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In this note we show that limits in the complex plane C are exactly the same as limits in the plane R2

equipped with the Euclidean norm, and we prove the following theorem.

Theorem. Let f(z) = f(x + iy) = u(x, y) + iv(x, y), z0 = x0 + iy0, and w0 = u0 + iv0, then

lim
z→z0

f(z) = w0

if and only if
lim

x→x0

y→y0

u(x, y) = u0 and lim
x→x0

y→y0

v(x, y) = v0.

Proof. Suppose that lim
z→z0

f(z) = w0, then given any ε > 0, there exists a δ > 0 such that

|f(z) − w0| < ε

whenever 0 < |z − z0| < δ, and therefore

|u(x, y) − u0| ≤
√

(u(x, y) − u0)2 + (v(x, y) − v0)2 = |f(z) − w0| < ε

and

|v(x, y) − v0| ≤
√

(u(x, y) − u0)2 + (v(x, y) − v0)2 = |f(z) − w0| < ε

whenever 0 <
√

(x − x0)2 + (y − y0)2 = |z − z0| < δ, that is,

lim
x→x0

y→y0

u(x, y) = u0 and lim
x→x0

y→y0

v(x, y) = v0.

Conversely, suppose that
lim

x→x0

y→y0

u(x, y) = u0 and lim
x→x0

y→y0

v(x, y) = v0,

and let ε > 0. Choose δ > 0 so that

|u(x, y) − u0| <
ε√
2

and |v(x, y) − v0| <
ε√
2

whenever 0 <
√

(x − x0)2 + (y − y0)2 < δ.



If |z − z0| < δ, then
√

(x − x0)2 + (y − y0)2 = |z − z0| < δ,

implies that

|f(z) − w0| =
√

(u(x, y) − u0)2 + v(x, y) − v0)2 <

√

ε2

2
+

ε2

2
= ε,

and therefore
lim

z→z0

f(z) = w0.


