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Manipulating Power Series

Just as with real power series, some care has to be used when manipulating complex power series, as the
following example shows.

The power series
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In paricular, it converges for z = −1.
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If we expand the powers of
(
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by the binomial theorem, we have
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so that
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If we could legitimately interchange the order of summation, we would have

S(z) =

∞
∑

k=0

∞
∑

n=k

(

n

k

)

zk

2n−k
,

that is,
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and reindexing the inner sum by letting m = n − k, then
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Now, with α = −k − 1, we have
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so that
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and the inner sum is just the binomial series for
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Therefore,

S(z) =

∞
∑

k=0

2k+1zk, (∗∗)

and the series on the right in (∗∗) converges for |2z| < 1, that is, for |z| < 1

2
, and diverges for |z| > 1

2
.

In particular, the series on the right diverges for z = −1.


