MATH 324 Summer 2006

Elementary Number Theory
Assignment 4
Due: Thursday August 10, 2006
Department of Mathematical and Statistical Sciences
University of Alberta

Question 1. [p 221. \#14]
Using Fermat's little theorem, find the last digit of the base 7 expansion of 3^{100}.
Question 2. [p 221. \#23]
Show that

$$
1^{p-1}+2^{p-1}+3^{p-1}+\cdots+(p-1)^{p-1} \equiv-1(\bmod p)
$$

whenever p is prime. (It has been conjectured that the converse of this is also true.)
Question 3. [p 222. \#28]
Show that if p and q are distinct primes, then

$$
p^{q-1}+q^{p-1} \equiv 1(\bmod p q)
$$

Question 4. [p 222. \#39]
(a) Show that if p is a prime, then $\binom{2 p}{p} \equiv 2\left(\bmod p^{2}\right)$.
(b) Can you show that if p is prime, then $\binom{2 p}{p} \equiv 2\left(\bmod p^{3}\right)$?

Question 5. [p 222. \#46]
Show that if n is a positive integer with $n \geq 2$, then n does not divide $2^{n}-1$.
Question 6. [p 236. \#2]
Find a reduced residue system modulo 2^{m}, where m is a positive integer.
Question 7. [p 236. \#6]
Find the last digit of the decimal expansion of $7^{999,999}$.
Question 8. [p 236. \#10]
Show that $a^{\phi(b)}+b^{\phi(a)} \equiv 1(\bmod a b)$ if a and b are relatively prime positive integers.
Question 9. [p 236. \#20]
Show that if m is a positive integer, $m>1$, then $a^{m} \equiv a^{m-\phi(m)}(\bmod m)$ for all positive integers a.
Question 10. [p 246. \#14]
For which positive integers n does $\phi(n) \mid n$?

