

Math 309 - Spring-Summer 2018

Problem Set # 2

Question 1.

Show that $\lim_{z \rightarrow \infty} \frac{4z^2}{(z-1)^2} = 4$.

Question 2.

Show that a set is unbounded if and only if every neighborhood of the point at infinity contains at least one point in S .

Question 3.

Find $f'(z)$ when

(a) $f(z) = 3z^2 - 2z + 4$; (b) $f(z) = (1 - 4z^2)^3$;
(c) $f(z) = \frac{z-1}{2z+1}$ ($z \neq -1/2$); (d) $f(z) = \frac{(1+z^2)^4}{z^2}$ ($z \neq 0$).

Question 4.

Apply the definition of the derivative to give a direct proof that

$$f'(z) = -\frac{1}{z^2} \quad \text{when} \quad f(z) = \frac{1}{z} \quad (z \neq 0).$$

Question 5.

Show that $f'(z)$ does not exist at any point z when $f(z) = \operatorname{Im} z$.

Question 6.

Show that $f'(z)$ does not exist at any point if

(a) $f(z) = \bar{z}$; (b) $f(z) = z - \bar{z}$;
(c) $f(z) = 2x + i xy^2$; (d) $f(z) = e^x e^{-iy}$.

Question 7.

Determine where $f'(z)$ exists and find its value when

$$(a) f(z) = \frac{1}{z}; \quad (b) f(z) = x^2 + iy^2; \quad (c) f(z) = z \operatorname{Im} z;$$

$$Ans: (a) f'(z) = -\frac{1}{z^2} (z \neq 0); \quad (b) f'(x+iy) = 2x; \quad (c) f'(0) = 0.$$

Question 8.

Show that the function

$$f(z) = \sqrt{r}e^{i\theta/2} \quad (r > 0, \alpha < \theta < \alpha + 2\pi)$$

is differentiable in the indicated domain of definition, and then find $f'(z)$.

$$Ans: f'(z) = \frac{1}{2f(z)}.$$

Question 9.

Show that when $f(z) = x^3 + i(1-y)^3$, it is legitimate to write

$$f'(z) = u_x + i v_x = 3x^2$$

only when $z = i$.

Question 10.

(a) Recall that if $z = x + iy$ then

$$x = \frac{z + \bar{z}}{2} \quad \text{and} \quad y = \frac{z - \bar{z}}{2i}.$$

By formally applying the chain rule in calculus to a function $F(x, y)$ of two real variables, derive the expression

$$\frac{\partial F}{\partial \bar{z}} = \frac{\partial F}{\partial x} \frac{\partial x}{\partial \bar{z}} + \frac{\partial F}{\partial y} \frac{\partial y}{\partial \bar{z}} = \frac{1}{2} \left(\frac{\partial F}{\partial x} + i \frac{\partial F}{\partial y} \right).$$

(b) Define the operator

$$\frac{\partial}{\partial \bar{z}} = \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right),$$

suggested by part (a), to show that if the first-order partial derivatives of the real and imaginary parts of a function $f(z) = u(x, y) + iv(x, y)$ satisfy the Cauchy-Riemann equations, then

$$\frac{\partial f}{\partial \bar{z}} = \frac{1}{2} [(u_x - v_y) + i(v_x + u_y)] = 0.$$

Thus derive the complex form $\frac{\partial f}{\partial \bar{z}} = 0$ of the Cauchy-Riemann equations.