

Math 311 - Spring 2014

Assignment # 8

Completion Date: Friday May 30, 2014

Question 1. [p 149, #2]

By finding an antiderivative, evaluate each of these integrals, where the path is any contour between the indicated limits of integration:

(a)
$$\int_{i}^{i/2} e^{\pi z} dz$$
; (b) $\int_{0}^{\pi+2i} \cos\left(\frac{z}{2}\right) dz$; (c) $\int_{1}^{3} (z-2)^{3} dz$
Ans: (a) $(1+i)/\pi$; (b) $e + (1/e)$; (c) 0.

Question 2. [p 149, #5]

Show that

$$\int_{-1}^{1} z^{i} dz = \frac{1 + e^{-\pi}}{2} (1 - i),$$

where z^i denotes the principal branch

$$z^{i} = \exp(i \operatorname{Log} z) \quad (|z| > 0, \ -\pi < \operatorname{Arg} z < \pi)$$

and where the path of integration is any contour from z = -1 to z = 1 that, except for its end points, lies above the real axis. (Compare with Exercise 7, Sec. 42.)

Suggestion: Use an antiderivative of the branch

$$z^{i} = \exp(i \log z) \quad \left(|z| > 0, \ -\frac{\pi}{2} < \arg z < \frac{3\pi}{2}\right)$$

of the same power function.

Question 3. [p 160, #1 (a)]

Apply the Cauchy-Goursat theorem to show that $\int_C f(z) dz = 0$ when the contour C is the circle |z| = 1, in either direction, and when $f(z) = \frac{z^2}{z-3}$.

Question 4. [p 160, #1 (c)]

Apply the Cauchy-Goursat theorem to show that $\int_C f(z) dz = 0$ when the contour C is the circle |z| = 1, in either direction, and when $f(z) = \frac{1}{z^2 + 2z + 2}$.

Question 5. [p 160, #1 (f)]

Apply the Cauchy-Goursat theorem to show that $\int_C f(z) dz = 0$ when the contour C is the circle |z| = 1, in either direction, and when f(z) = Log(z+2).

Question 6. [p 170, #1 (a)]

Let C denote the positively oriented boundary of the square whose sides lie along the lines $x = \pm 2$ and $y = \pm 2$. Evaluate the integral

$$\int_C \frac{e^{-z}}{z - (\pi i/2)} \, dz$$

Ans: 2π .

Question 7. [p 170, #1 (b)]

Let C denote the positively oriented boundary of the square whose sides lie along the lines $x = \pm 2$ and $y = \pm 2$. Evaluate the integral

$$\int_C \frac{\cos z}{z(z^2+8)} \, dz$$

Ans: $\pi i/4$.

Question 8. [p 170, #1 (e)]

Let C denote the positively oriented boundary of the square whose sides lie along the lines $x = \pm 2$ and $y = \pm 2$. Evaluate the integral

$$\int_C \frac{\tan(z/2)}{(z-x_0)^2} \, dz \quad (-2 < x_0 < 2).$$

Ans: $i\pi \sec^2(x_0/2)$.

Question 9. [p 170, #2]

Find the value of the integral of g(z) around the circle |z - i| = 2 in the positive sense when

(a)
$$g(z) = \frac{1}{z^2 + 4}$$
; (b) $g(z) = \frac{1}{(z^2 + 4)^2}$

Ans: (a) $\pi/2$; (b) $\pi/16$.

Question 10. [p 171, #3]

Let C be the circle |z| = 3, described in the positive sense. Show that if

$$g(w) = \int_C \frac{2z^2 - z - 2}{z - w} \, dz \quad (|w| \neq 3),$$

then $g(2) = 8\pi i$. What is the value of g(w) when |w| > 3?

Question 11. [p 171, #7]

Let C be the unit circle $z = e^{i\theta}$ $(-\pi \le \theta \le \pi)$. First show that, for any real constant a,

$$\int_C \frac{e^{az}}{z} \, dz = 2\pi i.$$

Then write this integral in terms of θ to derive the integration formula

$$\int_0^{\pi} e^{a\cos\theta} \cos(a\sin\theta) \, d\theta = \pi.$$