
 

Math 309 - Spring-Summer 2018

Solutions to Problem Set # 3

Question 1.

Verify that the function
f(z) = 3x+ y + i (3y − x)

is entire.

Solution: If f(z) = 3x+ y + i(3y − x), then u(x, y) = 3x+ y and v(x, y) = 3y − x, so that

∂u

∂x
= 3 =

∂v

∂y
and

∂u

∂y
= 1 = −∂v

∂x
.

Since the Cauchy-Riemann equations hold for all z ∈ C and all partial derivatives are continuous everywhere,
f ′(z) exists for all z ∈ C and f(z) is analytic at each z ∈ C. Therefore f(z) is an entire function.

Note that f(z) = 3(x+ i y) + i(−x− i y) = 3z − i z and f ′(z) = 3− i.

Question 2.

Verify that the function
f(z) = e−y sinx− i e−y cosx

is entire.

Solution: If f(z) = e−y sinx− i e−y cosx, then u(x, y) = e−y sinx and v(x, y) = −e−y cosx, so that

∂u

∂x
= e−y cosx =

∂v

∂y
and

∂u

∂y
= −e−y sinx = −∂v

∂x
.

Since all partial derivatives are defined and continuous everywhere and the Cauchy-Riemann equations hold
for all z ∈ C, then f ′(z) exists for all z ∈ C, that is, f is entire.

Question 3.

For the function

f(z) =
z2 + 1

(z + 2)(z2 + 2z + 2)
,

determine the singular points of the function and state why the function is analytic everywhere except at
those points.

Ans : z = −2, −1± i.

Solution: Note that z2 + 2z + 2 = (z + 1)2 + 1 = 0 when z = −1± i, and f ′(z) doesn’t exist for

z0 = −2, z1 = −1 + i, z2 = −1− i,

and f is not analytic at any of these points.



Note that f ′(z) exists except at each of these points, so that f is analytic everywhere except at these points.

Therefore, given any one of these points, every ǫ-neighborhood of that point contains at least one point at
which f is analytic, and the points

z0 = −2, z1 = −1 + i, z2 = −1− i,

are singular points of f(z).

Question 4.

Verify that the function
g(z) = ln r + i θ (r > 0, 0 < θ < 2π)

is analytic in the indicated domain of definition, with derivative g′(z) =
1

z
. Then show that the composite

function G(z) = g(z2 + 1) is analytic in the quadrant x > 0, y > 0, with derivative

G′(z) =
2z

z2 + 1
.

Suggestion : Observe that Im(z2 + 1) > 0 when x > 0, y > 0.

Solution: If g(z) = ln r + i θ (r > 0, 0 < θ < 2π), then

u(r, θ) = ln r and v(r, θ) = θ

for r > 0, 0 < θ < 2π, and

∂u

∂r
=

1

r
=

1

r

∂v

∂θ
1

r

∂u

∂θ
= 0 = −∂v

∂r
.

Therefore, the Cauchy-Riemann equations hold at each point of the domain r > 0, 0 < θ < 2π, and all the
partial derivatives are continuous there, hence g is analytic in this domain, and

g′(z) = e−iθ

(

∂u

∂r
+ i

∂v

∂r

)

= e−iθ

(

1

r
+ i 0

)

=
1

reiθ
=

1

z
,

for r > 0, 0 < θ < 2π.

Since the function z 7→ z2 + 1 is analytic everywhere, then the composition G(z) = g(z2 + 1) is analytic
wherever

w = z2 + 1 = ρeiφ

satisfies ρ > 0, 0 < φ < 2π.

Now, if x > 0 and y > 0, then Im(z2 + 1) = 2xy > 0, so that ρ > 0 and 0 < φ < π < 2π, and therefore

G(z) = g(z2 + 1)

is analytic for z = x + i y with x > 0, y > 0, and we can use the chain rule to differentiate it. Letting
w = z2 + 1, then

G′(z) = g′(w) · dw
dz

=
1

w
· 2z =

2z

z2 + 1
,

for x > 0, y > 0.



Question 5.

Let f(z) be analytic in a domain D. Prove that f(z) must be constant throughout D if |f(z)| is constant
throughout D.

Suggestion : Observe that

f(z) =
c2

f(z)
if |f(z)| = c (c 6= 0).

Solution: Suppose that f(z) = u(x, y) + i v(x, y) for z = x+ i y ∈ D, then

|f(z)|2 = u(x, y)2 + v(x, y)2 = c2

for z ∈ D, where c ∈ R is a constant. Differentiating with respect to x and with respect to y, we get

u
∂u

∂x
+ v

∂v

∂x
= 0

u
∂u

∂y
+ v

∂v

∂y
= 0

in D. Multiplying the first equation by u and the second equation by v, we get

u2 ∂u

∂x
+ uv

∂v

∂x
= 0

uv
∂u

∂y
+ v2

∂v

∂y
= 0,

and using the Cauchy-Riemann equations, we have

u2 ∂u

∂x
+ uv

∂v

∂x
= 0

−uv
∂v

∂x
+ v2

∂u

∂x
= 0.

Adding these two equations, we have

(u2 + v2)
∂u

∂x
= 0

on D. In an entirely similar way, we find

(u2 + v2)
∂u

∂y
= 0, and (u2 + v2)

∂v

∂x
= 0, and (u2 + v2)

∂v

∂y
= 0,

on D. Finally, since u2 + v2 = c2, we have

c2
∂u

∂x
= c2

∂u

∂y
= c2

∂v

∂x
= c2

∂v

∂y
= 0

on D. Now, if c = 0, then |f(z)| = 0 and therefore f(z) = 0 for all z ∈ D, however, if c 6= 0, then

∂u

∂x
=

∂u

∂y
=

∂v

∂x
=

∂v

∂y
= 0,

and therefore f(z) is a constant for z ∈ D.

Alternatively, using the suggestion, if |f(z)| = c for all z ∈ D, and c = 0, then f(z) = 0 for all z ∈ D.

On the other hand, if |f(z)| = c for all z ∈ D, where c 6= 0, then f(z) is never 0 in D, and the function

f(z) =
c2

f(z)

is also analytic on D, and since f and f are both analytic on D, then f(z) is a constant on D.



Question 6. Show that the function
u(x, y) = sinhx sin y

is harmonic in some domain and find a harmonic conjugate v(x, y).

Ans : v(x, y) = − coshx cos y.

Solution: If u(x, y) = sinhx sin y, then

∂2u

∂x2
(x, y) +

∂2u

∂y2
(x, y) = sinhx sin y − sinhx sin y = 0

for all (x, y) ∈ C, and u is harmonic on all of C. In order to find a harmonic conjugate v(x, y) of u, we use
the Cauchy-Riemann equations to get

∂v

∂y
=

∂u

∂x
= coshx sin y

∂v

∂x
= −∂u

∂y
= − sinhx cos y,

Integrating the first equation with respect to y holding x fixed, we have

v(x, y) = − coshx cos y + h(x)

where h(x) is an arbitrary function of x. Using the second equation, we have

∂v

∂x
= − sinhx cos y + h′(x) = − sinhx cos y,

that is, h′(x) = 0 for all x, so that h(x) = C (constant) for all x.

Therefore, for any real constant C, the function

v(x, y) = − coshx cos y + C

is a harmonic conjugate for u(x, y) = sinhx sin y on C.

Question 7.

Verify that the function u(r, θ) = ln r is harmonic in the domain r > 0, 0 < θ < 2π by showing that it
satisfies the polar form of Laplace’s equation. Then use the Cauchy-Riemann equations in polar form, to
derive the harmonic conjugate v(r, θ) = θ.

Solution: If u(r, θ) = ln r, for r > 0, 0 < θ < 2π, then

∂2u

∂r2
=

∂

∂r

(

∂

∂r
(ln r)

)

=
∂

∂r

(

1

r

)

= − 1

r2
,

and
∂u

∂r
=

1

r
, and

∂2u

∂θ2
= 0.

Therefore,
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂θ2
=

(

− 1

r2

)

+
1

r

(

1

r

)

+ 0 = 0

for all r > 0, 0 < θ < 2π, and u is harmonic in this region.

In order to find a harmonic conjugate v(r, θ) of u, we use the Cauchy-Riemann equations

∂u

∂r
=

1

r

∂v

∂θ
and

1

r

∂u

∂θ
= −∂v

∂r



and we want

∂v

∂θ
= r

(

1

r

)

= 1

∂v

∂r
= 0

Integrating the first equation with respect to θ holding r fixed, we have

v(r, θ) = θ + h(r)

where h(r) is an arbitrary function of r. Using the second equation, we have

∂v

∂r
= h′(r) = 0,

that is, h′(r) = 0 for all r > 0, so that h(r) = C (constant) for all r > 0.

Therefore, for any real constant C, the function

v(r, θ) = θ + C

is a harmonic conjugate for u(r, θ) = ln r for r > 0, 0 < θ < 2π.

So we may take v(r, θ) = θ, r > 0, 0 < θ < 2π, as the harmonic conjugate of u = ln r.

The function f(z) = ln r + i θ, r > 0, 0 < θ < 2π, is analytic in this domain, and

f ′(z) = e−iθ

(

∂u

∂r
+ i

∂v

∂r

)

= e−iθ · 1
r
=

1

reiθ
=

1

z

for r > 0, 0 < θ < 2π.

Question 8.

Show that (a) exp(2± 3π i) = −e2; (b) exp

(

2 + π i

4

)

=

√

e

2
(1 + i); (c) exp(z + π i) = − exp z.

Solution:

(a) From the definition of the exponential function, we have

exp(2± 3π i) = e2(cos 3π ± i sin 3π) = e2(−1 + i 0) = −e2.

(b) From the definition of the exponential function, we have

exp

(

2 + π i

4

)

= e
1
2 · eπ i/4 =

√
e (cosπ/4 + i sinπ/4) =

√

e

2
(1 + i).

(c) From the definition of the exponential function, we have

exp(z + π i) = ex+i(y+π) = ex (cos(y + π) + i sin(y + π)) = −ex(cos y + i sin y) = −ex+iy = −ez.

Question 9. Use the Cauchy-Riemann equations to show that the function

f(z) = exp z

is not analytic anywhere.



Solution: If f(z) = exp z = ex(cos y − i sin y), then u(x, y) = ex cos y and v(x, y) = −ex sin y, and

∂u

∂x
= ex cos y,

∂v

∂y
= −ex cos y

∂u

∂y
= −ex sin y,

∂v

∂x
= −ex sin y.

The Cauchy-Riemann equations hold if and only if

2ex cos y = 0

2ex sin y = 0,

that is, if and only if sin y = cos y = 0. However, this is impossible, since sin2 y+cos2 y = 1. Therefore, there
are no points z ∈ C for which f(z) = ez is differentiable, and so no points z ∈ C at which f is analytic.

Question 10.

Write | exp(2z + i)| and | exp(iz2)| in terms of x and y. Then show that

| exp(2z + i) + exp(iz2)| ≤ e2x + e−2xy.

Solution: We have
| exp(2z + i)| = |e2x+i(2y+1)| = e2x|ei(2y+1)| = e2x,

and
| exp(iz2)| = |ei(x2−y2+2ixy)| = e−2xy|ei(x2−y2)| = e−2xy,

therefore
|e2z+i + eiz

2 | ≤ |e2z+i|+ |eiz2 | = e2x + e−2xy.

Question 11.

Show that | exp(z2)| ≤ exp(|z|2).

Solution: We have
∣

∣ez
2 ∣

∣ =
∣

∣ex
2−y2 · e2ixy

∣

∣ =
∣

∣ex
2−y2 ∣

∣ ·
∣

∣e2ixy
∣

∣ = ex
2−y2

,

and since x2 − y2 ≤ x2 + y2, and the (real) exponential function is increasing, then ex
2−y2 ≤ ex

2+y2

, so that
∣

∣ez
2 ∣

∣ = ex
2−y2 ≤ ex

2+y2

= e|z|
2

,

that is,
∣

∣ez
2 ∣

∣ ≤ e|z|
2

for all z ∈ C.

Question 12.

Find all values of z such that

(a) ez = −2; (b) ez = 1 +
√
3 i; (c) exp(2z − 1) = 1.

Ans :

(a) z = ln 2 + (2n+ 1)π i (n = 0, ±1, ±2, . . . ).

(b) z = ln 2 +

(

2n+
1

3

)

π i (n = 0, ±1, ±2, . . . ).

(c) z =
1

2
+ nπ i (n = 0, ±1, ±2, . . . ).



Solution:

(a) Note that

ez = −2 if and only if ex · eiy = 2 · eiπ if and only if ex = 2 and eiy = eiπ.

This last condition is true if and only if

x = ln 2 and y = π + 2kπ

for k = 0,±1,±2, . . . , that is, if and only if

z = ln 2 + (2k + 1)πi

for k = 0,±1,±2, . . . .

(b) Note that

ez = 1 +
√
3 i if and only if ez = 2

(

1

2
+

√
3 i

2

)

if and only if ez = 2 · eiπ/3.

This last condition is true if and only if

x = ln 2 and y =
π

3
+ 2πk

for k = 0,±1,±2, . . . , that is, if and only if

z = ln 2 + i
(π

3
+ 2πk

)

for k = 0,±1,±2, . . . .

(c) Note that
e(2z−1) = 1 if and only if e2x−1 · e2i y = 1 · ei 0

and this last condition is true if and only if

e2x−1 = 1 and 2y = 2πk,

for k = 0,±1,±2, . . . , that is, if and only if

2x− 1 = ln 1 = 0 and y = πk,

for k = 0,±1,±2, . . . , that is, if and only if

z =
1

2
+ πki

for k = 0,±1,±2, . . . .

Question 13. We showed in class that for the inversion mapping f(z) = 1/z, z 6= 0, the real and imaginary
parts of f(z) are

u(x, y) =
x

x2 + y2
and v(x, y) =

−y

x2 + y2
.

Show that the level curves of u(x, y) are a family of circles passing through the origin with center on the
real axis; while the level curves of v(x, y) are a family of circles passing through the origin with center on
the imaginary axis.



Solution: If u(x, y) is constant, say,

u(x, y) =
x

x2 + y2
=

1

2k
,

then
x2 + y2 = 2kx, that is, (x− k)2 + y2 = k2.

Thus, the level curves of the real part of f(z) = 1/z are a family of circles centered on the real axis and
passing through the origin.

Similarly, If v(x, y) is constant, say,

v(x, y) =
−y

x2 + y2
=

1

2k
,

then
x2 + y2 = −2ky, that is, x2 + (y + k)2 = k2.

Thus, the level curves of the imaginary part of f(z) = 1/z are a family of circles centered on the imaginary
axis and passing through the origin.

Note that for any z = x+ iy 6= 0, the gradients

∇u(x0, y0) =

(

∂u

∂x
(x0, y0),

∂u

∂x
(x0, y0)

)

and

∇v(x0, y0) =

(

∂v

∂x
(x0, y0),

∂v

∂x
(x0, y0)

)

are perpendicular to the level curves of u and v, respectively, passing through the point (x0, y0). In fact,
from the Cauchy-Riemann equations, the inner product

∂u

∂x
(x0, y0) �

∂v

∂x
(x0, y0) =

∂u

∂x

∂v

∂x

∣

∣

∣

∣

(x0,y0)

+
∂u

∂y

∂v

∂y

∣

∣

∣

∣

(x0,y0)

= 0,

Thus, the level curves for u(x, y) and v(x, y) intersect orthogonally at (x0, y0) as in the figure.

u = constant

x

y

v = constant

This is true in general for a function and its harmonic conjugate.


