MATH 309

Solutions to Midterm Examination I
DATE: Monday June 11, 2018
TIME: 50 Minutes

INSTRUCTOR: I. E. Leonard (Section C1)

Question 1. Find two numbers whose sum is 2 and whose product is 17 .
Solution: Suppose that $z_{1}, z_{2} \in \mathbb{C}$, we want $z_{1}+z_{2}=2$ and $z_{1} \cdot z_{2}=17$. The obvious solution is $z_{1}=1+4 i$ and $z_{2}=1-4 i$, since $z_{1}+z_{2}=1+1=2$, and $z_{1} \cdot z_{2}=1^{2}+4^{2}=17$.

If we want $z_{1}+z_{2}=2$ and $z_{1} \cdot z_{2}=17$, then we must have

$$
z_{1}+\frac{17}{z_{1}}=2
$$

so that z_{1} satisfies the quadratic equation: $z_{1}^{2}-2 z_{1}+17=0$. Completing the square, we have

$$
\left(z_{1}-1\right)^{2}=-16,
$$

so that $z_{1}-1= \pm 4 i$, and therefore $z_{1}=1+4 i$ and $z_{2}=1-4 i$ obviously.
Question 2. If $k>0$, show that the locus of points z for which

$$
\left|\frac{1+z}{1-z}\right|=k
$$

is a circle if $k \neq 1$, and a straight line if $k=1$.
Solution: If $k=1$, then the set of all points $z \in \mathbb{C}$ such that $|z+1|=$ $|1-z|=|z-1|$ is the set of all points that are equidistant from the points $p_{1}=1$ and $p_{2}=-1$; that is, the line L which is the perpendicular bisector of the line segment $\left[p_{1}, p_{2}\right]$ joining the points p_{1} and p_{2}.

If $k \neq 1$, then we want the set of all points in the complex plane for which $|z+1|=k|1-z|=k|z-1|$, and since the absolute value is a nonnegative real number, we may assume that $k>0$. Also, we may also assume that $0<k<1$ since if $k>1$ we onlv need to divide the eanation by k to oret the

Now if k is a positive real number such that $0<k<1$, then the set of all point z in the complex plane such that $|z+1|=k|z-1|$ is the circle of Apollonius for $1,-1$ and k. We can show this as follows: $|z+1|=k|z-1|$ if and only if

$$
\begin{aligned}
|z+1|^{2} & =(x+1)^{2}+y^{2}=k^{2}\left[(x-1)^{2}+y^{2}\right] \\
& =x^{2}+2 x+1+y^{2}=k^{2}\left[x^{2}-2 x+1+y^{2}\right] \\
& =\left(1-k^{2}\right) x^{2}+\left(1+k^{2}\right) 2 x+\left(1-k^{2}\right) y^{2}+\left(1-k^{2}\right)=0,
\end{aligned}
$$

that is,

$$
\left(1-k^{2}\right) x^{2}+\left(1+k^{2}\right) 2 x+\left(1-k^{2}\right) y^{2}+\left(1-k^{2}\right)=0 .
$$

Completing the square, we have the equivalent statement

$$
x^{2}+\frac{1+k^{2}}{1-k^{2}} 2 x+\frac{\left(1+k^{2}\right)^{2}}{\left(1-k^{2}\right)^{2}}+y^{2}=\frac{\left(1+k^{2}\right)^{2}}{\left(1-k^{2}\right)^{2}}-1=\frac{4 k^{2}}{\left(1-k^{2}\right)^{2}},
$$

So that z lies on the circle of radius $R=\frac{2 k}{1-k^{2}}$ with center at $z_{0}=\frac{1+k^{2}}{1-k^{2}}$ on the line joining $p=(1,0)$ and $q=(-1,0)$.

Question 3. Let S be the set of all points $a+i b$ in the complex plane, where a and b are rational real numbers, such that $0 \leq a \leq 1$ and $0 \leq b \leq 1$.

Answer the following questions concerning the set S. Give a brief reason for your answer to each part.
(a) Is S bounded?
(b) What are the accumulation points of S, if any?
(c) Is S closed?
(d) What are the interior and boundary points of S.
(e) Is S open?
(f) Is S connected?
(g) Is S a domain?
(h) What is the closure of S ?
(b) Let T be the (solid) square of side 1 :

$$
T=\{z \in \mathbb{C} \mid z=a+i b, 0 \leq a \leq 1,0 \leq b \leq 1\}
$$

then every point of T is an accumulation point of S.
(c) S is not closed, since it does not contain all of its accumulation points.
(d) S has no interior points, and every point of T is a boundary point of S.
(e) S is not open, it has no interior points, so $\operatorname{int}(S)=\emptyset$.
(f) S is not connected, since any line segment joining two points of S must contain points in S and points not in S.
(g) S is not a domain, it is neither open nor connected.
(h) The closure of S is T the solid square.

Question 4. Find the image of the circle $|z+i|=1$ under the map $w=\frac{1}{z}$.
Solution: The image of the circle $z=x+i y$ under the map $w=\frac{1}{z}, z \neq 0$, is the line $v=\frac{1}{2}$, where $w=u+i v$.

If $w=u+i v$ is in the w-plane, and z is on the circle, then

$$
z+i=\frac{1}{w}+i
$$

and

$$
|z+i|=\left|\frac{1}{w}+i\right|=\frac{|1+i w|}{|w|}=\left|\frac{1-v+i u}{u+i v}\right|=1
$$

that is, $(1-v)^{2}+u^{2}=u^{2}+v^{2}$, or $1-2 v=0$. so the image of the circle $|z+i|=1$ is the line $v=\frac{1}{2},-\infty<u<\infty$ if $w=u+i v$.

