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The following expansion is known as the binomial series :

Theorem. Let o be any complex number that is not a nonnegative integer. Define the binomial coefficients
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has radius of convergence R = 1, it converges absolutely if |z| < 1, and it diverges if |z| > 1.

On the circle of convergence |z| = 1, we have

(i) If Re(a) > 0 and |z| = 1, then (x) converges absolutely.
(ii) If —1 < Re(a) <0 and z = —1, then (*) diverges.
(iii) If —1 < Re(a) <0 and 0 < § < 2, then (*) converges uniformly on
{z€C: |z] <1, |1+ 2| > 6}
The convergence is not absolute if |z] = 1.

(iv) If Re(a) < —1 and |z| = 1, then (x) diverges.

Finally, in all cases for which (%) converges, we have
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where
(1 + Z)a — eaLog(1+z)

is the principal value of (1 + 2)* if z # —1 and 0% = 0 (recall « # 0).



Proof. We show only that the series converges to (1 + z)“ for all z in the open disk |z| < 1, the remainder
of the proof can be found in the text An Introduction to Classical Real Analysis, by Karl R. Stromberg.

For n >0, let
)
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then
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and by the ratio test, the series converges absolutely for |z| < 1.
Now define the function g on the disk |z| < 1 as follows,
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differentiating, we have
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for |z| < 1.
Now define )
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for |z| < 1, where we use the principal value of the logarithmic function for the power, then
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for all |z| < 1, so that h(z) is constant on the disk |z] < 1.

Since h(0) = 1, then h(z) =1 for all |z] < 1, that is,
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for |z| < 1.



