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Principle of Mathematical Induction

Recall the following axiom for the set of integers.

Well-Ordering Axiom for the Integers
If B is a nonempty subset of Z which is bounded below, that is, there exists an n € Z such that n < b for

all b € B, then B has a smallest element, that is, there exists a bg € B such that by < b for all b € B, b # by.

In particular, we have
Theorem. (Well-Ordering Principle for N)

Every nonempty set of nonnegative integers has a least element.
Now we show that the Principle of Mathematical Induction and the Well-Ordering Principle for N are

logically equivalent. First we state the induction principle.
e Principle of Mathematical Induction:

If P is a set of integers such that

1. aisin P,
2. for all k > a, if the integer k is in P, then the integer k + 1 is also in P,
then P = {z € Z|z > a} that is, P is the set of all integers greater than or equal to a.

We need the following lemma which states that 1 is the smallest positive integer, and we need to be able to
prove it using either well-ordering or induction.

Lemma. 1 is the smallest positive integer.

proof.
(i) Based on the Principle of Mathematical Induction.

Let S be the set of all positive integers. We have shown that 1 € S using the order properties of the
integers. If the integer k is in S, then k& > 0, so that
E+1>k>0

and so the integer k 4 1 is also in S. It follows from the principle of mathematical induction that S is

the set of all integers greater than or equal to 1. Therefore, 1 is the smallest positive integer.



(ii) Based on the Well-Ordering Principle.

Suppose that 1 is not the smallest positive integer, since 1 is positive, from the Well-Ordering Principle,
there is a smallest positive integer, say s, and s < 1. If we multiply the inequality

0<s<1

by s, then
0<s?< s,

which implies that s is not the smallest positive integer. Because our assumption led to a contradiction,
it must be false. Therefore, 1 is the smallest positive integer. O

The following lemma is true, assuming either the Well-Ordering Principle or the Principle of Mathematical
Induction.

Lemma. If n is an integer, there is no integer between n and n + 1 (exclusive).

proof. Suppose that n is an integer and there exists an integer m such that n <m <n+1, thenp=m —n

is an integer and satisfies the inequalities 0 < p < 1, which contradicts the previous lemma. Therefore, given
an integer n, there is no integer between n and n + 1. [l

Theorem. The principles of mathematical induction and well-ordering are logically equivalent.
proof.

I. Assume that the well-ordering principle holds. Let a be a fixed integer, and let S be a set of integers such
that

1. aisin S, and

2. for all k > a, if k is in S, then k + 1 is also in S

We have to show that S is the set of all integers greater than or equal to a. Let
T={x€Z|z>a and =z ¢S},

that is, T is the set of all integers greater than or equal to a that are not in S. If T' is nonempty, then it
follows from the well-ordering principle that T has a smallest element, say xzg € T. Since g > a and a € T,
then xg > a, and since there are no integers between xy — 1 and xg, this implies that zog — 1 > a. Therefore,
xo — 1 € T since xg is the smallest element of T, and so xg — 1 must be in S. By the second property of S,
we have zg — 1 + 1 = x¢ is also in S, which is a contradicton. Because our assumption that 7" is nonempty
leads to a contradiction, it must be false. Therefore, T is empty and

S={zxeZ|zx>a},

that is, S is the set of all integers greater than or equal to a, and the principle of mathematical induction
holds.



II. Assume that the principle of mathematical induction holds, assume also that there exists a nonempty set
S of integers which is bounded below by an integer a, and that .S does not have a smallest element. Since
a < x for every x € S, and S does not have a smallest element, then a & S and therefore, a < x for all x € S.

Let
T={x€Z|z>aand z <sforall s €S},

that is, T is the set of all integers greater than or equal to a which are strictly less than every element of S.
We have shown that a is in T. Now suppose that £ > a is in T, so that k < s for all s € S. If k + 1 is in S,
then since there is no integer between k and k + 1, this implies that k + 1 is the smallest element of S, which
contradicts our assumption about S. Thus, if k£ is in T, then k£ 4+ 1 must also be in T. It follows from the
principle of mathematical induction that T is the set of all integers greater than or equal to a, and so S is
empty. Therefore, if S is a nonempty set of integers which is bounded below, then S has a smallest element,
and the well-ordering principle holds. [l

There is a variation of the principle of mathematical induction that, in some cases, is easier to apply:

e Principle of Strong Mathematical Induction:
If P is a set of integers such that
1. aisin P,
2. if all integers k, with a < k < n are in P, then the integer n + 1 is also in P,

then P = {x € Z|x > a} that is, P is the set of all integers greater than or equal to a.

Theorem. The principle of strong mathematical induction is equivalent to both the well-ordering principle
and the principle of mathematical induction.

Proof.

I. Assume that the well-ordering principle holds. Let a be a fixed integer, and let S be a set of integers such
that

1. aisin S, and

2. if all integers k& with a < k < n are in S, then n + 1 is also in .S

We have to show that S is the set of all integers greater than or equal to a.

Let
T={x€Z|z>a and =z ¢S},

that is, T is the set of all integers greater than or equal to a that are not in S. If T" is nonempty, then it
follows from the well-ordering principle that T has a smallest element, say xg € T. Since g > a and a € T,
then xg > a. Since xg is the smallest element of T, then k € S for all integers k satisfying a < k < 2¢9—1. The
first and second properties of the set S now imply that xg = (zg — 1) + 1 € S also, which is a contradiction.
Therefore, T is empty and

S={zxeZ|zx>a},

that is, S is the set of all integers greater than or equal to a, and the principle of strong mathematical
induction holds.



II. Assume that the principle of strong mathematical induction holds. Let a be a fixed integer, and let .S be
a set of integers such that

1. aisin S, and

2. for alln > a, if nisin S, then n + 1 is also in S

We show that S is the set of all integers greater than or equal to a.

From the first property of S, we know that a € S. Now suppose that k € S for all integers a < k < n, since
n € S, then the second property of S implies that n + 1 € S also. By the principle of strong mathematical
induction we must have

S={z€Z|x>a}

Therefore the principle of mathematical induction holds, and from the previous result the well-ordering
principle holds. [l

Finally, we give one version of double induction:

e Principle of Double Induction:
If P(m,n) is a double indexed family of statements, one for each m > a and n > b such that
1. P(a,b) is true,
2. For all m > a, if P(m,b) is true, then P(m + 1,b) is true,
3. For all n > b, if P(m,n) is true for all m > a, then P(m,n + 1) is true for all m > a,

then P(m,n) is true for all m > a and n > b.

The proof follows immediately from the usual statement of the principle of mathematical induction and is
left as an exercise.

We now give some classical examples that use principle of mathematical induction.

Example 1. Given a positive integer n, consider a square of side n made up of n? 1 x 1 squares. We will
show that the total number S,, of squares present is

S — Z 12— n(n + 1)6(2n + 1). (%)
k=1

Solution. For example, if n = 4, then it is easily seen from the figure




that the total number of squares present is 30, since there are

42=16 1x1 squares

32=9 2 X 2 squares
22 =4 3 X 3 squares
12=1 4 x4 squares

for a total of 30.
We will show that (x) is true by induction on n.

Base Case: For n = 1, there is only 1 square, so that S; = 1, and

1

so that (k) is true for n = 1.

Inductive Step: Let n > 1 be arbitrary and assume that (x) is true for n. Consider an (n + 1) x (n + 1)
square, where we have added 2n + 1 unit squares along the bottom and right hand side of an n x n square,
as shown in the figure.

The only new squares that have been added are those that contain one of the new unit squares on the border,
and we can count these as follows.

For each k with 1 < k <n+ 1, we have
2n+1—(k-1)]-1=2(n+2—-k)—1

squares of side k,

n+1-k




and therefore we have added

n+1 n+1
S Rn+2-k)—-1]=2Y (n+2-k) - (n+1)
k=1 k=1

n+1

=2Y k—(n+1)
k=1

=(n+1)(n+2)—(n+1)

=(n+1)
new squares.
From the inductive hypothesis, we have
n n+l
Sup1 =S +(n+1)2=> K+ m+1)2=> K
k=1 k=1

Therefore, by the Principle of Mathematical Induction, we have S,, = Y. k? for all n > 1.

k=1
Example 2. Let a1,a9,...,a, be positive real numbers. The arithmetic mean of these numbers is defined
by

A— Cl1—|-112—|—"'—|-(1n7
n
and the geometric mean of these numbers is defined by
1

G=(a1-as - -ap)n.

The Arithmetic-Geometric Mean Inequality states that:
G<A (%)

and equality holds if and only if a1 =as =+ = a,.

Proof. We will give a proof of (x) by induction on n. We note first that if we are given any positive real
numbers
ai, az, ..., an,

we may assume, by relabelling if necessary, that
a <ag << ap.

If this is the case, then clearly
nay <ay+az+ -+ ap < nagy,

so that a; < A< a,, and A—ay; >0 and a, — A > 0. Therefore,
(A —ay)(a, — A) = Aa,, + Aa; — A® — aja, >0,
that is,

A(ar + az — A) > aran,. (%)



Base Case: If n =1, then

and (x) is true for n = 1.

Inductive Step: Let n be an arbitrary positive integer with n > 2, and suppose that (x) is true for any set of
n — 1 positive real numbers. Let a1, as,...,a, be a set of n positive real numbers, let A be their arithmetic
mean and let G be their geometric mean. We may assume without loss of generality that

a1 <ax << ap.
Now consider the set of n — 1 positive real numbers
az, ag, ..., Ap—1, (al + Apn — A)7

the arithmetic mean of these n — 1 numbers is

ag+az+---+ap1+ (a1 +a,—A) (a1 +ax+--4a,)—A

n—1 n—1
7nA—A
n—1
:A’

that is, they have the same arithmetic mean as the original n integers.



By the inductive hypothesis,
1

AZ (ag-a3~-~an,1(a1+a2—A))m,

so that
A"l > a5 a5 cap—1(a1 +a, — A).

Muliplying this last inequality by A, we have from (xx),
A" >as- a3 -an—1Alar +an —A) > as-az - ap_1-a1-a, =G",
so that G < A, that is, (x) is also true for n. This completes the proof of the inequality by induction.
We leave it as an exercise to show that equality holds if and only if a; = as = - - - = a,, using the principle of

mathematical induction. We give an alternate proof due to Besicovitch which uses the following fact (easily
proven using calculus):

Lemma. For all real numbers z,
eF>1+x

with equality if and only if z = 0.

Alternate Proof. Besicovitch’s proof is very simple. Let a1, as, ..., a, be n positive real numbers, and let
A be their arithmetic mean, from the lemma, the following inequalities hold

elar/A=1) > % for k=1,2,...,n.

Multiplying these inequalities together, we have

n
— 0 = (ax/A-1) 5 @17 92°" " Cn
l=¢"= H e > an )
k=1

so that A" > ay - as - - - a,, and taking the n'" root, we have A > G with equality if and only if a = A for
allk=1,2,...,n. O
Example 3. For any positive integer n > 2, we have
ﬁ n) _ (2" -2 et
k n—1 '
k=0
Proof. We apply the Arithmetic-Geometric Mean Inequality to the n — 1 positive real numbers

()G G) ()

n—1 n—1 n
n 1 n 2" —2
< (k:)) <n—1.z(kz)_n—1’
k=1 k=1
and since (n) = (n) =1, then
0 n
ﬁ n) _ (2" -2 et
k n—1 '
k=0

to obtain




Example 4.

(a) Let {an}n>0, be the unique solution to the discrete initial value problem

(py2 = Qpi1 + Qp n>0
a0=0
CL1:1,

that is, a, is the n'® term in the Fibonacci sequence, then
1
an = —

S[()(5)

for all n > 0. This is called Binet’s formula, it was first discovered by DeMoivre, and later independently
by Binet.

1 5 "
+2\/—, then a,, is the nearest integer to e for all n > 0.

(b) Let o = 7

Solution: We leave it as an exercise to prove Binet’s formula using the principle of mathematical induction.

(a) Assuming a solution of the form a,, = A", the characteristic equation becomes A\?> = \ + 1, with two

distinct real roots,
14++/5 1-5
5 and Ao = 7

1+v5\" 1-v5)
(5 (]

where the constants A and B are determined from the initial conditions

ap=A+B=0 and al—A~<1+2\/g>+B~<1_\/g>—1

A=

so the general solution is

2
to be 1 1
A=— and B=——,
Vb 5
so that N
oo L (1tVE) (145
"5 2 2
for all n > 0.

(b) Since L < l, then

/52

so that

1 (1+v5\" 1 1C+ﬁ

and therefore, from Binet’s formula, — —=—<anp < —= 5

V5 2 2 V5
1 (1 I 1 (1 "
an — % <+T\/5> < = so that a,, is the nearest integer to ( * ﬁ) .

"
) 4 3 Equivalently,

2 5 2

S



Example 5. Let {a,},>0 be a sequence of real numbers satisfying the recurrence relation and initial
conditions below.

Ap = Qp_1+2ap_o+3ap_3+---+nap+1, n>1

a():l.

(a) Compute the next 5 terms of the sequence, that is, compute a1, ag, as, aq, as.
(b) From part (a), make a conjecture as to the value of a,, for any positive integer n.

(¢) Use the principle of mathematical induction to prove that your conjecture in part (b) is correct.
Solution:

(a) From the recurrence relation and the initial conditions we have

ag =1

ag=1-a90+1=1-14+1=2

as=a1+2-a0+1=2+2-141=5
az=az+2-a1+3-a0+1=5+2-2+3-1+1=13
ag=az3+2-a2+3-a1+4-a9+1=13+2-5+3-2+4-1+1=34
as=as+2-a3+3-ax+4-a1+5-a0+1=34+2-13+3-5+4-2+5-1+1=289

(b) It appears that for all n > 0, we have a,, = Fb,41, that is, the Fibonacci numbers with odd indices.

(¢) We will show that the sequence {ay }n>0 satisfies the same recurrence relation and initial conditions as
the sequence {Fop+1}n>0, and then an easy inductive argument shows that a,, = Fa,11 for all n > 0.

First we note that for n > 1, we have

Fonis = Fopgo+ Fony1 = (Fang1 + Fop) + Fong1 = 2Fo,41 + Fop
=2F5n41 + (Fant1 — Fon—1) = 3Fony1 — Fon_1,

and the sequence {Fan11}n>0 satisfies the discrete initial value problem

Fopys =3Font1 — Fop—1, n 2> 1
=1
=2

For the sequence {an}n>0, we have

apt1=1-an+2-ap-1+3-an2+---+n—-1)-as+n-a;+n+1)-a+1
an=1-ap14+2 an2+3-ap3+--+n—-1)-a1+n-ap+1

and subtracting the second equality from the first, we have
(n+41 — On = Gp + Gp—1 + -+ + a2 + a1 + ag,

that is,

n
Ap41 — Op = Z Q. (*)
k=0



Therefore,
n—1
Opy1 — 2ap, = E ay
k=0

for all n > 1.

However, from () with n replaced by n — 1, we get

n—1

Opy1 — 2ap = E ap = Ap — Gp_1,
k=0

and therefore,

Qn41 = 3an —0n-1, N > 1
aozl

a1=2,

and the sequence {ay, }n>0 satisfies exactly the same discrete initial value problem as {Fzp+1}n>0-

To see that this implies that a,, = Fb,41 for all n > 0, we define
bn = an — F2n+1
for n > 0, and note that the sequence {by,},>0 satisfies

anrl = 3bn - bnflv n > 1
bp =10
b =0,

and now an easy inductive argument shows that b, = 0 for all n > 0.
Example 6. Let a be a positive real number such that
1
a+ -
a
is an integer. Use the principle of strong mathematical induction to show that
1
a + —
a’ﬂ
is also an integer for all positive integers n.

Solution: Let a be a positive real number such that
1
a—+ —
a
is an integer.
Base Case: We will show that (x) is also true for n = 2. We have
1\? 11 1
<a+—> =d’+a- -+ =d"+5+1,
a a a a

so that



Since the expression on the right side of this equality is an integer, then the expression on the left side is
also an integer.

Inductive Step: Assume that () is true for all integers k such that 1 < k < n, we will show that this implies
that (%) is also true for n + 1. We have

1 1 1 1 1 1
am a a

am an+1 anJrl an— 1

n+1 n n—1
a + T <CL +_) (a+_>_<a + 1>.

From the inductive hypothesis, the expression on the right side of this equality is an integer, so that the
expression on the left side is also an integer, and (%) is true for n + 1.

so that

By the principle of strong mathematical induction the result is true for all positive integers n. [l

Example 7. Let a, be the number of strings of length n from the alphabet ¥ = {0, 1, 2} with no
consecutive 0’s.

(a) Find a1, ag, as, aq4.
(b) Give a simple counting argument to show that
Ay = 20p—1 + 2652
for all n > 3.

(c) Use the principle of strong mathematical induction to show that
1 n+2 n+2
an=—=|(1+v3) - (1-v3) }
al

for all n > 0.
Solution:

(a) For n = 1, every string of length 1 from the alphabet ¥ = {0, 1, 2} contains no consecutive 0’s, and
therefore a; = 3.

For n = 2, the total number of strings of length 2 is 32, and there is only one string with consecutive
0’s, namely 00, and therefore, as = 3% — 1 = 8.

For n = 3, there are only 5 strings of length 3 that contain consecutive 0’s, namely,
000 100 200 001 002,

and the total number of strings of length 3 from the alphabet ¥ = {0, 1,2} is 33, and therefore
az =3 —5=22.

For n = 4, given a string of length 4 from the alphabet ¥ = {0, 1, 2 } with no consecutive 0’s, it either
starts with a 0, a 1, or a 2.

If it starts with a 0, the second element of the string must be either a 1 or a 2, and so there are
2ao strings of length 4 with no consecutive 0’s that start with a 0.



If it starts with a 1, then there are a3 strings of length 4 with no consecutive 0’s that start with
al.
If it starts with a 2, then there are a3 strings of length 4 with no consecutive 0’s that start with
a 2.

Since this accounts for all strings of length 4 with no consecutive 0’s, and since these cases are mutually
exclusive, then
a4:2a2+2a3:2~8+2-22:60.

We can use the method we used to determine a4 to find a recurrence relation satisfied by a, for all
n > 3. Any string of length n with no consecutive 0’s from the alphabet ¥ = {0, 1, 2} either starts
with a 0, a 1, or a 2. Reasoning as above, there are 2a,,_o that start with a 0, a,,—1 that start with a
1, and a,_1 that start with a 2. This accounts for all such strings of length n, and therefore
ap = 20n_1 + 20,2

for all n > 3.
If we want the formula (x) below to hold for all n > 0, we need to define ag, and we do this using the
recurrence relation and the values of a1 and as. We want

8:(12 :2a1+2a0 :6—|—2a0,

so that we should define ap = 1. This makes sense, since there is only one string of length 0, namely,
the empty string, and it has no consecutive 0’s.

Now the recurrence relation
(p42 = 2a«n-i—l + 2a,

holds for all n > 0, and we will use this to show by the principle of strong mathematical induction that

1+ f) -(1- \/§)n+1 (+)

an =

vl
is true for all n > 0.
Base Case: For n = 0, we have

1+\f) ( \/3)1—1

™G [4+2\/§—(4—2\/§)} =1l=ao

il
and (*) holds for n = 0.

Inductive Step: Let n > 0 be arbitrary and assume that (x) holds for all integers k& with 0 < k < n,
then from the recurrence relation we have

Qn41 = 2an + 20%71

% _(1 + \/§)n+2 -

= (1 — ﬁ)nﬂ + %

[(1+x/§)n+

[(1 -v3)" s (1_@”“]

- (1 - \/§)n+1]

1 -(1+\/§)n+ + (1+\/§)n+1} -

2V/3

L _(2+\/§) (1+\/§)n+1] ~ %

3

since

(1+V3)2 =202+ V3)

and

RS @ (H\/g)"“] L

-9 (-9

[(1 —2\/5)2 (1 B \/g)nH] 7

(1-v3)?2=2(2-3).



Therefore,

oy = ﬁ [(1 3" (1- ﬁ)"*j ,

and (x) also holds for n + 1.

Therefore, (%) holds for all integers n > 0 by the principle of strong mathematical induction.

Example 8. Let a,, n > 1, be the solution to the problem
an+1:1+£, n>1
a

mn

a1:1.

Show that

Vn<an, <vn+1

for n > 1, and the inequalities are strict for all integers n > 1.

Solution: We will prove that v/n < a, <+/n+ 1 for n > 1 by induction on n. If n = 1, then
Vi=l=a<2=vV1+1

and the result is true for n = 1. Now suppose the result is true for some n > 1, then

n
any1 —Vn+l=14+——-—+vn+1

2%

— — (Va+1-1)

n

an  Vntl+l

7n(\/n+1—|—1—an)
an(\/n—i—l—&—l)

o n(vn+1-+/n)

o an(\/n—i—l—&—l)

>0

from the induction hypothesis, that is, a,+1 > v/n + 1. Also,

\/n—l—l—l—l—an“:\/n—i—l—ﬁ

2%

z\/ﬁ—%

—VnTi-va

>0
from the induction hypothesis, that is, a,+1 < v/n 4+ 14 1. Thus,

vn+l<apts <vVn+1+1,

so we have shown that if the result is true for some n > 1, this implies that it is true for n+1 also. Therefore,
by the principle of mathematical induction, the result is true for all n > 1.



Example 9. If F), is the nth Fibonacci number, then

. FnJrl 14 \/g
lim = .

n—oo n 2

Solution. Recall that the Fibonacci sequence {Fy,}, -, is the unique solution to the discrete initial value
problem

Fn+2:Fn+l+Fn; TLZO
=0
=1

The first few terms of the sequence are:
0,1, 1, 2, 3, 5, 8 13, 21, 34, 55, 89, 144, ...

We proved Cassini’s Identity:
Fop1Fno1 — Fg = (_l)n

for all integers n > 1, by evaluating the determinant of the matrix
F F
A" = n+1 n ,
( Fn anl

! 1> , in two different ways.

where A = <1 0

Here we will use Cassini’s identity to show that the sequence

{ 1}
’777, F
n n>1

V5 —1

converges and that lim ~, = .
n—oo

2

After examining the terms
F, Fop_o

- )
Fonyr Fona

it appears that they are all positive, and that Fs, - Fo,—1 — Fopy1 - Fop—o = 1 for all n > 1. For example, if
n = 1, we have
Fy - Ihn—F3-Fp=1-1-2-0=1.

Lemma 1. For each n > 1,
Fop - Fop_1 — Fopg1 - Fop_a =1, (%)
so that E P
2n—2 < 2n
o1 Fopgr

0<v2n—2= =72, <1

for all n > 2. Therefore the sequence {72y, }n>1 is strictly increasing and bounded above, hence converges.



proof. If n > 1, then

Fon - Fon1 — Fopgr - Fan—o = [Fan—1 + Fan—z| - Fan—1 — [Fan + Fon—1] - Fan—
=F5 1+ Fon—g Fan1— Fap - Fapo — Fap_1 - Fans
= F22n—1 — Fop - Fop—a
— (!
=1

by Cassini’s identity. Therefore, (x) is true for all n > 1.

After examining the terms
Fon1 Fopga
Fop Fonyo’
it appears that they are all positive, and that Fo, 42 - Fop—1 — Fay, - Fopp1 = 1 for all n > 1. For example, if

n =1, we have

Fy By —F-F3=3-1-1-2=1.

Lemma 2. For each n > 1,
Fonio - Fon—1 — Fop - Foni1 =1, (#)

so that
Font1  Fop

Fonyo Fyy,

for all n > 2. Therefore the sequence {v2,—1}n>1 is strictly decreasing and bounded below, hence converges.

0 <7vops1 = =Yop—1 <1

proof. If n =1, then
Fonya - Fan_1 — Fan - Fang1 = [Fang1 + Fon| - Fan—1 — Fay - [Fon + Fon_1]
= Font1 - Fono1 + Fon - Fooy — Fy = FonFop g
= Fopi1 - Fopo1 — Fy,
- (-
=1

by Cassini’s identity. Therefore, (xx) is true for all n > 1.

Now let
u= lim 7y, and v= lim y2p41,
n—oo n—oo

then from Cassini’s identity, we have
Fopyr - Fopoy — Fyy = (1) =1,

so that )
Fon1  Foy _ (=1
Iy, Fony1 Fop - Fopyq’

and letting n — 0o, we have v — u = 0, that is, u = v.

Y2n—1 — V2n =



Now, given € > 0, there exists an integer Ny such that |u — 2, < € for all positive integers n such that
2n > Np, and there exists an integer N such that |v — ya,41| < € for all positive integers n such that
2n+1 > Ny. Let N = max{Ny, Na}, since u = v, we have |u —v,| < € for all n > N. So we have shown that

given any € > 0, there exists an integer N such that |u — v, | < € whenever n > N, but this is exactly what
we mean when we say lim v, = u.
n—oo

Now we know that the limit u = lim ~, exists, but we still don’t know its value. If we look at the difference

n—oo

equation for the Fibonacci numbers, F,, o = Fj,+1 + F},, and divide both sides by F},11, then we have

Fn+2:1 Fn

Fn+1 Fn+1
for all n > 1, that is,
L i In
Fn+1 N Fn+1
Fn+2
for all n > 1, and letting n — oo, we get
1
—=1+4u.
U

Therefore, u satisfies the quadratic equation u? + v — 1 = 0, with distinct real roots

—1 1
/\1:+\/g and AQZT*/E.

Since each term in the sequence satisfies 0 < 7, < 1, then the limit is the positive root

: V6 -1
u= lim ~, = g

It follows from this that

the Golden Ratio.

Example 10. For any m > 1 and n > 1, we have

(m+1)" > mn.

SoLUTION: The proof is by double induction. For each m > 1 and n > 1, let P(m,n) be the statement that
(m+1)" > mn.

For m = 1 and n = 1, the statement P(1,1) is just the inequality
1+t >1-1,
that is 2 > 1, which is true.
Now suppose that m > 1, and P(m, 1) is true, then
(m+D)+1)' =m+2>m+1=(m+1)-1,

so that P(m + 1,1) is true also.



Finally, let n > 1, and suppose that P(m,n) is true for all m > 1, then
(m+1)"" = (m4+1)(m+1D" > (m+1)(mn) >mn+m=m(n+1),

since m > 1 and n > 1 imply that m?n +mn > mn + m. Therefore, P(m,n + 1) is true for all m > 1.

Thus, we have shown that

1. P(1,1) is true,
2. For all m > 1, if P(m, 1) is true, then P(m + 1,1) is true,

3. For all n > 1, if P(m,n) is true for all m > 1, then P(m,n + 1) is true for all m > 1,

and by the principle of double induction, P(m,n) is true for all m > 1 and n > 1.



