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Divisibility

In this note we introduce the notion of “divisibility” for two integers a and b then we discuss the division
algorithm. First we give a formal definition and note some properties of the division operation.

Definition. If a, b ∈ Z, then we say that b divides a and we write b
∣

∣a, if and only if b 6= 0 and there exists
an integer q such that a = q · b. In this case, we also say that b is a divisor of a, or that a is a multiple of
b. If b does not divide a, then we write b 6

∣

∣a.

We have the following properties for the division operation.

Theorem. If a, b, c ∈ Z, then

(a) 1
∣

∣a and a
∣

∣ 0

(b) if a
∣

∣ b and b
∣

∣a then a = ±b

(c) if a
∣

∣ b and b
∣

∣ c then a
∣

∣ c

(d) if a
∣

∣ b then a
∣

∣ b · x for all x ∈ Z

(e) if x = y + z and a divides any two of the integers x, y, or z, then a divides the remaining integer

(f) if a
∣

∣ b and a
∣

∣ c then a
∣

∣ bx + cy for all x, y ∈ Z.

Proof. We will prove part (b), and leave the rest as an exercise.

Suppose that a
∣

∣ b and b
∣

∣a, from the definition of the division operation it follows that a 6= 0 and b 6= 0, and
that there exist integers k and ` such that

a = k · b and b = ` · a,

so that
a = k · b = k · ` · a,

and from the cancellation law, since a 6= 0, we have k · ` = 1. Since k and ` are nonzero integers, then |k| ≥ 1
and |`| ≥ 1, so we must have either k = ` = 1 or k = ` = −1, that is, either a = b or a = −b.



Theorem. (Division Algorithm) If a, b ∈ Z with b > 0, then there exist unique integers q, r ∈ Z such

that
a = q · b + r

with 0 ≤ r < b. The integer q is called the quotient when a is divided by b, and the integer r is called the
(least nonnegative) remainder when a is divided by b.

Proof. If b divides a, that is, a = q · b for some integer q, then r = 0 and we are done. Suppose then that b
does not divide a, and let

S = {a − tb | t ∈ Z, a − tb > 0}.
Note that if a > 0 and t = 0, then

a = a − 0 · b ∈ S,

so that S 6= ∅.

Also, note that if a ≤ 0 and t = a − 1, then

a − tb = a − (a − 1)b = a(1 − b) + b > 0

since b ≥ 1, and again a − tb ∈ S, so that S 6= ∅.

Therefore, for any a ∈ Z, S is a nonempty set of positive integers, and by the well-ordering principle, S has
a smallest element, call it r. Since r ∈ S, then

0 < r = a − qb

for some q ∈ Z.

Note that if r = b, then a = (q + 1)b and b divides a, which is a contradiction. Also note that if r > b, then
r = b + c for some c ∈ N

+, and then
a − qb = r = b + c

implies that c = a− (q +1)b ∈ S, and c = r− b < r, which contradicts the fact that r is the smallest element
of S.

This shows that there exist integers q and r such that

a = q · b + r

with 0 ≤ r < b.

Now we show that these integers are unique. Suppose that

a = q1b + r1 and a = q2b + r2

where q1, q2, r1, r2 ∈ Z with 0 ≤ r1, r2 < b, then

q1b + r1 = q2b + r2 (∗)

and therefore
(q1 − q2)b = r2 − r1,

so that

|q1 − q2|b = |r1 − r2| < b. (∗∗)

If q1 6= q2, then |q1 − q2| ≥ 1, and (∗∗) implies that b < b, which is a contradiction. Therefore, q1 = q2, and
then from (∗) we have r1 = r2.



Note: We can give explicit formulas for the quotient q and the least nonnegative remainder r in the division
algorithm when the integer a is divided by the positive integer b. In fact, since 0 ≤ r = a − q · b < b, then

q · b ≤ a < (q + 1) · b,

and dividing by the positive integer b, we have

q ≤ a

b
< q + 1,

that is, q =
⌊a

b

⌋

, and r = a −
⌊a

b

⌋

.

We can use this fact to give a useful property of the floor function.

Theorem. If n ∈ Z
+ and x ∈ R, then

⌊x

n

⌋

=

⌊bxc
n

⌋

.

Proof. Let m = bxc , using the division algorithm to divide m by n, we get

m = q · n + r

where 0 ≤ r ≤ n − 1, so that
m

n
= q +

r

n

where 0 ≤ r

n
≤ 1 − 1

n
< 1, and therefore q =

⌊m

n

⌋

.

Now, since m = bxc , then m ≤ x < m + 1, so that

m

n
≤ x

n
<

m

n
+

1

n
,

and so

q ≤ q +
r

n
≤ x

n
< q +

r

n
+

1

n
< q + 1

since 0 ≤ r

n
< 1 − 1

n
. Therefore, q =

⌊x

n

⌋

.

Note: We defined an integer n to be even if and only if n = 2 ·k for some integer k, and to be odd if and only
if n = 2 · k + 1 for some integer k. Thus, n is even if and only if it leaves a remainder of 0 when divided by
2, while n is odd if and only if it leaves a remainder of 1 when divided by 2. The division algorithm provides
another proof that every integer is either even or odd, but not both.

Definition. An integer n is said to be a prime if and only if n > 1 and the only positive divisors of n are
1 and n.

A positive integer n is said to be composite if and only if n > 1 and n is not a prime. Thus, n > 1 is
composite if and only if there exist integers a and b with 1 < a, b < n such that n = a · b.



As an exercise using the division algorithm, we prove the following:

Theorem. If p and p2 + 2 are both primes, then p2 − 2 is also a prime.

Proof. Suppose that p is a prime, when the division algorithm is used to divide p by 3,

p = 3q + r

where 0 ≤ r ≤ 2, so the only possible remainders are r = 0, r = 1, and r = 2.

case 1 : If r = 0, then p = 3q for some positive integer q, and since p is prime, we must have q = 1, so that
p = 3. In this case, p2 +2 = 32 +2 = 9+2 = 11 is a prime, and p2 − 2 = 9− 2 = 7 is also a prime. Thus, the
implication is true for p = 3. The implication is also true if p 6= 3 and 3

∣

∣ p, since in this case the hypothesis
is false.

case 2 : If r = 1, then p = 3q + 1 for some positive integer q, and

p2 + 2 = (3q + 1)2 + 2 = 9q2 + 6q + 3 = 3(3q2 + 2q + 1)

and 3
∣

∣ p2 + 2. Since the second factor is clearly greater than 1, then p2 + 2 is composite in this case, and
again the implication is true since the hypothesis is false.

case 3 : If r = 2, then p = 3q + 2 for some positive integer q, and

p2 + 2 = (3q + 2)2 + 2 = 9q2 + 12q + 6 = 3(3q2 + 4q + 2)

and again 3
∣

∣ p2 + 2. Since the second factor is clearly greater than 1, then p2 + 2 is also composite in this
case, and again the implication is true since the hypothesis is false.

Therefore, if p and p2 + 2 are both prime, then p2 − 2 is also prime.

We will show that there are infinitely many primes, in fact, the proof we give is Euclid’s original proof.

Lemma. Every positive integer n > 1 has a prime divisor.

Proof. Let S = {n ∈ Z |n > 1 and n has no prime divisors}. If S 6= ∅, since S is bounded below, by the
well ordering property S has a smallest element, say n0 ∈ S.

Since n0 > 1 and n0 has no prime divisors, then n0 is composite, and there exist integers a0, b0 ∈ Z such
that

n0 = a0 · b0

where 1 < a0 < n0 and 1 < b0 < n0.

However, since 1 < a0 < n0 and n0 is the smallest element in S, then a0 6∈ S, which implies that a0 has a
prime divisor, say p

∣

∣ a0, but then p
∣

∣n0 also, which is a contradiction.

Therefore, the assumption that S 6= ∅ leads to a contradiction, and we must have S = ∅, so that every
positive integer n > 1 has a prime divisor.



Theorem. There are infinitely many primes.

Proof. Suppose not, suppose that p1, p2, . . . , pN are the only primes. Now consider the integer

M = p1 · p2 · · · pN + 1,

from the previous lemma, M has a prime divisor, and it must therefore be one of the primes p1, p2, . . . , pN .
This is a contradiction, since none of these primes divides M.

Now we give a theorem to determine whether a positive integer is a prime, that is, a simple primality test.

Theorem. If n is a composite integer, then n has a prime divisor p such that p ≤ √
n.

Proof. If n is composite, then n = a · b, where 1 < a ≤ b < n. If a >
√

n, then b ≥ a >
√

n, and this implies
that

n = a · b >
√

n · √n = n

which is a contradiction. Therefore, a ≤ √
n and since a > 1, then a has a prime divisor p such that

p ≤ a ≤ √
n, and since p

∣

∣a and a
∣

∣n, then p
∣

∣n also.

Before the advent of the computer, one of the most efficient methods of constructing tables of primes was the
sieving process, invented by the Greek mathematician Eratosthenes (276-194 B.C.). The method is called
the Sieve of Eratosthenes.

We illustrate the method by constructing a table containing all primes less that 130. We begin by listing
all the integers from 2 to 129 (since 1 is not a prime it is not listed). The work involved in the process is
simplified by the previous lemma.

The first number in our list, 2, must be a prime and no multiple of 2 except 2 itself can be prime. We remove
all multiples of 2 (except 2 · 1) from our list. The next remaining number, 3, must be a prime, so we delete
all the multiples of 3. We now delete the multiples of 5, the multiples of 7, and the multiples of 11. Because
the largest prime less than

√
130 is 11, then from the lemma, all the remaining numbers must be primes. In

the table below, rather than delete multiples of 2, 3, 5, 7, 11, we have underlined the integers that were not
deleted, thus, all primes less than 130 are all underlined.

2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18 19
20 21 22 23 24 25 26 27 28 29
30 31 32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47 48 49
50 51 52 53 54 55 56 57 58 59
60 61 62 63 64 65 66 67 68 69
70 71 72 73 74 75 76 77 78 79
80 81 82 83 84 85 86 87 88 89
90 91 92 93 94 95 96 97 98 99
100 101 102 103 104 105 106 107 108 109
110 111 112 113 114 115 116 117 118 119
120 121 122 123 124 125 126 127 128 129

The sieve of Eratosthenes can be used to derive a formula for the number of primes less than or equal to n
if the primes less than or equal to

√
n are known. First a standard definition.

Definition. If x is a real number, then π(x) denotes the number of prime numbers less than or equal to x.



Theorem. If p1, p2, . . . , pk are the primes less than
√

n, then

π(n) = n − 1 + π(
√

n) −
{⌊

n

p1

⌋

+

⌊

n

p2

⌋

+ · · · +
⌊

n

pk

⌋}

+

{⌊

n

p1p2

⌋

+

⌊

n

p1p3

⌋

+ · · · +
⌊

n

p1pk

⌋

+

⌊

n

p2p3

⌋

+ · · · +
⌊

n

pk−1pk

⌋}

−
{⌊

n

p1p2p3

⌋

+ · · · +
⌊

n

pk−2pk−1pk

⌋}

+ · · ·

+ (−1)k

⌊

n

p1p2 · · · pk

⌋

A rigorous proof of this formula follows immediately from the Principle of Inclusion and Exclusion. We will
give an informal argument.

Recall the steps in the sieve of Eratosthenes. The number of elements in the original set is n−1. The number

divisible by p1 is

⌊

n

p1

⌋

, the number divisible by p2 is

⌊

n

p2

⌋

. If we delete all the numbers divisible by p1

(including p1 itself) and then all the numbers divisible by p2 (including p2 itself), we have deleted

⌊

n

p1

⌋

+

⌊

n

p2

⌋

−
⌊

n

p1p2

⌋

numbers. If we continue this line of reasoning, we obtain n−1 plus the complicated expression involving the
greatest integer function for the number of elements remaining in the set. In the process, we have removed
the prime numbers p1, p2, . . . , pk from the list as well as their multiples. When we replace these π(

√
n)

numbers, we get the correct result, namely, π(n).

As an example of the use of this formula, we can calculate the number of primes less than or equal to 129.
In this case

π(
√

n) = π(
√

129) = 5,

and the primes less than or equal to
√

129 are 2, 3, 5, 7, 11. From the formula in the theorem, we have

π(129) = 129− 1 + 5 −
⌊

129

2

⌋

−
⌊

129

3

⌋

−
⌊

129

5

⌋

−
⌊

129

7

⌋

−
⌊

129

11

⌋

+

⌊

129

2 · 3

⌋

+

⌊

129

2 · 5

⌋

+

⌊

129

2 · 7

⌋

+

⌊

129

2 · 11

⌋

+

⌊

129

3 · 5

⌋

+

⌊

129

3 · 7

⌋

+

⌊

129

3 · 11

⌋

+

⌊

129

5 · 7

⌋

+

⌊

129

5 · 11

⌋

+

⌊

129

7 · 11

⌋

−
⌊

129

2 · 3 · 5

⌋

−
⌊

129

2 · 3 · 7

⌋

−
⌊

129

2 · 3 · 11

⌋

−
⌊

129

2 · 5 · 7

⌋

−
⌊

129

2 · 5 · 11

⌋

−
⌊

129

2 · 7 · 11

⌋

−
⌊

129

3 · 5 · 7

⌋

−
⌊

129

3 · 5 · 11

⌋

−
⌊

129

3 · 7 · 11

⌋

−
⌊

129

5 · 7 · 11

⌋

+

⌊

129

2 · 3 · 5 · 7

⌋

+

⌊

129

2 · 3 · 5 · 11

⌋

+

⌊

129

2 · 3 · 7 · 11

⌋

+

⌊

129

2 · 5 · 7 · 11

⌋

+

⌊

129

3 · 5 · 7 · 11

⌋

−
⌊

129

2 · 3 · 5 · 7 · 11

⌋

= 129− 1 + 5 − 64 − 43− 25 − 18− 11 + 21 + 12 + 9 + 5 + 8 + 6 + 3 + 3 + 2 + 1

− 4 − 3 − 1 − 1 − 1 − 0 − 1 − 0 − 0 − 0 + 0 + 0 + 0 + 0 + 0 − 0

= 31.

We can verify that this is correct by counting the number of primes in the table (the integers that are
underlined). Although this formula is very awkward to use, it is the only formula for the exact value of π(n).



Greatest Common Divisor

Recall that we introduced the notion of “divisibility” for two integers a and b when we discussed the division
algorithm, now we give some properties of the division operation.

Definition. If a, b ∈ Z, then we say that b divides a and we write b
∣

∣a, if and only if b 6= 0 and there exists
an integer q such that a = q · b. In this case, we also say that b is a divisor of a, or that a is a multiple of
b. If b does not divide a, then we write b 6

∣

∣a.

We have the following properties for the division operation.

Theorem. If a, b, c ∈ Z, then

(a) 1
∣

∣a and a
∣

∣ 0

(b) if a
∣

∣ b and b
∣

∣a then a = ±b

(c) if a
∣

∣ b and b
∣

∣ c then a
∣

∣ c

(d) if a
∣

∣ b then a
∣

∣ b · x for all x ∈ Z

(e) if x = y + z and a divides any two of the integers x, y, or z, then a divides the remaining integer

(f) if a
∣

∣ b and a
∣

∣ c then a
∣

∣ bx + cy for all x, y ∈ Z.

Proof. We will prove part (b), and leave the rest as an exercise.

Suppose that a
∣

∣ b and b
∣

∣a, from the definition of the division operation it follows that a 6= 0 and b 6= 0, and
that there exist integers k and ` such that

a = k · b and b = ` · a,

so that
a = k · b = k · ` · a,

and from the cancellation law, since a 6= 0, we have k · ` = 1. Since k and ` are nonzero integers, then |k| ≥ 1
and |`| ≥ 1, so we must have either k = ` = 1 or k = ` = −1, that is, either a = b or a = −b.

Since we are only really interested in positive divisors, we make the following definition:

Definition. If a, b ∈ Z, a positive integer c is said to be a common divisor of a and b if and only if c
∣

∣a

and c
∣

∣ b.

Example. The common divisors of 42 and 70 are 1, 2, 7, 14, and d = 14 is the greatest of the common
divisors of 42 and 70.

Definition. If a, b ∈ Z, where at least one of the integers a and b is nonzero, then a positive integer d is
called a greatest common divisor of a and b if and only if

(i) d
∣

∣a and d
∣

∣ b,

(ii) for any common divisor c of a and b, we have c
∣

∣ d.



Any greatest common divisor of a and b is denoted by gcd(a, b), and we have the following theorem.

Theorem. For any a, b ∈ Z
+, there exists a unique d ∈ Z

+ such that d is the greatest common divisor of a
and b, that is, d = gcd(a, b).

Moreover, d = gcd(a, b) is the smallest positive integer that can be written as a linear combination of a and
b, that is, the smallest positive integer d such that

d = ax + by

for some x, y ∈ Z.

Proof. Given a, b ∈ Z
+, let

S = {as + bt
∣

∣ s, t ∈ Z, as + bt > 0},
then S is a nonempty set of positive integers (a and b are in S), and by the well-ordering principle, S has a
smallest element, say d. We claim that d is a greatest common divisor of a and b.

Since d ∈ S, then d = ax + by for some x, y ∈ Z, and if c is a common divisor of a and b, then c
∣

∣ d also.

If d 6
∣

∣a, then from the division algorithm, there exist integers q and r such that

a = q · d + r

with 0 < r < d, so that

r = a − q · d = a − q(ax + by) = (1 − qx)a + (−qy)b,

and r ∈ S and 0 < r < d, which contradicts the choice of d as the least element of S.

Thus, d
∣

∣ a, and a similar argument shows that d
∣

∣ b.

Therefore, any a, b ∈ Z
+ have a greatest common divisor.

To prove uniqueness, suppose that d1 and d2 are positive integers that satisfy the definition of the greatest
common divisor, then d1

∣

∣ d2 and d2

∣

∣ d1, and since d1 and d2 are positive, this implies that d1 = d2.

Note: We have shown that any two positive integers a and b have a unique greatest common divisor, which
we denote by gcd(a, b). We define it for other integers as follows:

(i) if a ∈ Z, with a 6= 0, then we define
gcd(a, 0) = |a|,

(ii) if a, b ∈ Z
+, then we define

gcd(−a, b) = gcd(a,−b) = gcd(−a,−b) = gcd(a, b),

(iii) gcd(0, 0) is not defined.

Definition. If a, b ∈ Z, then we say that the integers a and b are relatively prime or coprime if and only
if gcd(a, b) = 1, that is, if and only if

ax + by = 1

for some x, y ∈ Z.



Theorem. Any two consecutive Fibonacci numbers are relatively prime.

Proof. The proof is by induction.

Base Case : For n = 1, we have F1 = 1 and F2 = 1, and

gcd(F1, F2) = gcd(1, 1, ) = 1.

Inductive Step : Now assume that Fn and Fn+1 are relatively prime for some integer n ≥ 1, since

Fn+2 = Fn+1 + Fn

if d is a positive common divisor of Fn+1 and Fn+2, then d
∣

∣ Fn also, so that d is a positive common divisor
of Fn and Fn+1. By the inductive hypothesis, Fn and Fn+1 are relatively prime, so that d = 1. Therefore,
Fn+1 and Fn+2 are also relatively prime.

By the Principle of Mathematical Induction, and two consecutive Fibonacci numbers are relatively prime.

We can also give a proof using Cassini’s identity:

Fn+1Fn−1 − F 2
n = (−1)n.

If d is the greatest common divisor of Fn and Fn+1, then d
∣

∣ (−1)n, so that d = 1.

Some results concerning relatively prime integers are given below.

Theorem. If a, b, and c are integers with a and b relatively prime, and if a
∣

∣ bc, then a
∣

∣ c.

Proof. If a and b are relatively prime, then d = gcd(a, b) = 1, and therefore there exist integers x and y
such that

1 = ax + by,

multiplying this equation by c, we have
c = acx + bcy.

Clearly a
∣

∣acx, and by assumption a
∣

∣ bcy, so that a
∣

∣ c also.

Theorem. Let the positive integers a and b be relatively prime. If a
∣

∣ c and b
∣

∣ c, then ab
∣

∣ c also.

Proof. Since a and b are relatively prime, there exist integers x and y such that

1 = ax + by,

and multiplying this equation by c, we have

c = acx + bcy.

Now, if a
∣

∣ c , then ab
∣

∣ bcy, and if b
∣

∣ c, then ab
∣

∣acx, and therefore ab
∣

∣ c.



Theorem. If a, b ∈ Z and d = gcd(a, b), then

gcd

(

a

d
,
b

d

)

= 1,

that is,
a

d
and

b

d
are relatively prime.

Proof. There exist x, y ∈ Z such that d = ax + by, and therefore

a

d
· x +

b

d
· y = 1,

and this is the smallest postive integer which is a linear combination of a/d and b/d.

Example. Since gcd(3, 5) = 1, then we can find integers x and y such that 3x + 5y = 1. For example, take
x = 2 and y = −1, then

3(2) + 5(−1) = 1.

However, for any k ∈ Z, we have
1 = 3(2 − 5k) + 5(−1 + 3k),

so the solution for x and y is not unique.

We can define the greatest common divisor for set of integers conaining more than two elements as follows.

Definition. Let a1, a2, . . . , an be integers, not all zero, the greatest common divisor of a1, a2, . . . , an,
denoted by

(a1, a2, . . . , an) or gcd(a1, a2, . . . , an)

is the largest integer d such that d
∣

∣ ak for all 1 ≤ k ≤ n.

The next lemma shows that we can find the greatest common divisor of more than two integers recursively.

Lemma. If a1, a2, . . . , an are integers, not all zero, then

(a1, a2, . . . , an) = (a1, a2, . . . , an−2, (an−1, an)).

Proof. Note that any common divisor of the integers a1, a2, . . . , an is a divisor of an−1 and an, and so is
a divisor of (an−1, an).

Also, any common divisor of a1, a2, . . . , an−2 and (an−1, an) is a common divisor of a1, a2, . . . , an.

Therefore, the sets of integers

{a1, a2, . . . , an} and {a1, a2, . . . , an−2, (an−1, an)}

have the same common divisors.



Example. If a = 105, b = 140, and c = 350, then

(a, b, c) = (a, (b, c))

so that
(105, 140, 350) = (105, (140, 350)) = (105, 70) = 35.

Definition. The integers a1, a2, . . . , an are mutually relatively prime if and only if (a1, a2, . . . , an) = 1,
while they are said to be pairwise relatively prime if and only if (ai, aj) = 1 for i 6= j.

Note: If a1, a2, . . . , an are pairwise relatively prime, then they must be mutually relatively prime. The
converse is false as the next example shows.

Example 4. Let a = 15, b = 21, and c = 35, then

(a, b, c) = (15, 21, 35) = (15, (21, 35)) = (15, 7) = 1,

but
(15, 21) = 3, (15, 35) = 5, (21, 35) = 7,

and no pair of the three integers a, b, c is relatively prime.

To find the greatest common divisor of two positive integers a and b, we can always use brute force to list all
their common divisors, and then simply select the largest from this list. There are more efficient methods,
for example, the Euclidean algorithm. However, there is also an explict formula for the greatest common
divisor which was found by the Brazilian mathematician Marcelo Polezzi in 1997.

Theorem. Let a and b be positive integers, and let d = gcd(a, b), then

d = 2
a−1
∑

k=1

⌊

k
b

a

⌋

+ a + b − ab.

Proof. We count the number of lattice points, that is, points with integer coordinates, on and inside the
triangle 4AOB shown below, in two different ways.

A

y = (−b/a)x + b

a
O

b
B D

Here the equation of the line joining A and B is y = − b

a
x + b.



First note that the number of lattice points on the legs of 4AOB is

a + b + 1,

while the number of lattice points inside or on the hypotenuse is

a−1
∑

k=1

⌊

−k
b

a
+ b

⌋

=
a−1
∑

k=1

⌊

(a − k)
b

a

⌋

=
a−1
∑

k=1

⌊

k
b

a

⌋

.

Therefore, if s equals the number of lattice points on or inside 4AOB, then

s =
a−1
∑

k=1

⌊

k
b

a

⌋

+ (a + b + 1).

Next, note that the number of lattice points on the line segment AB equals the number of points (x, y)

where x and y = − b

a
x + b are both integers, that is, the number of integers x such that y = − b

a
x + b is an

integer for 0 ≤ x ≤ a. However, this is just the number of integers in the set

{ 0,
a

d
,

2a

d
, · · · ,

(d − 1)a

d
, a }.

So the number of lattice points on the line segment AB is equal to d + 1.

Therefore, the number of lattice points inside 4ADB or on its legs is equal to s − (d + 1).

Thus, the total number of lattice points on or inside the rectangle OADB is equal to

s + [s − (d + 1)] = 2s − (d + 1).

However, the total number of lattice points on or inside the rectangle OADB is (a + 1)(b + 1), and therefore

2s − (d + 1) = (a + 1)(b + 1),

so that

d = 2s − (a + 1)(b + 1) − 1 = 2

a−1
∑

k=1

⌊

k
b

a

⌋

+ a + b − ab.

Example. If a = 4 and b = 18, then

(4, 18) = 2

{⌊

18

4

⌋

+

⌊

2 · 18

4

⌋

+

⌊

3 · 18

4

⌋}

+ 4 + 18− 4 · 18

= 2 (4 + 9 + 13) + 4 + 18 − 72

= 52 + 22− 72

= 2.


