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In this note we will prove Jordan’s Inequality:

Lemma. If R > 0, then
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Proof. From the figure
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and since the exponential function is monotone increasing, we have
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Making the substitution ¢ = m — @ in the integral of e =259 gver the interval 5 <8 <, we have
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From (%) and (**) we have
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so that
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Now we can state:

Jordan’s Lemma:

(a) Let f(z) be analytic at all points in the upper half plane y > 0 that are exterior to a circle |z| = Ro.
(b) Let Cr denote the semicircle z = Re®, 0 < 6 < 7, where R > Ry.

(c) Suppose that for all points z on Cg, there is a positive constant Mg such that
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Proof. If statements (a), (b), and (c) are true, then using the parametrization of the semicircle, we have
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and from Jordan’s inequality we have
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since Mrp — 0 as R — oo.



