Math 311 Spring 2014 Theory of Functions of a Complex Variable

Manipulating of Power Series

Department of Mathematical and Statistical Sciences University of Alberta

Manipulating Power Series

Just as with real power series, some care has to be used when manipulating complex power series, as the following example shows.

The power series

$$S(z) = \sum_{n=0}^{\infty} \left(z + \frac{1}{2}\right)^n$$

converges for $|z + \frac{1}{2}| < 1$. In paricular, it **converges** for z = -1.

If we expand the powers of $\left(z+\frac{1}{2}\right)$ by the binomial theorem, we have

$$\left(z+\frac{1}{2}\right)^n = \sum_{k=0}^n \binom{n}{k} \frac{z^k}{2^{n-k}}$$

so that

$$\sum_{n=0}^{\infty} \left(z + \frac{1}{2}\right)^n = \sum_{n=0}^{\infty} \sum_{k=0}^n \binom{n}{k} \frac{z^k}{2^{n-k}}.$$
 (*)

If we could legitimately interchange the order of summation, we would have

$$S(z) = \sum_{k=0}^{\infty} \sum_{n=k}^{\infty} \binom{n}{k} \frac{z^k}{2^{n-k}},$$

that is,

$$S(z) = \sum_{k=0}^{\infty} \left\{ \sum_{n=k}^{\infty} \binom{n}{k} \frac{1}{2^{n-k}} \right\} z^k,$$

and reindexing the inner sum by letting m = n - k, then

$$S(z) = \sum_{k=0}^{\infty} \left\{ \sum_{m=0}^{\infty} \binom{k+m}{k} \frac{1}{2^m} \right\} z^k.$$

Now, with $\alpha = -k - 1$, we have

$$\binom{\alpha}{m} = \frac{(-k-1)(-k-2)\cdots(-k-m)}{m!}$$
$$= (-1)^m \frac{(k+m)(k+m-1)\cdots(k+1)}{m!}$$
$$= (-1)^m \frac{(k+m)!}{k!\,m!} = (-1)^m \binom{k+m}{k},$$

so that

$$(-1)^m \binom{-k-1}{m} = \binom{k+m}{k},$$

and the inner sum is just the binomial series for

$$\frac{1}{\left(1-\frac{1}{2}\right)^{k+1}} = \sum_{m=0}^{\infty} \binom{-k-1}{k} \left(-\frac{1}{2}\right)^m = \sum_{m=0}^{\infty} \binom{k+m}{k} \frac{1}{2^m}.$$

Therefore,

$$S(z) = \sum_{k=0}^{\infty} 2^{k+1} z^k, \tag{**}$$

and the series on the right in (**) converges for |2z| < 1, that is, for $|z| < \frac{1}{2}$, and diverges for $|z| > \frac{1}{2}$.

In particular, the series on the right **diverges** for z = -1.