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In this note we will show that a power series Z an 2™ can be differentiated or integrated term by term inside

=0
its circle of convergence. First we need the followmg lemma.

Lemma. If Z a, 2" has radius of convergence R > 0, then
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also have radius of convergence R.

Proof. Let z € C with |z| < R and choose r with |z| < < R, then
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since |z| < r, so there exists an integer ng such that
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for all n > ng, and so
|nanz"""| < |an|r"
for all n > nyg.
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Now, E |an|r™ converges since r < R, and from the comparison test this implies that E nanz"" ! converges
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absolutely for all z € C with |z] < R.

On the other hand, if z € C with |z| > R, we can choose a positive number 7 such that R < r < |z|, and if

E na,z""' converges, then r < |z| implies that E nla,|r" ! converges. However,
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implies that E |an|r™ converges, which in turn implies that E an,r" converges. This is a contradiction,
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since r > R. Therefore, Z na,z" "' diverges for all z € C with |z| > R.
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We have shown that Znanzn_l converges for |z| < R, and diverges for |z| > R, that is, the radius of
n=1

convergence of this power series is also R.

Now let R' > 0 be the radius of convergence of Z anz—, then from the above, the series Z an 2" also
n=0 n+l n=0
has radius of convergence R, and therefore R’ = R. O

And now the promised result, with nary a mention of uniform convergence.

Theorem. If Z anz" has radius of convergence R > 0, then the function f(z) = Zanz", |z| < R, is
n=0 n=0
differentiable (and therefore continuous) for |z| < R; and

(a) f'(z) = Znanzn_l for |z| < R,
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(b) / f(s)ds = Zan 1 for any path C joining 0 and z which lies entirely inside the circle of
0 = N
convergence. 0

Proof.

(a) Let z € C with |2] < R, and choose H > 0 so that |z| + H < R (z and H are fixed).
Now let h € C be such that 0 < |h| < H and define
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for |z| < R, then
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Therefore,
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where M = Y |an|(]z] + H)™ < oo since |z| + H < R.
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Therefore, we have

flz+h) - f(2) ||
" filz)| < T2 -M
for |h| < H. Letting h — 0, then
fle+h) - f(z) _
e I = hz)
for |z| < R, that is,
f(z)= Znanz”
n=1

for |z| < R.



(b) Now let f(z) = Z anz" for |z| < R, and define
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for |z| < R, then from part (a), f is analytic in the domain |z| < R, and so is continuous there, and
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F'(z) = Z anz"
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for all |z| < R, that is, F' is an antiderivative of f in the domain |z| < R.

Therefore, if |z| < R and C is any contour joining 0 and z which lies entirely inside the circle of
convergence, then
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/Cf(s) ds = F(z) — F(0) = ;ann—ﬂ

for |z| < R.

Note: If the power series
f(z)= Z anz"
n=0

has radius of convergence R > 0, then f’(z) exists for all z with |z| < R, that is, any power series is an
analytic function in its circle of convergence.



