MATH 324 Summer 2006

Elementary Number Theory
Assignment 5
Due: Thursday August 17, 2006
Department of Mathematical and Statistical Sciences
University of Alberta

Question 1. [p 246. \#21]
Show that if m and n are positive integers and $(m, n)=p$, where p is prime, then

$$
\phi(m n)=\frac{p \phi(m) \phi(n)}{p-1}
$$

Question 2. [p 246. \#22]
Show that if m and k are positive integers, then

$$
\phi\left(m^{k}\right)=m^{k-1} \phi(m)
$$

Question 3. [p 246. \#23]
Show that if a and b are positive integers and $d=(a, b)$, then

$$
\phi(a b)=\frac{d \phi(a) \phi(b)}{\phi(d)}
$$

Conclude that if $d>1$, then $\phi(a b)>\phi(a) \phi(b)$.
Question 4. [p 247. \#30]
Show that if n is a positive integer with $n \neq 2$ and $n \neq 6$, then $\phi(n) \geq \sqrt{n}$.
Question 5. [p 247. \#32]
Show that if m and n are positive integers with $m \mid n$, then $\phi(m) \mid \phi(n)$.
Question 6. [p 253. \#4]
For which positive integers n is the sum of divisors of n odd?
Question 7. [p 254. \#21, \#22, \#23]
Let $\sigma_{k}(n)$ denote the sum of the k th powers of the divisors of n, so that

$$
\sigma_{k}(n)=\sum_{d \mid n} d^{k}
$$

(a) Find a formula for $\sigma_{k}(p)$, where p is a prime.
(b) Find a formula for $\sigma_{k}\left(p^{\alpha}\right)$, where p is a prime and α is a positive integer.
(c) Show that the arithmetic function σ_{k} is multiplicative.

Question 8. [p 254. \#27]
Show that the number of ordered pairs of positive integers with least common multiple equal to the positive integer n is $\tau\left(n^{2}\right)$.

Question 9. [p 256. \#34]
Show that if n is a positive integer, then

$$
\left(\sum_{d \mid n} \tau(d)\right)^{2}=\sum_{d \mid n} \tau(d)^{3}
$$

Question 10. [p 256. \#35]
Show that if n is a positive integer, then

$$
\tau\left(n^{2}\right)=\sum_{d \mid n} 2^{\omega(d)}
$$

where $\omega(n)$ equals the number of prime divisors of n.

