MATH 324 Summer 2006

Elementary Number Theory
Assignment 2
Due: Thursday July 27, 2006
Department of Mathematical and Statistical Sciences University of Alberta

Question 1. [p 74. \#6]
Show that no integer of the form $n^{3}+1$ is a prime, other than $2=1^{3}+1$.
Question 2. [p 74. \#7]
Show that if a and n are positive integers with $n>1$ and $a^{n}-1$ is prime, then $a=2$ and n is prime.
Hint: Use the identity $a^{k \ell}-1=\left(a^{k}-1\right)\left(a^{k(\ell-1)}+a^{k(\ell-2)}+\cdots+a^{k}+1\right)$.
Question 3. [p 74. \#10]
Using Euclid's proof that there are infinitely many primes, show that the $n^{\text {th }}$ prime p_{n} does not exceed $2^{2^{n-1}}$ whenever n is a positive integer. Conclude that when n is a positive integer, there are at least $n+1$ primes less than $2^{2^{n}}$.

Question 4. [p 74. \#12]
Show that if p_{k} is the $k^{\text {th }}$ prime, where k is a positive integer, then $p_{n} \leq p_{1} p_{2} \cdots p_{n-1}+1$ for all integers n with $n \geq 3$.

Question 5. [p 74. \#13]
Show that if the smallest prime factor p of the positive integer n exceeds $\sqrt[3]{n}$, then $\frac{n}{p}$ must be prime or 1 .

Question 6. [p 87. \#12]
Show that every integer greater than 11 is the sum of two composite integers.
Question 7. [p 87. \#22]
Let n be a positive integer greater than 1 and let $p_{1}, p_{2}, \ldots, p_{t}$ be the primes not exceeding n. Show that $p_{1} p_{2} \cdots p_{t}<4^{n}$.

Question 8. [p 87. \#23]
Let n be a positive integer greater than 3 and let p be a prime such that $2 n / 3<p \leq n$. Show that p does not divide the binomial coefficient $\binom{2 n}{n}$.

Question 9. [p 87. \#24]
Use Exercises 22 and 23 to show that if n is a positive integer, then there exists a prime p such that $n<p<2 n$. (This is Bertrand's conjecture.)

Question 10. [p 87. \#26]
Use Bertrand's postulate to show that every positive integer n with $n \geq 7$ is the sum of distinct primes.

Question 11. [p 87. \#27]
Use Bertrand's postulate to show that

$$
\frac{1}{n}+\frac{1}{n+1}+\cdots+\frac{1}{n+m}
$$

does not equal an integer when n and m are positive integers. In particular,

$$
1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}=\sum_{k=1}^{n} \frac{1}{k}
$$

is never an integer for $n>1$.

Question 12.

Use the prime number theorem

$$
\lim _{x \rightarrow \infty} \frac{\pi(x)}{x / \log x}=1
$$

where $\pi(x)$ is the number of primes less than or equal to x, to show that if p_{n} is the $n^{\text {th }}$ prime, then

$$
\lim _{n \rightarrow \infty} \frac{p_{n}}{n \log n}=1
$$

so that $p_{n} \sim n \log n$ for large n.

