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In this note we will study the power series

f(z) =

∞∑

n=0

zn!

called a lacunary series or a series with gaps. We will show that the series is unbounded in every
neighborhood of every point on the boundary of its circle of convergence (so the boundary is called a
natural boundary of the series).

Lemma 1. The series

f(z) =

∞∑

n=0

zn!

is absolutely convergent for any z ∈ C with |z| < 1.

Proof. To see this, we compare it to the geometric series,
∞∑

n=0
zn.

If we let an = zn! and bn = zn, then

an

bn

=
zn!

zn
= zn!−n = zn[(n−1)!−1],

and if |z| < 1, then

lim
n→∞
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= lim

n→∞

∣
∣
∣zn[(n−1)!−1]

∣
∣
∣ = 0.

Thus, given any ε > 0, there is an integer N0 such that

|an|

|bn|
< ε

for all n ≥ N0, and therefore,
|an| < ε|bn|

for all n ≥ N0. Hence,
∞∑

n=N0

∣
∣zn!

∣
∣ ≤ ε

∞∑

n=N0

|zn| < ∞,

and the series
∞∑

n=0
zn! converges absolutely if |z| < 1.



Lemma 2. The series

f(z) =
∞∑

n=0

zn!

diverges if z = 1.

Proof. For z = 1, the Nth partial sum of the series is

SN =
N∑

n=0

1 = 1 + 1 + · · · + 1
︸ ︷︷ ︸

N+1

= N + 1,

and
lim

N→∞

SN = +∞,

so the series diverges for z = 1.

Lemma 3. The circle of convergence for the series

f(z) =

∞∑

n=0

zn!

is |z| = 1.

Proof. The series converges absolutely if |z| < 1 and diverges if |z| > 1, so the radius of convergence is
R = 1.

Lemma 4. Let ω be a point on the unit circle, ω = cos 2pπ

q
+ i sin 2pπ

q
where p and q are positive integers,

then

f(z) =

∞∑

n=0

zn!

is unbounded in a neighborhood of ω.

Proof. Let ω be a point on the unit circle, and let z = rω, where 0 < r < 1, then

∞∑

n=0

zn! =

q−1
∑

n=0

zn! +

∞∑

n=q

rn!

since ωq = 1 so that ωn! = 1 for n ≥ q.

Therefore,
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|z|n!

=

∞∑

n=q

rn! −

q−1
∑

n=0

rn!,

since |z| = |rω| = r|ω| = r, so that
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rn!.



Now let N be an arbitrary positive integer, and let k = 2q + N , then
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k∑

n=q

rn! −

q−1
∑

n=0

rn! > (k − q + 1)rk! − (q − 1)

since 0 < r < 1 and q ≤ n ≤ k imply that rn! > rk!, and so
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> (k − q + 1)rk! − (q − 1).

Now,
(k − q + 1)rk! − (q − 1) −→ k − 2(q − 1) = N + 2

as r → 1−. Therefore, ∣
∣
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n=0

zn!
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if r is close enough to 1, and so
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n=0
zn!
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is unbounded in a neighborhood of ω.

Theorem. The function

f(z) =

∞∑

n=0

zn!

is unbounded in every neighborhood of every point on the boundary of its circle of convergence; that is, on
the natural boundary of the series.

Proof. The unit circle is the set of points

z = cos 2πt + i sin 2πt

for 0 ≤ t ≤ 1, and since any real number t has a rational approximation p/q as close as we please, if p is the
largest integer contained in qt, then

p ≤ qt < p + 1,

so that
p

q
≤ t <

p

q
+

1

q
.

Therefore, any neighborhood of the point

zt = cos 2πt + i sin 2πt

contains a point
ω = cos 2πp

q
+ i sin 2πp

q
,

and therefore, given any N > 0 it contains a point z where
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zn!
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> N.

Thus,
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is unbounded in every neighborhood of every point on the boundary of its circle of convergence,

so the power series canot be continued across any point of this circumference.


