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Math 309 - Spring-Summer 2018
Solutions to Problem Set # 0

Question 1.
Show that
(a) Re (iz) = —Im z; (b) Im (iz) = Re z.

SOLUTION: If z = x 4 iy, then iz = —y + ix, so that

(a) Re(iz) = —y = —Im z, and
(b) Im (iz) = = = Re z.

Question 2.

51
Reduce the quantity — to a real number.

(1-92-9)B -1

SoLuTION: We have

Question 3.
Reduce the quantity (1 —4)? to a real number.

SoLuTION: We have

Question 4.
Verify that v/2|z| > |[Re 2| + |Im z|.
Suggestion: Reduce this inequality to (|z| — [y|)* > 0.
SOLUTION: Note that
0 < (|Re z| — [Im 2|)?> = |Re 2|> — 2|Re 2| |[Im z| + [Im z|?,

so that
2|Re 2| [Im z| < [Re z|? + [Im z|?,

and
[Re 2> + 2|Re 2| [Im z[ + [Im z|* < 2 (|Re z|* + [Im 2[*)
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that is,
(IRe 2| + |Im z[)* < 2 (|Re 2|® + [Im 2[?) = 2|z|%,

and therefore,
Re z| + [Im 2| < V2]z].
Question 5.
In each case, sketch the set of points determined by the given condition:
(a) [z =144 =1; (b) |z +1| <3; (c) |z —4i] > 4.

SOLUTION:

(a) The set {z € C : |z — 1+ i| = 1} is the circle centered at 1 — ¢ with radius 1.

(b) The set {z € C : |z + 14| < 3} is the closed disk centered at —i with radius 3.

(c) The set {z € C : |z — 4i| > 4} is the set of all points on and outside the circle centered at 4i with
radius 4.
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Question 6.

Use the properties of conjugates and modulii established in class to show that

(a) 2+ 3i=2—3i (b) iz = —iz;
(c) (2+1i)2=3— 4i; (d) [(2z2+5)(V2 —1i)| = V3 |22+ 5].
SOLUTION:

(a) Since z =z, then 2+ 3i =z + 3i = z — 3i.

(b) iz = —y+ix = —y — iz = —i(x —iy) = —iZ.
© @+i)2=(2+i) =(@2-i)2=3—4i

(d) |2z +5)(V2—i)|=|22+5] - |[V2—i|=V3 - [2z2+5| = V3 [2z + 5].

Question 7.

Use established properties of moduli to show that when |z3] # |z4],

21+ 22 |z1] + |22]
zz+za| = |lea| = |24l |
SOLUTION: If |z3| # |z4|, then
|21 + 22| < |21] + |22 and |23 4 24| > ||23] — |2al|,
so that
21+ 22 |z1] + | 22|
z3+ 24| = |l|z3] = |zl |

Question 8.

Find the principal argument Arg z when z = T
—2—-2i
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SOLUTION: Note that

that is, _
) () ()]

2
Therefore, |z| = % and Arg(z) = ——.



Question 9.

Using the fact that the modulus |ei9 — 1‘ is the distance between the points ¢ and 1, give a geometric
argument to find a value of # in the interval 0 < # < 27 that satisfies the equation |e’? — 1| = 2.

Ans. .

SOLUTION: Note that
le?® — 112 = | cosf +isinf — 1> = (cos@ — 1)* +sin® 0 = 4

if and only if cosf® = —1, that is, if and only if §# = m. Geometrically, |e? — 1] is the distance between the
points z; = €% and 2z = 1 on the unit circle {z € C : |z| = 1}, and this is a maximum of 2 when 0 = 7.

Question 10.

Establish the identity
1 — gt
1+z+22+--~+z"=71 (z#1)
—z

and then use it to derive Lagrange’s trigonometric identity:

1+cos€)+(:0520+~~+cosn0:l+w

2 2 sin (0/2) (0 <6 <2m).

Suggestion: As for the first identity, write S = 1+ 2+ 2% + -+ + 2™ and consider the difference S — 2S. To
derive the second identity, write z = € in the first one.

SOLUTION: If z # 1, then

A—2)A4z+22 42" =1424+22+ 42" — (2 4+ 22+ 2"

=1- 2"
so that o
1-2"
_— if z#£1
I+z+22 42" = 11—z 7
n+1 if z=1.
Taking z = ¢*?, where 0 < 6 < 27, then z # 1, so that
) ) ) 1— e(71+1)i9 1— e(n—i—l)i@
0 2160 nif __ _
L+e™ +e™ + te - 1 — it T _eif/2 (ei6/2 _ 646/2)

. 1..
—e10/2 (1 — e(n+D)i) i (6_19/2 - e(”+2)“’)

2isin (0/2) N 2sin (0/2)
1 sin (n + %) 0 i

=5 + 250 (0/2) + 2sin (0)2) (cos (0/2) — cos (n + 3) 6)

Equating real and imaginary parts, we have

1 sin(n+3)0

1+cost9+cos29+~~+cosn9:5—1— 2sin (6)2)

and
cos (n + %) 0

1
sinf¢ + sin 260 + - + sinnb = §C0t (0/2) - 25sin (6/2)



