have the following result.

Theorem. (Cancellation Law)

If $a, b, c \in \mathbb{Z}$ with $c \neq 0$, and if $a \cdot c = b \cdot c$, then $a = b$.

Proof. If $a \cdot c = b \cdot c$, then $(a - b) \cdot c = 0$, and since $c \neq 0$, then $a - b = 0$. \square

Exercise. Show that the relation on \mathbb{Z} defined by $a \leq b$ if and only if $a < b$ or $a = b$, is a **partial ordering**, that is, it is

- **Reflexive:** For each $a \in \mathbb{Z}$, we have $a \leq a$.
- **Antisymmetric:** For each $a, b \in \mathbb{Z}$, if $a \leq b$ and $b \leq a$, then $a = b$.
- **Transitive:** For each $a, b, c \in \mathbb{Z}$, if $a \leq b$ and $b \leq c$, then $a \leq c$.

Show also that this is a **total ordering**, that is, for any $a, b \in \mathbb{Z}$, either $a \leq b$ or $b \leq a$.

We have the standard results concerning the order relation on \mathbb{Z} . We will prove (ii), (iv), and (v), and leave the rest as exercises.

Theorem. If $a, b, c, d \in \mathbb{Z}$, then

- (i) if $a < b$, then $a \pm c \leq b \pm c$.
- (ii) If $a < b$ and $c > 0$, then $a \cdot c < b \cdot c$.
- (iii) If $a < b$ and $c < 0$, then $a \cdot c > b \cdot c$.
- (iv) If $0 < a < b$ and $0 < c < d$, then $a \cdot c < b \cdot d$.
- (v) If $a \in \mathbb{Z}$ and $a \neq 0$, then $a^2 > 0$. In particular, $1 > 0$.

Proof.

(ii) If $a < b$ and $c > 0$, then $b - a > 0$ and $c > 0$, so that $(b - a) \cdot c > 0$, that is, $b \cdot c - a \cdot c > 0$. Therefore, $a \cdot c < b \cdot c$.

(iv) We have

$$b \cdot d - a \cdot c = b \cdot d - b \cdot c + b \cdot c - a \cdot c = b \cdot (d - c) + c \cdot (b - a) > 0$$

since $b > 0$, $c > 0$, $d - c > 0$, and $b - a > 0$.

(v) Let $a \in \mathbb{Z}$, if $a > 0$, then (ii) implies that $a \cdot a > a \cdot 0$, that is, $a^2 > 0$.

If $a < 0$, then $-a > 0$, and (ii) implies that $a^2 = (-a) \cdot (-a) > 0$. Finally, since $1 \neq 0$, then $1 = 1^2 > 0$. \square

Exercise. Show that if $a, b, c \in \mathbb{Z}$ and $a \cdot b < a \cdot c$ and $a > 0$, then $b < c$.

Finally, we need one more axiom for the set of integers.

Well-Ordering Axiom for the Integers

If B is a nonempty subset of \mathbb{Z} which is bounded below, that is, there exists an $n \in \mathbb{Z}$ such that $n \leq b$ for all $b \in B$, then B has a smallest element, that is, there exists a $b_0 \in B$ such that $b_0 < b$ for all $b \in B$, $b \neq b_0$.

In particular, we have

Theorem. (Well-Ordering Principle for \mathbb{N})

Every nonempty set of nonnegative integers has a least element.

It can be shown that the Well-Ordering Principle for \mathbb{N} is logically equivalent to the Principle of Mathematical Induction, so we may assume one of them as an axiom and prove the other one as a theorem.

Exercise. Show that the following statement is equivalent to the Well-Ordering Axiom for the Integers:

Every nonempty subset of integers which is bounded above has a largest element.

Example. The set of **rational numbers**

$$\mathbb{Q} = \{a/b \mid a, b \in \mathbb{Z}, b \neq 0\}$$

with the usual ordering is not a well-ordered set, that is, there exists a nonempty subset B of \mathbb{Q} which is bounded below, but which has no smallest element.

Proof. In fact, we can take $B = \mathbb{Q}^+$, the set of all positive rational numbers; clearly $\mathbb{Q}^+ \neq \emptyset$ and $0 < q$ for all $q \in \mathbb{Q}^+$, so it is also bounded below.

Now, suppose that \mathbb{Q}^+ has a smallest element, say $q_0 \in \mathbb{Q}^+$, then $q_0/2 \in \mathbb{Q}^+$ also, and $q_0/2 < q_0$, which is a contradiction. Therefore, our original assumption must have been false, and \mathbb{Q}^+ has no smallest element, so \mathbb{Q} is not well-ordered. \square

Definition. The set of **irrational numbers** is the set of all real numbers that are not rational, that is, the set $\mathbb{R} \setminus \mathbb{Q}$.

Example. The real number $\sqrt{2}$ is irrational.

Proof. We will show this using the Well-Ordering Principle. First note that the integer 2 lies between the squares of two consecutive positive integers (consecutive squares), namely, $1 < 2 < 4$, and therefore

$$1 < \sqrt{2} < 2,$$

(since $0 < \sqrt{2} \leq 1$ implies $2 \leq 1$, a contradiction; while $\sqrt{2} \geq 2$ implies $2 \geq 4$, again, a contradiction).

Now let

$$B = \{b \in \mathbb{N}^+ \mid \sqrt{2} = a/b \text{ for some } a \in \mathbb{Z}\},$$

if $\sqrt{2} \in \mathbb{Q}$, then $B \neq \emptyset$.

Since B is bounded below by 0, then the Well-Ordering Principle implies that B has a smallest element, call it b_0 , so that

$$\sqrt{2} = \frac{a_0}{b_0}$$

where $a_0, b_0 \in \mathbb{N}^+$, and $2b_0^2 = a_0^2$.

Since

$$1 < \frac{a_0}{b_0} < 2,$$

then $b_0 < a_0 < 2b_0$, and therefore $0 < a_0 - b_0 < b_0$.

Now we find a positive integer x such that

$$\frac{x}{a_0 - b_0} = \frac{a_0}{b_0},$$

that is, $b_0x = a_0(a_0 - b_0) = a_0^2 - a_0b_0 = 2b_0^2 - a_0b_0 = b_0(2b_0 - a_0)$, so we may take $x = 2b_0 - a_0$, and

$$\sqrt{2} = \frac{2b_0 - a_0}{a_0 - b_0} = \frac{a_0}{b_0},$$

so that $a_0 - b_0 \in B$, and $0 < a_0 - b_0 < b_0$. However, this contradicts the fact that b_0 is the smallest element in B , so our original assumption is incorrect. Therefore, $B = \emptyset$ and $\sqrt{2}$ is irrational. \square

Exercise. Show that if m is a positive integer which is not a perfect square, that is, m is not the square of another integer, then \sqrt{m} is irrational.

Hint: The proof mimics the proof above for $\sqrt{2}$.

Definition. If $n \in \mathbb{Z}$, then we say that n is **even** if and only if there exists an integer $k \in \mathbb{Z}$ such that $n = 2k$. We say that n is **odd** if and only if there is an integer $k \in \mathbb{Z}$ such that $n = 2k + 1$.

We will use the Well-Ordering Principle to show that every integer is either even or odd, but first we need a lemma.

Lemma. There does not exist an integer n satisfying $0 < n < 1$.

Proof. Let

$$B = \{n \mid n \in \mathbb{Z}, \text{ and } 0 < n < 1\}.$$

If $B \neq \emptyset$, since B is bounded below by 0, then by the Well-Ordering Principle B has a smallest element, say $n_0 \in B$, but then multiplying the inequality $0 < n_0 < 1$ by the positive integer n_0 , we have

$$0 < n_0^2 < n_0 < 1.$$

However, n_0^2 is an integer and so $n_0^2 \in B$, which contradicts the fact that n_0 is the smallest element of B . Therefore, our original assumption is incorrect and $B = \emptyset$, that is, there does not exist an integer n satisfying $0 < n < 1$. Note that we have shown that 1 is the smallest positive integer. \square

Theorem. Every integer $n \in \mathbb{Z}$ is either even or odd.

Proof. Suppose there exists an integer $N \in \mathbb{Z}$ such that N is neither even nor odd, let

$$B = \{n \in \mathbb{Z} \mid n \text{ is even or odd and } n \leq N\},$$

then $B \neq \emptyset$ and B is bounded above by N . By the Well-Ordering Property, B has a largest element, say $n_0 \in B$. Since n_0 is either even or odd, and $n_0 \leq N$, then we must have the strict inequality $n_0 < N$.

If n_0 is even, then $n_0 + 1$ is odd, and since n_0 is the largest such integer in B , then we must have

$$n_0 < N < n_0 + 1.$$

If n_0 is odd, then $n_0 + 1$ is even, and again, since n_0 is the largest such integer in B , we must have

$$n_0 < N < n_0 + 1.$$

Thus, in both cases, $N - n_0$ is an integer and

$$0 < N - n_0 < 1,$$

which is a contradiction. Therefore, our original assumption was incorrect, and there does not exist an integer $N \in \mathbb{Z}$ which is neither even nor odd, that is, every integer $n \in \mathbb{Z}$ is either even or odd. \square

Theorem. There does not exist an integer $a \in \mathbb{Z}$ which is both even and odd. Thus the set of integers \mathbb{Z} is partitioned into two disjoint classes, the even integers and the odd integers.

Proof. Suppose that $a \in \mathbb{Z}$ and a is both even and odd, then there exist $k, \ell \in \mathbb{Z}$ such that

$$a = 2k \quad \text{and} \quad a = 2\ell + 1,$$

and therefore $2\ell + 1 = 2k$, so that $2(k - \ell) = 1$.

Now, since $1 > 0$, the law of trichotomy implies that $k - \ell > 0$. Also, since $2 = 1 + 1 > 1 + 0 = 1$, then

$$1 = 2 \cdot (k - \ell) > 1 \cdot (k - \ell) = k - \ell.$$

Therefore, $k - \ell$ is an integer satisfying $0 < k - \ell < 1$, which is a contradiction, and our assumption that there exists an integer a which is both even and odd is false. \square