MATH 324 Summer 2006

Elementary Number Theory
Assignment 1
Due: Wednesday July 19, 2006

Department of Mathematical and Statistical Sciences University of Alberta

Question 1. [p 13. \#5]
Use the well-ordering property to show that $\sqrt{3}$ is irrational.
Question 2. [p 13. \#19]
Show that

$$
\lfloor\sqrt{\lfloor x\rfloor}\rfloor=\lfloor\sqrt{x}\rfloor
$$

whenever x is a nonnegative real number.
Question 3. [p 21. \#5]
Find and prove a formula for

$$
\sum_{k=1}^{n}\lfloor\sqrt{k}\rfloor
$$

in terms of n and $\lfloor\sqrt{n}\rfloor$.
Question 4. [p 27. \#5]
Conjecture a formula for A^{n} where $A=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$. Prove your conjecture using mathematical induction.
Question 5. [p 27. \#8]
Use mathematical induction to prove that

$$
\sum_{k=1}^{n} k^{3}=1^{3}+2^{3}+3^{3}+\cdots+n^{3}=\frac{n^{2}(n+1)^{2}}{4}
$$

for every positive integer n.
Question 6. [p 28. \#20]
Use mathematical induction to prove that $2^{n}<n$! for $n \geq 4$.
Question 7. [p 34. \#16]
Prove that

$$
f_{1} f_{2}+f_{2} f_{3}+\cdots+f_{2 n-1} f_{2 n}=f_{2 n}^{2}
$$

if n is a positive integer.
Question 8. [p 35. \#31]
Show that $f_{n} \leq \alpha^{n-1}$ for every integer n with $n \geq 2$, where $\alpha=(1+\sqrt{5}) / 2$.

Question 9. [p 35. \#33]
Prove that whenever n is a nonnegative integer,

$$
\sum_{k=1}^{n}\binom{n}{k} f_{k}=f_{2 n}
$$

where f_{k} is the k th Fibonacci number.
Question 10. [p 40. \#21]
Show that the number of positive integers less than or equal to x, where x is a positive real number, that are divisible by the positive integer d equals $\lfloor x / d\rfloor$.

Question 11. [p 41. \#34]
Use mathematical induction to show that $n^{7}-n$ is divisible by 7 for every positive integer n.

Question 12. [p 41. \#36]
Let f_{n} denote the nth Fibonacci number. Show that f_{n} is even if and only if n is divisible by 3 .
Question 13. [p 41 \#40]
Show that

$$
f_{n+m}=f_{m} f_{n+1}+f_{m-1} f_{n}
$$

whenever m and n are positive integers with $m>1$. Use this result to show that $f_{n} \mid f_{m}$ when m and n are positive integers with $n \mid m$.

Question 14. [p 41. \#45]
Show that $\left\lfloor(2+\sqrt{3})^{n}\right\rfloor$ is odd whenever n is a nonnegative integer.
Question 15. [p 50. \#29]
A Cantor expansion of a positive integer n is a sum

$$
n=a_{m} m!+a_{m-1}(m-1)!+\cdots+a_{2} 2!+a_{1} 1!
$$

where each a_{k} is an integer with $0 \leq a_{k} \leq k$ and $a_{m} \neq 0$.
Show that every positive integer has a unique Cantor expansion. (Hint: For each positive integer n there is a positive integer m such that $m!\leq n<(m+1)$!. For a_{m}, take the quotient from the division algorithm when n is divided by m !, then iterate.)

