

Math 311 - Spring 2014

Assignment # 5

Completion Date: Wednesday May 21, 2014

Question 1. [p 97, #1 (b)]

Show that $Log(1 - i) = \frac{1}{2} \ln 2 - \frac{\pi}{4} i.$

Question 2. $[p \ 97, \#2 \ (b)]$

Verify that when $n = 0, \pm 1, \pm 2, \dots, \quad \log i = \left(2n + \frac{1}{2}\right)\pi i.$

Question 3. [p 97, #2 (c)]

Verify that when $n = 0, \pm 1, \pm 2, \dots, \log(-1 + \sqrt{3}i) = \ln 2 + 2\left(n + \frac{1}{3}\right)\pi i.$

Question 4. [p 97, #3]

Show that

(a) $\text{Log}(1+i)^2 = 2\text{Log}(1+i);$ (b) $\text{Log}(-1+i)^2 \neq 2\text{Log}(-1+i).$

Question 5. [p 97, #5]

Show that

- (a) the set of values of $\log(i^{1/2})$ is $(n+\frac{1}{4})\pi i$ $(n=0,\pm 1,\pm 2,\ldots)$ and that the same is true of $\frac{1}{2}\log i$.
- (b) the set of values of $\log(i^2)$ is *not* the same as the set of values of $2\log i$.

Question 6. [p 97, #9]

Show that

- (a) the function Log(z-i) is analytic everywhere except on the half line y = 1 ($x \le 0$);
- (b) the function

$$\frac{\log(z+4)}{z^2+i}$$

is analytic everywhere except at the points $\pm (1-i)/\sqrt{2}$ and on the portion $x \leq -4$ of the real axis.

Question 7. [p 104, #1]

Show that when $n = 0, \pm 1, \pm 2, \ldots$,

(a)
$$(1+i)^{i} = \exp\left(-\frac{\pi}{4} + 2n\pi\right) \exp\left(\frac{i}{2}\ln 2\right);$$

(b) $(-1)^{1/\pi} = e^{(2n+1)i}.$

Question 8. $[p \ 104, \ #2 \ (c)]$

Find the principal value of $(1-i)^{4i}$.