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Divisibility
In this note we introduce the notion of “divisibility” for two integers a and b then we discuss the division
algorithm. First we give a formal definition and note some properties of the division operation.

Definition. If a,b € Z, then we say that b divides a and we write b | a, if and only if b # 0 and there exists
an integer ¢ such that a = ¢ - b. In this case, we also say that b is a divisor of a, or that a is a multiple of

b. If b does not divide a, then we write b /ka.

We have the following properties for the division operation.

Theorem. If a,b,c € Z, then

(a 1’aanda‘0

)
(b) if a|band b|a then a = +b
(c) if a|band b|c thena|c
(d) ifa|bthena|b-z forall z € Z
) if x = y 4 2z and a divides any two of the integers x, y, or z, then a divides the remaining integer
)

f ifa|banda|cthena|ba:+cyforallx,y€Z.

(e
(
Proof. We will prove part (b), and leave the rest as an exercise.
Suppose that a | b and b | a, from the definition of the division operation it follows that a # 0 and b # 0, and

b b="/-a,

that there exist integers k and ¢ such that
a=k
O

a=k-b=k-l-a,

and from the cancellation law, since a # 0, we have k- £ = 1. Since k and ¢ are nonzero integers, then |k| > 1

so that
and |[¢| > 1, so we must have either k =¢ =1 or k = ¢ = —1, that is, either a = b or a = —b.



Theorem. (Division Algorithm) If a,b € Z with b > 0, then there exist unique integers ¢,r € Z such

that

a=q-b+r
with 0 < r < b. The integer ¢ is called the quotient when a is divided by b, and the integer r is called the
(least nonnegative) remainder when a is divided by b.

Proof. If b divides a, that is, a = ¢ - b for some integer ¢, then » = 0 and we are done. Suppose then that b

does not divide a, and let
S={a—-th|teZ, a—1tb>0}.

Note that if @ > 0 and ¢ = 0, then
a=a—0-bes,

so that S # 0.

Also, note that if a < 0 and t = a — 1, then
a—th=a—(a—1)b=a(l—-5)+b>0

since b > 1, and again a — tb € S, so that S # ().

Therefore, for any a € Z, S is a nonempty set of positive integers, and by the well-ordering principle, S has
a smallest element, call it r. Since r € S, then

0O<r=a—qb
for some g € Z.

Note that if » = b, then a = (¢ + 1)b and b divides a, which is a contradiction. Also note that if » > b, then
r = b+ c for some ¢ € N*, and then
a—qgb=r=>b+c

implies that c=a— (¢+1)b € S, and ¢ = r — b < r, which contradicts the fact that r is the smallest element
of S.

This shows that there exist integers ¢ and 7 such that
a=q-b+r

with 0 <7 < b.

Now we show that these integers are unique. Suppose that
a=qb+mr and a = qab+ 1y

where q1,q2,71,72 € Z with 0 < rq, 7y < b, then

@b+r1=qb+r (%)
and therefore

(@1 —q2)b=1ra — 11,
so that

|(J1 — QQ|b = |7“1 — ’I“Ql < b. (**)

If ¢1 # g2, then |1 — ¢g2| > 1, and (*+) implies that b < b, which is a contradiction. Therefore, g1 = g2, and
then from (x) we have r; = ro.

O



Note: We can give explicit formulas for the quotient ¢ and the least nonnegative remainder r in the division
algorithm when the integer a is divided by the positive integer b. In fact, since 0 <r =a —q-b < b, then

g-b<a<(qg+1)-b,
and dividing by the positive integer b, we have

g< - <q+1,

S

that is, ¢ = {%J,andr:a— L%J

We can use this fact to give a useful property of the floor function.

Theorem. If n € Z™ and = € R, then

Proof. Let m = | x|, using the division algorithm to divide m by n, we get
m=q-n—+r

where 0 < r <n —1, so that

m r
— =q+ -
n n
1
Whereogzgl——<1, and therefore ¢ = {TJ
n n n
Now, since m = |z, then m < x < m + 1, so that
m T m 1
_§_<_+_7
n-n n o on
and so
r T r 1
g+ —-—<—<qg+—-—+—-<qg+1
n"n non

1
since 0 < r < 1 — —. Therefore, ¢ = LEJ .
n n n

Note: We defined an integer n to be even if and only if n = 2k for some integer k, and to be odd if and only
if n =2k 41 for some integer k. Thus, n is even if and only if it leaves a remainder of 0 when divided by
2, while n is odd if and only if it leaves a remainder of 1 when divided by 2. The division algorithm provides
another proof that every integer is either even or odd, but not both.

Definition. An integer n is said to be a prime if and only if n > 1 and the only positive divisors of n are
1 and n.

A positive integer n is said to be composite if and only if n > 1 and n is not a prime. Thus, n > 1 is
composite if and only if there exist integers a and b with 1 < a, b < n such that n =a - b.



As an exercise using the division algorithm, we prove the following:
Theorem. If p and p? + 2 are both primes, then p? — 2 is also a prime.

Proof. Suppose that p is a prime, when the division algorithm is used to divide p by 3,
p=3q+r

where 0 < r < 2, so the only possible remainders are r =0, r =1, and r = 2.

case 1: If r =0, then p = 3¢ for some positive integer ¢, and since p is prime, we must have ¢ = 1, so that
p = 3. In this case, p? +2 =232 +2=9+2 =11 is a prime, and p? —2 = 9—2 = 7 is also a prime. Thus, the
implication is true for p = 3. The implication is also true if p # 3 and 3 | p, since in this case the hypothesis
is false.

case 2: If r =1, then p = 3¢ + 1 for some positive integer ¢, and
PP +2=038¢+1)2+2=9¢>+6¢+3=303¢>+2¢+1)

and 3 ‘pQ + 2. Since the second factor is clearly greater than 1, then p? + 2 is composite in this case, and
again the implication is true since the hypothesis is false.

case 3: If r = 2, then p = 3q + 2 for some positive integer ¢, and
PP +2=08¢+2%+2=9¢>+12¢+6 = 3(3¢> + 4¢ + 2)

and again 3 | p? 4+ 2. Since the second factor is clearly greater than 1, then p? 4 2 is also composite in this
case, and again the implication is true since the hypothesis is false.

Therefore, if p and p? + 2 are both prime, then p? — 2 is also prime.

We will show that there are infinitely many primes, in fact, the proof we give is Euclid’s original proof.
Lemma. Every positive integer n > 1 has a prime divisor.

Proof. Let S = {n € Z|n > 1 and n has no prime divisors}. If S # (), since S is bounded below, by the
well ordering property S has a smallest element, say ng € S.

Since ng > 1 and ng has no prime divisors, then ng is composite, and there exist integers ag, by € Z such
that
no = ap - bo

where 1 < ag < ng and 1 < by < ng.

However, since 1 < ag < ng and ng is the smallest element in S, then ag € S, which implies that ag has a
prime divisor, say p | ag, but then p ‘ ng also, which is a contradiction.

Therefore, the assumption that S # () leads to a contradiction, and we must have S = @, so that every
positive integer n > 1 has a prime divisor. O



Theorem. There are infinitely many primes.
Proof. Suppose not, suppose that pi, ps, ..., py are the only primes. Now consider the integer
M=pi-p2---pyv+1,

from the previous lemma, M has a prime divisor, and it must therefore be one of the primes p1, pa, ..., pn-
This is a contradiction, since none of these primes divides M. O

Now we give a theorem to determine whether a positive integer is a prime, that is, a simple primality test.
Theorem. If n is a composite integer, then n has a prime divisor p such that p < /n.

Proof. If n is composite, then n = a - b, where 1 < a <b < n. If a > /n, then b > a > /n, and this implies

that
n=a-b>+n-v/n=n

which is a contradiction. Therefore, a < /n and since a > 1, then a has a prime divisor p such that
pgag\/ﬁ,andsincep’aanda’n,thenp‘nalso. O

Before the advent of the computer, one of the most efficient methods of constructing tables of primes was the
sieving process, invented by the Greek mathematician Eratosthenes (276-194 B.C.). The method is called

the Sieve of Eratosthenes.

We illustrate the method by constructing a table containing all primes less that 130. We begin by listing
all the integers from 2 to 129 (since 1 is not a prime it is not listed). The work involved in the process is

simplified by the previous lemma.

The first number in our list, 2, must be a prime and no multiple of 2 except 2 itself can be prime. We remove
all multiples of 2 (except 2 - 1) from our list. The next remaining number, 3, must be a prime, so we delete
all the multiples of 3. We now delete the multiples of 5, the multiples of 7, and the multiples of 11. Because
the largest prime less than /130 is 11, then from the lemma, all the remaining numbers must be primes. In
the table below, rather than delete multiples of 2, 3, 5, 7, 11, we have underlined the integers that were not
deleted, thus, all primes less than 130 are all underlined.

2 3 4 5 6 7 8 9
0 1 12 13 14 15 16 17 18 19
20 21 22 23 24 25 26 27 28 29
30 31 32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47 48 49
50 51 52 53 54 55 56 57 58 59

60 61 62 63 64 65 66 67 68 69
0 71 72 713 v4 75 76 7T 78 79
80 81 82 8 84 8 8 87 88 89
90 91 92 93 94 95 96 97 98 99
100 101 102 103 104 105 106 107 108 109
110 111 112 113 114 115 116 117 118 119
120 121 122 123 124 125 126 127 128 129

The sieve of Eratosthenes can be used to derive a formula for the number of primes less than or equal to n
if the primes less than or equal to y/n are known. First a standard definition.

Definition. If x is a real number, then w(x) denotes the number of prime numbers less than or equal to x.



Theorem. If py,ps,...,pxr are the primes less than /n, then

HEPEAY RHEY
+HPZ}2J " L)Z)s_ A {p;kJ " L%sz A {pkﬁka}
A+ e

+(=1)* L i

Pip2 - Pk |

A rigorous proof of this formula follows immediately from the Principle of Inclusion and Exclusion. We will
give an informal argument.

Recall the steps in the sieve of Eratosthenes. The number of elements in the original set is n— 1. The number
divisible by p; is {EJ , the number divisible by ps is {EJ . If we delete all the numbers divisible by p1
b1

b2
(including p; itself) and then all the numbers divisible by ps (including po itself), we have deleted

ENERA

numbers. If we continue this line of reasoning, we obtain n — 1 plus the complicated expression involving the
greatest integer function for the number of elements remaining in the set. In the process, we have removed
the prime numbers pi,pa,...,pr from the list as well as their multiples. When we replace these 7(v/n)
numbers, we get the correct result, namely, 7(n).

As an example of the use of this formula, we can calculate the number of primes less than or equal to 129.
In this case

r(v/n) = 7(v/120) = 5,

and the primes less than or equal to /129 are 2,3,5,7,11. From the formula in the theorem, we have
129 129 129 129 129
sz =i 1es- | 2] - | 2] - [ 2|2 - |5
129 129 129 129 129 129
i _2—.3J " {EJ " {ﬁJ " {HJ " {mJ i {ﬁJ
129 129 129 129
_HJ i [ﬁJ i {HJ i [ﬁJ
129 129 129 129 129
B _2-3-5J a {2-3-7J B {2-3-11J B L2-5-7J a {2-5-11J
129 129 129 129 129
B _2~7-11J B {3~5-7J a {3~5~11J a {3-7~11J a {5-7.11J
129 129 129 129 129
+ _2-3-5-7J + {2-3-5-11J + {2-3-7~11J + {2-5-7~11J + {3-5~7~11J

129
=129—-14+5—-64—-43—-25—-18—-114+21+124+94+54+84+6+3+3+2+1
-4-3-1-1-1-0-1-0-0-04+0+04+0+04+0-0
= 31.

+

We can verify that this is correct by counting the number of primes in the table (the integers that are
underlined). Although this formula is very awkward to use, it is the only formula for the exact value of m(n).



Greatest Common Divisor

Recall that we introduced the notion of “divisibility” for two integers a and b when we discussed the division
algorithm, now we give some properties of the division operation.

Definition. If a,b € Z, then we say that b divides a and we write b ’ a, if and only if b # 0 and there exists
an integer ¢ such that a = ¢ - b. In this case, we also say that b is a divisor of a, or that a is a multiple of
b. If b does not divide a, then we write b )(a.

We have the following properties for the division operation.

Theorem. If a,b,c € Z, then

(a 1’aanda‘0
(b) if a|band b|a then a = +b

C ifa’bandb’cthena‘c

(
(d) ifa|bthen a|b-x for all z € Z

e) if z = y + z and a divides any two of the integers x, y, or z, then a divides the remaining integer

)
)
)
)
)
)

(
(f ifa’banda’cthena’ba:—l—cy for all z,y € Z.
Proof. We will prove part (b), and leave the rest as an exercise.

Suppose that a | b and b | a, from the definition of the division operation it follows that a # 0 and b # 0, and
that there exist integers k and ¢ such that

a=k-b and b=1"1-a,

so that
a=k-b=k-l-a,

and from the cancellation law, since a # 0, we have k- £ = 1. Since k and ¢ are nonzero integers, then |k| > 1
and |¢| > 1, so we must have either k =¢ =1 or k = ¢ = —1, that is, either a = b or a = —b.

O

Since we are only really interested in positive divisors, we make the following definition:

Definition. If a,b € Z, a positive integer c is said to be a common divisor of a and b if and only if ¢ |a
and ¢ ‘ b.

Example. The common divisors of 42 and 70 are 1, 2, 7, 14, and d = 14 is the greatest of the common
divisors of 42 and 70.

Definition. If a,b € Z, where at least one of the integers a and b is nonzero, then a positive integer d is
called a greatest common divisor of a and b if and only if

(i) d|aand d|b,

(i) for any common divisor ¢ of @ and b, we have c | d.



Any greatest common divisor of a and b is denoted by ged(a,b), and we have the following theorem.

Theorem. For any a,b € Z™, there exists a unique d € Z™ such that d is the greatest common divisor of a
and b, that is, d = ged(a, b).

Moreover, d = ged(a, b) is the smallest positive integer that can be written as a linear combination of a and
b, that is, the smallest positive integer d such that

d=ax + by
for some x,y € Z.

Proof. Given a,b € Z™T, let
Sz{as—i—bt‘s,teZ, as + bt > 0},

then S is a nonempty set of positive integers (a and b are in S), and by the well-ordering principle, S has a
smallest element, say d. We claim that d is a greatest common divisor of a and b.

Since d € S, then d = ax + by for some x,y € Z, and if ¢ is a common divisor of ¢ and b, then ¢ ’ d also.
If d /f a, then from the division algorithm, there exist integers ¢ and r such that
a=q-d+r
with 0 < r < d, so that
r=a—q-d=a—q(ax+by) = (1 - qz)a+ (—qy)b,
and r € S and 0 < r < d, which contradicts the choice of d as the least element of S.
Thus, d ’ a, and a similar argument shows that d ‘ b.

Therefore, any a,b € Z1 have a greatest common divisor.

To prove uniqueness, suppose that d; and ds are positive integers that satisfy the definition of the greatest
common divisor, then d; ‘ ds and ds | dy, and since d; and dy are positive, this implies that d; = ds. [l

Note: We have shown that any two positive integers a and b have a unique greatest common divisor, which
we denote by ged(a,b). We define it for other integers as follows:

(i) if a € Z, with a # 0, then we define
ged(a,0) = lal,

(ii) if a,b € ZT, then we define
ng(_a’a b) = ng(a7 _b) = ng(_a’a _b) = ng(a7 b)a
(iii) ged(0,0) is not defined.
Definition. If a,b € Z, then we say that the integers a and b are relatively prime or coprime if and only

if ged(a, b) = 1, that is, if and only if
axr +by=1

for some x,y € Z.



Theorem. Any two consecutive Fibonacci numbers are relatively prime.

Proof. The proof is by induction.

Base Case: For n =1, we have F; =1 and F; = 1, and
ged(Fy, F2) = ged(1,1,) = 1.

Inductive Step: Now assume that F,, and F, 1, are relatively prime for some integer n > 1, since
Fn+2 :Fn+1 + F,

if d is a positive common divisor of F, 11 and Fj, 42, then d | F,, also, so that d is a positive common divisor
of F,, and F,, 1. By the inductive hypothesis, F,, and F,,1 are relatively prime, so that d = 1. Therefore,
F,,+1 and F), 19 are also relatively prime.

By the Principle of Mathematical Induction, and two consecutive Fibonacci numbers are relatively prime.

We can also give a proof using Cassini’s identity:
Foi1Foq — F2=(-1)"

If d is the greatest common divisor of F,, and F, 1, then d‘ (—1)™, so that d = 1.

Some results concerning relatively prime integers are given below.
Theorem. If a, b, and c are integers with a and b relatively prime, and if a | be, then a | c.

Proof. If a and b are relatively prime, then d = ged(a,b) = 1, and therefore there exist integers = and y
such that
1 =ax + by,

multiplying this equation by ¢, we have
¢ = aczx + bey.

Clearly a ‘ acx, and by assumption a | bcy, so that a | ¢ also.

Theorem. Let the positive integers a and b be relatively prime. If a | ¢ and b| ¢, then ab | ¢ also.

Proof. Since a and b are relatively prime, there exist integers x and y such that
1 =ax + by,
and multiplying this equation by ¢, we have
¢ = aczx + bey.

Now, if a | ¢, then ab|bcy, and if b | ¢, then ab | acz, and therefore ab | c.



Theorem. If a,b € Z and d = ged(a,b), then

a b
ng (Ev E) - 17

b
that is, % and J are relatively prime.

Proof. There exist z,y € Z such that d = ax + by, and therefore

g:c—i-é =1
d dy_7

and this is the smallest postive integer which is a linear combination of a/d and b/d.

Example. Since ged(3,5) = 1, then we can find integers « and y such that 3z 4+ 5y = 1. For example, take
x =2 and y = —1, then
3(2)+5(-1)=1.

However, for any k € Z, we have
1=23(2—-5k)+5(—1+ 3k),

so the solution for  and y is not unique.
We can define the greatest common divisor for set of integers conaining more than two elements as follows.

Definition. Let a1, ao, ..., a, be integers, not all zero, the greatest common divisor of a1, as, ..., an,
denoted by
(a1, agy .., an) or ged(ay, ag, ..., ayn)

is the largest integer d such that d | ap for all 1 <k <n.

The next lemma shows that we can find the greatest common divisor of more than two integers recursively.

Lemma. If ay, as, ..., a, are integers, not all zero, then
(a17 as, ..., an) = (al, az, ..., Qp—2, (an—la an))
Proof. Note that any common divisor of the integers a1, as, ..., a, is a divisor of a,—1 and a,, and so is

a divisor of (an—_1,an).
Also, any common divisor of a1, ag, ..., an—2 and (an—_1,a,) is a common divisor of ay, ag, ..., an.

Therefore, the sets of integers
{a'la az, ..., an} and {a17 az, ..., Gp—-2, (a/nflva/n)}

have the same common divisors.



Example. If a = 105, b = 140, and ¢ = 350, then

(a,b,c) = (a,(b,c))

so that
(105,140, 350) = (105, (140, 350)) = (105, 70) = 35.
O
Definition. The integers a1, aso, ..., a, are mutually relatively prime if and only if (a1, as, ..., a,) =1,
while they are said to be pairwise relatively prime if and only if (a;,a;) =1 for ¢ # j.
Note: If ai, as, ..., a, are pairwise relatively prime, then they must be mutually relatively prime. The

converse is false as the next example shows.

Example 4. Let a = 15, b = 21, and ¢ = 35, then
(a,b,c) = (15,21,35) = (15,(21,35)) = (15,7) =1,

but
(15,21) = 3, (15,35) = 5, (21,35) =17,

and no pair of the three integers a, b, ¢ is relatively prime.

To find the greatest common divisor of two positive integers a and b, we can always use brute force to list all
their common divisors, and then simply select the largest from this list. There are more efficient methods,
for example, the Euclidean algorithm. However, there is also an explict formula for the greatest common
divisor which was found by the Brazilian mathematician Marcelo Polezzi in 1997.

Theorem. Let a and b be positive integers, and let d = ged(a, b), then

a—1

d_22{k9J +a+b— ab.
a

k=1

Proof. We count the number of lattice points, that is, points with integer coordinates, on and inside the
triangle AAOB shown below, in two different ways.

y=(-bla)x+b |

b
Here the equation of the line joining A and Bisy=——xz + b.
a



First note that the number of lattice points on the legs of AAOB is
a+b+1,
while the number of lattice points inside or on the hypotenuse is

IR ol (S R el 1

k=1 k=1 =1

Therefore, if s equals the number of lattice points on or inside AAOB, then

kz_:l {kSJ +(a+b+1).

S

Next, note that the number of lattice points on the line segment AB equals the number of points (z,y)

b b
where x and y = ——x + b are both integers, that is, the number of integers = such that y = ——xz + b is an
a a

integer for 0 < o < a. However, this is just the number of integers in the set

a 2a (d—1)a
{07 Ev gv Tty Taa’}'

So the number of lattice points on the line segment AB is equal to d + 1.
Therefore, the number of lattice points inside AADB or on its legs is equal to s — (d 4 1).

Thus, the total number of lattice points on or inside the rectangle OADB is equal to
s+[s—(d+1)]=2s—(d+1).
However, the total number of lattice points on or inside the rectangle OADB is (a+ 1)(b+ 1), and therefore
2s—(d+1)=(a+1)(b+1),
so that -

b
d=2s—(a+1)(b+1)—1=2 {k—J—i—a—&-b—ab.
a
k=1

Example. If a =4 and b = 18, then

(4,18)_2“%8J + {%J + f’%gJ}+4+18—4~18

=2(4+9+13)+4+18—-172
=52+22-72
=2.



