



## Math 309 - Spring-Summer 2018

### Problem Set # 1

#### Question 1.

In each case, find all of the roots in rectangular coordinates, exhibit them as vertices of certain squares, and point out which is the principal root:

$$(a) (-16)^{1/4}; \quad (b) (-8 - 8\sqrt{3}i)^{1/4}.$$

*Ans:* (a)  $\pm\sqrt{2}(1+i), \pm\sqrt{2}(1-i)$ ; (b)  $\pm(\sqrt{3}-i), \pm(1+\sqrt{3}i)$ .

#### Question 2.

In each case, find all of the roots in rectangular coordinates, exhibit them as vertices of certain regular polygons, and identify the principal root:

$$(a) (-1)^{1/3}; \quad (b) 8^{1/6}.$$

*Ans:* (b)  $\pm\sqrt{2}, \pm\frac{1+\sqrt{3}i}{\sqrt{2}}, \pm\frac{1-\sqrt{3}i}{\sqrt{2}}$ .

#### Question 3.

Sketch the following sets and determine which are domains:

$$(a) |z - 2 + i| \leq 1; \quad (b) |2z + 3| > 4; \quad (c) \operatorname{Im} z > 1; \\ (d) \operatorname{Im} z = 1; \quad (e) 0 \leq \arg z \leq \pi/4 (z \neq 0); \quad (f) |z - 4| \geq |z|.$$

*Ans:* (b), (c) are domains.

#### Question 4.

In each case, sketch the closure of the set:

$$(a) -\pi < \arg z < \pi (z \neq 0); \quad (b) |\operatorname{Re} z| < |z|; \\ (c) \operatorname{Re} \left( \frac{1}{z} \right) \leq \frac{1}{2}; \quad (d) \operatorname{Re}(z^2) > 0.$$

#### Question 5.

Write the function  $f(z) = z^3 + z + 1$  in the form  $f(z) = u(x, y) + i v(x, y)$ .

*Ans:*  $(x^3 - 3xy^2 + x + 1) + i(3x^2y - y^3 + y)$ .

**Question 6.**

Suppose that  $f(z) = x^2 - y^2 - 2y + i(2x - 2xy)$ , where  $z = x + iy$ . Use the expressions

$$x = \frac{z + \bar{z}}{2} \quad \text{and} \quad y = \frac{z - \bar{z}}{2i}$$

to write  $f(z)$  in terms of  $z$  and simplify the result.

*Ans:*  $\bar{z}^2 + 2i z$ .

**Question 7.**

Find a domain in the  $z$  plane whose image under the transformation  $w = z^2$  is the square domain in the  $w$  plane bounded by the lines  $u = 1$ ,  $u = 2$ ,  $v = 1$ , and  $v = 2$ .

**Question 8.**

Sketch the region onto which the sector  $r \leq 1$ ,  $0 \leq \theta \leq \pi/4$  is mapped by the transformation

(a)  $w = z^2$ ;      (b)  $w = z^3$ ;      (c)  $w = z^4$ .

**Question 9.**

(a) Describe and sketch the set

$$\mathcal{D} = \{ z \in \mathbb{C} \mid 2 \operatorname{Re}(z^2) = |z|^2 \}.$$

(b) Describe and sketch the set

$$\mathcal{D} = \left\{ z \in \mathbb{C} \mid \operatorname{Im}\left(\frac{1}{z}\right) > 1 \right\}.$$

**Question 10.**

(a) Given a positive integer  $n > 2$ , find all complex numbers  $z \in \mathbb{C}$  satisfying

$$\bar{z} = z^{n-1}.$$

(b) Let  $\omega_n$  be the primitive  $n^{\text{th}}$  root of unity given by  $e^{\frac{2\pi i}{n}}$ ,  $n \geq 2$ , calculate

$$1 + 2\omega_n + 3\omega_n^2 + \cdots + n\omega_n^{n-1}.$$