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Binomial Theorem. If ¢ and b are complex numbers and n is a positive integer, then

(a+b)" = zn: (Z) akpnk,

(%)

We will prove this using the principle of mathematical induction, but first we give a definition of the binomial

coefficients, and a lemma.

Definition. If n and k are nonnegative integers, the binomial coefficient <Z> is defined to be

n!

k 0 for k> n,

where by convention 0! = 1.

Pascal’s Lemma. If n and k are integers with 1 < k < n, then
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Proof. Let n and k be integers with 1 < k < n, then
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Proof of Binomial Theorem. We assume first that both @ and b are nonzero. In this case, a® = 1 and b° = 1.

Base case: If n =1, then
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and (x) is true for n = 1.



Inductive Step: If n > 1 and (%) is true for n, then
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and (x) is true for n + 1 also.
Therefore, by the principle of mathematical induction, (x) is true for all n > 1.

In the case that one (or both) of a or b is zero, then a +b = b or a + b = a, and the sum is either b" or a”, and

the theorem is true in this case also, provided we interpret the term 0° in the sum as 1. [l
Example. If we take a = —1 and b = 1 in the binomial theorem, then
" - n n n
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In the first sum the index k runs through all the even integers from 0 to n, and the last term in the sum occurs
n n
when 2k < n < 2k 4 1, that is, when k£ = {gJ , that is, when k is the greatest integer less than or equal to 35

In the second sum the index k runs through all the odd integers from 1 to n, and the last term in the sum occurs
1

when 2k — 1 < n < 2k, that is, when k = {%J , that is, when k is the greatest integer less than or equal to

n+1

. Therefore,



Exercise. Prove the identity

for n > 1.

SOLUTION: From the binomial theorem we have

(1+i)" = zn: (Z)ﬁ

and

so that

@iy =3 (F)it - -0

k=0

and the only terms that survive are the terms when k is odd.

Now if £k = 2m + 1, then

Z'Qerl — Z . ,L-Qm — Z(_l)m7
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and since we want 2m + 1 < n, then we must have m < L—J , and
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A+ —(1—4)" =2 :Z (Qm”+ 1) (=1)™,

and therefore,

for n > 0.

Also,

and therefore,
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for n > 0.

Note: We have used Euler’s formulas
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to write

cosf =

in the above.
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