

Math 311 - Spring 2014 Assignment # 2 Completion Date: Friday May 9, 2014

Question 1. [p 29, #2]

In each case, find all of the roots in rectangular coordinates, exhibit them as vertices of certain squares, and point out which is the principal root:

(a)
$$(-16)^{1/4}$$
; (b) $(-8 - 8\sqrt{3}i)^{1/4}$.

Ans: (a) $\pm \sqrt{2} (1+i), \pm \sqrt{2} (1-i);$ (b) $\pm (\sqrt{3}-i), \pm (1+\sqrt{3}i).$

Question 2. [p 30, #3]

In each case, find all of the roots in rectangular coordinates, exhibit them as vertices of certain regular polygons, and identify the principal root:

(a)
$$(-1)^{1/3}$$
; (b) $8^{1/6}$.

Ans: (b) $\pm \sqrt{2}, \pm \frac{1 + \sqrt{3}i}{\sqrt{2}}, \pm \frac{1 - \sqrt{3}i}{\sqrt{2}}.$

Question 3. [p 33, #1]

Sketch the following sets and determine which are domains:

(a) $ z-2+i \le 1;$	(b) $ 2z+3 > 4;$	(c) Im $z > 1;$
(d) Im $z = 1;$	(e) $0 \le \arg z \le \pi/4 \ (z \ne 0);$	(f) $ z - 4 \ge z $.

Ans: (b), (c) are domains.

Question 4. [p 33, #4]

In each case, sketch the closure of the set:

(a)
$$-\pi < \arg z < \pi \ (z \neq 0);$$
 (b) $|\text{Re } z| < |z|;$
(c) $\text{Re } \left(\frac{1}{z}\right) \le \frac{1}{2};$ (d) $\text{Re } (z^2) > 0.$

Question 5. [p 37, #2]

Write the function $f(z) = z^3 + z + 1$ in the form f(z) = u(x, y) + iv(x, y). Ans: $(x^3 - 3xy^2 + x + 1) + i(3x^2y - y^3 + y)$.

Question 6. [p 37, #3]

Suppose that $f(z) = x^2 - y^2 - 2y + i(2x - 2xy)$, where z = x + iy. Use the expressions (see Sec. 5)

$$x = \frac{z + \overline{z}}{2}$$
 and $y = \frac{z - \overline{z}}{2i}$

to write f(z) in terms of z and simplify the result.

Ans: $\overline{z}^2 + 2iz$.

Question 7. [p 44, #1]

By referring to Example 1 in Sec. 13, find a domain in the z plane whose image under the transformation $w = z^2$ is the square domain in the w plane bounded by the lines u = 1, u = 2, v = 1, and v = 2. (See Fig. 2, Appendix 2.)

Question 8. [p 44, #3]

Sketch the region onto which the sector $r \leq 1, 0 \leq \theta \leq \pi/4$ is mapped by the transformation

(a) $w = z^2$; (b) $w = z^3$; (c) $w = z^4$.