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In this note we will study the power series
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called a lacunary series or a series with gaps. We will show that the series is unbounded in every
neighborhood of every point on the boundary of its circle of convergence (so the boundary is called a
natural boundary of the series).

Lemma 1. The series -
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is absolutely convergent for any z € C with |z| < 1.
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Proof. To see this, we compare it to the geometric series, Y. 2".
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If we let a, = z™ and b,, = z,, then
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Thus, given any € > 0, there is an integer Ny such that
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for all n > Ny, and therefore,
|an| < €|by|

for all n > Ny. Hence,
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and the series Y. 2™ converges absolutely if |z| < 1.
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Lemma 2. The series
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diverges if z = 1.

Proof. For z = 1, the Nth partial sum of the series is
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lim Sy = 400,
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so the series diverges for z = 1.

Lemma 3. The circle of convergence for the series
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is |z] = 1.

Proof. The series converges absolutely if |z| < 1 and diverges if |z] > 1, so the radius of convergence is
R=1.
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Lemma 4. Let w be a point on the unit circle, w = cos + 7 sin e where p and ¢ are positive integers,

then

is unbounded in a neighborhood of w.

Proof. Let w be a point on the unit circle, and let z = rw, where 0 < r < 1, then
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since w? = 1 so that w™ =1 for n > q.

Therefore,
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since |z| = |rw| = r|w| = r, so that
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Now let N be an arbitrary positive integer, and let k = 2q + N, then
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since 0 < r < 1 and ¢ < n < k imply that 7™ > *' and so
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Now,
(k—q+1)r* —(g—1) —k—-2(gq—1)=N+2

as r — 17. Therefore,
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if 7 is close enough to 1, and so is unbounded in a neighborhood of w.

Theorem. The function -
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is unbounded in every neighborhood of every point on the boundary of its circle of convergence; that is, on
the natural boundary of the series.

Proof. The unit circle is the set of points
2z = cos 27t + i sin 27t

for 0 <t <1, and since any real number ¢ has a rational approximation p/q as close as we please, if p is the
largest integer contained in gt, then

psqt<p+1,
so that
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Therefore, any neighborhood of the point
2y = cos 2wt + ¢ sin 27t

contains a point
w= COSQZ—p +isin27TTp,

and therefore, given any N > 0 it contains a point z where
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Thus, is unbounded in every neighborhood of every point on the boundary of its circle of convergence,
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so the power series canot be continued across any point of this circumference.




