

Math 309 - Spring-Summer 2018
Solutions to Problem Set # 0

Question 1.

Show that

$$(a) \operatorname{Re}(iz) = -\operatorname{Im} z; \quad (b) \operatorname{Im}(iz) = \operatorname{Re} z.$$

SOLUTION: If $z = x + iy$, then $iz = -y + ix$, so that

$$(a) \operatorname{Re}(iz) = -y = -\operatorname{Im} z, \text{ and}$$

$$(b) \operatorname{Im}(iz) = x = \operatorname{Re} z.$$

Question 2.

Reduce the quantity $\frac{5i}{(1-i)(2-i)(3-i)}$ to a real number.

SOLUTION: We have

$$\frac{5i}{(1-i)(2-i)(3-i)} = \frac{5i}{(1-i)(5-5i)} = \frac{i}{(1-i)^2} = \frac{i}{-2i} = -\frac{1}{2}.$$

Question 3.

Reduce the quantity $(1-i)^4$ to a real number.

SOLUTION: We have

$$(1-i)^4 = [(1-i)^2]^2 = (-2i)^2 = 4i^2 = -4.$$

Question 4.

Verify that $\sqrt{2}|z| \geq |\operatorname{Re} z| + |\operatorname{Im} z|$.

Suggestion: Reduce this inequality to $(|x| - |y|)^2 \geq 0$.

SOLUTION: Note that

$$0 \leq (|\operatorname{Re} z| - |\operatorname{Im} z|)^2 = |\operatorname{Re} z|^2 - 2|\operatorname{Re} z||\operatorname{Im} z| + |\operatorname{Im} z|^2,$$

so that

$$2|\operatorname{Re} z||\operatorname{Im} z| \leq |\operatorname{Re} z|^2 + |\operatorname{Im} z|^2,$$

and

$$|\operatorname{Re} z|^2 + 2|\operatorname{Re} z||\operatorname{Im} z| + |\operatorname{Im} z|^2 \leq 2(|\operatorname{Re} z|^2 + |\operatorname{Im} z|^2),$$

that is,

$$(|\operatorname{Re} z| + |\operatorname{Im} z|)^2 \leq 2(|\operatorname{Re} z|^2 + |\operatorname{Im} z|^2) = 2|z|^2,$$

and therefore,

$$|\operatorname{Re} z| + |\operatorname{Im} z| \leq \sqrt{2}|z|.$$

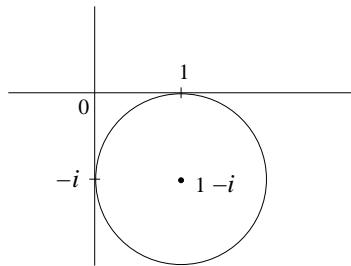
Question 5.

In each case, sketch the set of points determined by the given condition:

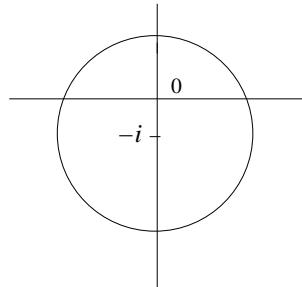
(a) $|z - 1 + i| = 1$; (b) $|z + i| \leq 3$; (c) $|z - 4i| \geq 4$.

SOLUTION:

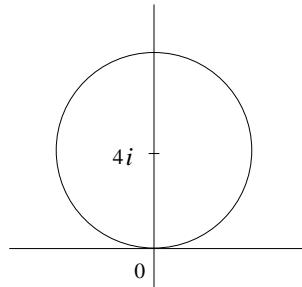
(a) The set $\{z \in \mathbb{C} : |z - 1 + i| = 1\}$ is the circle centered at $1 - i$ with radius 1.



(b) The set $\{z \in \mathbb{C} : |z + i| \leq 3\}$ is the closed disk centered at $-i$ with radius 3.



(c) The set $\{z \in \mathbb{C} : |z - 4i| \geq 4\}$ is the set of all points on and outside the circle centered at $4i$ with radius 4.



Question 6.

Use the properties of conjugates and modulii established in class to show that

(a) $\overline{\bar{z} + 3i} = z - 3i$ (b) $\overline{iz} = -i\bar{z}$;
 (c) $\overline{(2+i)^2} = 3 - 4i$; (d) $|(2\bar{z} + 5)(\sqrt{2} - i)| = \sqrt{3} |2z + 5|$.

SOLUTION:

(a) Since $\bar{\bar{z}} = z$, then $\overline{\bar{z} + 3i} = \bar{\bar{z}} + \bar{3i} = z - 3i$.
 (b) $\overline{iz} = \overline{-y + ix} = -y - ix = -i(x - iy) = -i\bar{z}$.
 (c) $\overline{(2+i)^2} = \overline{(2+i)^2} = (2-i)^2 = 3 - 4i$.
 (d) $|(2\bar{z} + 5)(\sqrt{2} - i)| = |2\bar{z} + 5| \cdot |\sqrt{2} - i| = \sqrt{3} \cdot |\bar{2z} + 5| = \sqrt{3} \cdot |2z + 5|$.

Question 7.

Use established properties of moduli to show that when $|z_3| \neq |z_4|$,

$$\left| \frac{z_1 + z_2}{z_3 + z_4} \right| \leq \frac{|z_1| + |z_2|}{||z_3| - |z_4||}.$$

SOLUTION: If $|z_3| \neq |z_4|$, then

$$|z_1 + z_2| \leq |z_1| + |z_2| \quad \text{and} \quad |z_3 + z_4| \geq ||z_3| - |z_4||,$$

so that

$$\left| \frac{z_1 + z_2}{z_3 + z_4} \right| \leq \frac{|z_1| + |z_2|}{||z_3| - |z_4||}.$$

Question 8.

Find the principal argument $\text{Arg } z$ when $z = \frac{i}{-2 - 2i}$.

$$\text{Ans. } -\frac{3\pi}{4}.$$

SOLUTION: Note that

$$z = \frac{i}{-2 - 2i} = -\frac{1}{2} \cdot \frac{i}{i+1} = -\frac{1}{2}i \left(\frac{1-i}{2} \right) = -\frac{1}{4}(1+i),$$

that is,

$$z = -\frac{\sqrt{2}}{4} \left(\frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}} \right) = \frac{\sqrt{2}}{4} \left[\cos \left(-\frac{3\pi}{4} \right) + i \sin \left(-\frac{3\pi}{4} \right) \right].$$

Therefore, $|z| = \frac{\sqrt{2}}{4}$ and $\text{Arg}(z) = -\frac{3\pi}{4}$.

Question 9.

Using the fact that the modulus $|e^{i\theta} - 1|$ is the distance between the points $e^{i\theta}$ and 1, give a geometric argument to find a value of θ in the interval $0 \leq \theta < 2\pi$ that satisfies the equation $|e^{i\theta} - 1| = 2$.

Ans. π .

SOLUTION: Note that

$$|e^{i\theta} - 1|^2 = |\cos \theta + i \sin \theta - 1|^2 = (\cos \theta - 1)^2 + \sin^2 \theta = 4$$

if and only if $\cos \theta = -1$, that is, if and only if $\theta = \pi$. Geometrically, $|e^{i\theta} - 1|$ is the distance between the points $z_1 = e^{i\theta}$ and $z_2 = 1$ on the unit circle $\{z \in \mathbb{C} : |z| = 1\}$, and this is a maximum of 2 when $\theta = \pi$.

Question 10.

Establish the identity

$$1 + z + z^2 + \cdots + z^n = \frac{1 - z^{n+1}}{1 - z} \quad (z \neq 1)$$

and then use it to derive *Lagrange's trigonometric identity*:

$$1 + \cos \theta + \cos 2\theta + \cdots + \cos n\theta = \frac{1}{2} + \frac{\sin[(2n+1)\theta/2]}{2 \sin(\theta/2)} \quad (0 < \theta < 2\pi).$$

Suggestion: As for the first identity, write $S = 1 + z + z^2 + \cdots + z^n$ and consider the difference $S - zS$. To derive the second identity, write $z = e^{i\theta}$ in the first one.

SOLUTION: If $z \neq 1$, then

$$\begin{aligned} (1 - z)(1 + z + z^2 + \cdots + z^n) &= 1 + z + z^2 + \cdots + z^n - (z + z^2 + \cdots + z^{n+1}) \\ &= 1 - z^{n+1}, \end{aligned}$$

so that

$$1 + z + z^2 + \cdots + z^n = \begin{cases} \frac{1 - z^{n+1}}{1 - z} & \text{if } z \neq 1 \\ n + 1 & \text{if } z = 1. \end{cases}$$

Taking $z = e^{i\theta}$, where $0 < \theta < 2\pi$, then $z \neq 1$, so that

$$\begin{aligned} 1 + e^{i\theta} + e^{2i\theta} + \cdots + e^{ni\theta} &= \frac{1 - e^{(n+1)i\theta}}{1 - e^{i\theta}} = \frac{1 - e^{(n+1)i\theta}}{-e^{i\theta/2} (e^{i\theta/2} - e^{-i\theta/2})} \\ &= \frac{-e^{-i\theta/2} (1 - e^{(n+1)i\theta})}{2i \sin(\theta/2)} = \frac{i \left(e^{-i\theta/2} - e^{(n+\frac{1}{2})i\theta} \right)}{2 \sin(\theta/2)} \\ &= \frac{1}{2} + \frac{\sin(n + \frac{1}{2})\theta}{2 \sin(\theta/2)} + \frac{i}{2 \sin(\theta/2)} (\cos(\theta/2) - \cos(n + \frac{1}{2})\theta) \end{aligned}$$

Equating real and imaginary parts, we have

$$1 + \cos \theta + \cos 2\theta + \cdots + \cos n\theta = \frac{1}{2} + \frac{\sin(n + \frac{1}{2})\theta}{2 \sin(\theta/2)}$$

and

$$\sin \theta + \sin 2\theta + \cdots + \sin n\theta = \frac{1}{2} \cot(\theta/2) - \frac{\cos(n + \frac{1}{2})\theta}{2 \sin(\theta/2)}.$$