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In this note, as an application of the derivative and roots of unity, we give a proof of the following identity.

Theorem. For each positive integer n > 2, we have
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Proof. For n > 2, the n'® roots of unity are solutions to the equation 2™ — 1 = 0, and are given by
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and taking the complex conjugate of (), we have
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Now, for each 1 < k <n — 1, from Euler’s formula and the double angle formula we have
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and letting z — 1, we get

Thus,

and multiplying (x) and (xx), we have
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taking the nonnegative square root of both sides of this equation, we get the desired result.



