

Math 311 - Spring 2014 Assignment # 6 Completion Date: Friday May 23, 2014

Question 1. [p 109, #9]

With the aid of expressions (15) and (16) in Sec. 34 for $|\sin z|^2$ and $|\cos z|^2$, namely,

$$|\sin z|^2 = \sin^2 x + \sinh^2 y$$

and

 $|\cos z|^2 = \cos^2 x + \sinh^2 y,$

show that

- (a) $|\sinh y| \le |\sin z| \le \cosh y;$
- (b) $|\sinh y| \le |\cos z| \le \cosh y$.

Question 2. [p 109, #14]

Show that

(a)
$$\overline{\cos(i z)} = \cos(i \overline{z})$$
 for all z :

(b) $\overline{\sin(iz)} = \sin(i\overline{z})$ if and only if $z = n\pi i$ $(n = 0, \pm 1, \pm 2, ...)$.

Question 3. [p 109, #15]

Find all roots of the equation $\sin z = \cosh 4$ by equating real and imaginary parts of $\sin z$ and $\cosh 4$.

Ans:
$$\left(\frac{\pi}{2} + 2n\pi\right) \pm 4i$$
 $(n = 0, \pm 1, \pm 2, \dots).$

Question 4. [p 111, #6]

Show that $|\sinh x| \le |\cosh z| \le \cosh x$ by using

- (a) identity (12), Sec. 35, namely $|\cosh z|^2 = \sinh^2 x + \cos^2 y;$
- (b) the inequalities $|\sinh y| \le |\cos z| \le \cosh y$, obtained in Exercise 9(b), Sec.34.

Question 5. [p 112, #9]

Using the results proved in Exercise 8, locate all zeros and singularities of the hyperbolic tangent function.

Question 6. [p 112, #16]

Find all roots of the equation $\cosh z = -2$. (Compare this exercise with Exercise 16, Sec 34.) Ans: $\pm \ln(2 + \sqrt{3}) + (2n + 1)\pi i$ $(n = 0, \pm 1, \pm 2, ...)$.

Question 7. $[p \ 114, \#2]$

Solve the equation $\sin z = 2$ for z by

- (a) equating real and imaginary parts in that equation;
- (b) Using expression (2), Sec. 36, for $\sin^{-1} z$, namely $\sin^{-1} z = -i \log \left[i z + (1 z^2)^{1/2} \right]$.