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The following expansion is known as the binomial series :

Theorem. Let α be any complex number that is not a nonnegative integer. Define the binomial coefficients
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α(α − 1) · · · (α − n + 1)

n!
, for n ≥ 1,

1, for n = 0.

The binomial series

∞
∑

n=0
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zn (∗)

has radius of convergence R = 1, it converges absolutely if |z| < 1, and it diverges if |z| > 1.

On the circle of convergence |z| = 1, we have

(i) If Re(α) > 0 and |z| = 1, then (∗) converges absolutely.

(ii) If −1 < Re(α) ≤ 0 and z = −1, then (∗) diverges.

(iii) If −1 < Re(α) ≤ 0 and 0 < δ < 2, then (∗) converges uniformly on

{z ∈ C : |z| ≤ 1, |1 + z| ≥ δ}.

The convergence is not absolute if |z| = 1.

(iv) If Re(α) ≤ −1 and |z| = 1, then (∗) diverges.

Finally, in all cases for which (∗) converges, we have

(1 + z)α =
∞
∑

n=0
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α

n

)

zn, (∗∗)

where
(1 + z)α = eαLog(1+z)

is the principal value of (1 + z)α if z 6= −1 and 0α = 0 (recall α 6= 0).



Proof. We show only that the series converges to (1 + z)α for all z in the open disk |z| < 1, the remainder
of the proof can be found in the text An Introduction to Classical Real Analysis , by Karl R. Stromberg.
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and by the ratio test, the series converges absolutely for |z| < 1.

Now define the function g on the disk |z| < 1 as follows,
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differentiating, we have
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so that
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= αg(z),

that is,

g′(z) =
αg(z)

1 + z

for |z| < 1.

Now define

h(z) =
g(z)

(1 + z)α

for |z| < 1, where we use the principal value of the logarithmic function for the power, then

h′(z) =
g′(z)

(1 + z)α

−
αg(z)

(1 + z)α+1
=
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−

αg(z)

(1 + z)α+1
= 0

for all |z| < 1, so that h(z) is constant on the disk |z| < 1.

Since h(0) = 1, then h(z) = 1 for all |z| < 1, that is,

(1 + z)α = g(z) =
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for |z| < 1.


