Math 311 Spring 2014

Theory of Functions of a Complex Variable

Identity for Product of Sines

Department of Mathematical and Statistical Sciences University of Alberta

In this note, as an application of the derivative and roots of unity, we give a proof of the following identity.

Theorem. For each positive integer $n \geq 2$, we have

$$\sin\frac{\pi}{n}\cdot\sin\frac{2\pi}{n}\cdot\sin\frac{3\pi}{n}\cdot\dots\cdot\sin\frac{(n-1)\pi}{n}=\frac{n}{2^{n-1}}.$$

Proof. For $n \geq 2$, the n^{th} roots of unity are solutions to the equation $z^n - 1 = 0$, and are given by

$$z_0 = 1, \ z_1 = e^{\frac{2\pi i}{n}}, \ z_2 = e^{\frac{4\pi i}{n}}, \ \cdots, \ z_{n-1} = e^{\frac{2(n-1)\pi i}{n}},$$

so that

$$z^{n} - 1 = (z - 1) \left(z - e^{\frac{2\pi i}{n}} \right) \left(z - e^{\frac{4\pi i}{n}} \right) \cdots \left(z - e^{\frac{2(n-1)\pi i}{n}} \right).$$

Therefore,

$$\frac{z^n - 1}{z - 1} = \left(z - e^{\frac{2\pi i}{n}}\right) \left(z - e^{\frac{4\pi i}{n}}\right) \cdots \left(z - e^{\frac{2(n-1)\pi i}{n}}\right),$$

and letting $z \to 1$, we get

$$\frac{d}{dz}(z^n)\bigg|_{z=1} = \left(1 - e^{\frac{2\pi i}{n}}\right)\left(1 - e^{\frac{4\pi i}{n}}\right)\cdots\left(1 - e^{\frac{2(n-1)\pi i}{n}}\right).$$

Thus,

$$n = \left(1 - e^{\frac{2\pi i}{n}}\right) \left(1 - e^{\frac{4\pi i}{n}}\right) \cdots \left(1 - e^{\frac{2(n-1)\pi i}{n}}\right),\tag{*}$$

and taking the complex conjugate of (*), we have

$$n = \left(1 - e^{-\frac{2\pi i}{n}}\right) \left(1 - e^{-\frac{4\pi i}{n}}\right) \cdots \left(1 - e^{-\frac{2(n-1)\pi i}{n}}\right). \tag{**}$$

Now, for each $1 \le k \le n-1$, from Euler's formula and the double angle formula we have

$$\left(1 - e^{\frac{2k\pi i}{n}}\right) \left(1 - e^{-\frac{2k\pi i}{n}}\right) = 2 - \left(e^{\frac{2k\pi i}{n}} + e^{-\frac{2k\pi i}{n}}\right) = 2\left(1 - \cos\frac{2k\pi}{n}\right) = 2 \cdot 2\sin^2\frac{k\pi}{n},$$

and multiplying (*) and (**), we have

$$n^{2} = 2^{n-1} \left(1 - \cos \frac{2\pi}{n} \right) \left(1 - \cos \frac{4\pi}{n} \right) \cdots \left(1 - \cos \frac{2(n-1)\pi}{n} \right)$$
$$= 2^{n-1} \cdot 2^{n-1} \cdot \sin^{2} \frac{\pi}{n} \cdot \sin^{2} \frac{2\pi}{n} \cdot \cdots \cdot \sin^{2} \frac{(n-1)\pi}{n},$$

taking the nonnegative square root of both sides of this equation, we get the desired result.