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I. Introduction

I.a Fundamental Properties of Complex Numbers

It was found convenient, for a variety of theoretical and practical questions, to

introduce a new “number” j (often also denoted in some books by i) such that

j2 = −1. This gives rise to “complex numbers” z = a + jb with a, b real (i.e.,

ordinary) numbers.

Given a real number z = a + jb, we term a the Real Part of z (denoted by

a = Re (z)) and b the Imaginary Part of z (denoted by b = Im (z)). If Im (z) = 0,

we say z is a real number. If Re (z) = 0, z is termed (purely) imaginary.

The next question is how elementary arithmetical operations (equality, addi-

tion, subtraction, division) should be defined for complex numbers. For the first

three operations, we are governed by the same rules as for 2-d vectors. Specifically:

Let z1 = a1 + jb1 and z2 = a2 + jb2. Then

(1) z1 = z2 if and only if a1 = a2 and b1 = b2,

(2) z1 + z2 = (a1 + a2) + j(b1 + b2),

(3) z1 − z2 = (a1 − a2) + j(b1 − b2).

The operations of multiplication and division have no clear counterpart in

vector operations. We multiply using distribution, i.e.,

(4) z1 · z2 = (a1 + jb1)(a2 + jb2) = a1a2 + ja1b2 + jb1a2 + j2b1b2

= (a1a2 − b1b2) + j(a1b2 + b1a2)

where j2 = −1 was used. We define division by noting that we can divide by real

numbers, so division is turned into a multiplication of complex numbers followed by

division by a real number. To best see this, it’s useful to introduce z (also denoted

in some books by z∗), which is the complex conjugate of z: If z = a + jb, then

z = a − jb. We observe some key properties that connect z and z:
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(a) z = z,

(b) z z = (a + jb)(a − jb) = a2
− jab + jab − j2b2 = a2 + b2,

(so z z is real. This is a key property !)

(c) z1 ± z2 = z1 ± z2,

(d) z1z2 = z1 · z2.

So, using z we can divide:

(5)
z1

z2

=
z1 · z2

z2 · z2

=
(a1 + jb1)(a2 − jb2)

a2

2
+ b2

2

=
(a1a2 + b1b2)

a2

2
+ b2

2

+ j
(b1a2 − b2a1)

a2

2
+ b2

2

.

We consider some examples:

(a) (1 + j) + (2 − 3j) = (1 + 2) + (1 − 3)j = 3 − 2j.

(b) (17 + j)(1 + 2j) = 17 + 34j + j − 2 = 15 + 35j.

(c) (1 − j) = 1 + j.

(d)
1 + 2j

1 − j
=

(1 + 2j)(1 + j)

(1 − j)(1 + j)
=

(1 − 2) + j(2 + 1)

12 + 12
=

(

−
1

2

)

+ j

(

3

2

)

.

We remark that ( z1

z2

) = z1

z2

and if z is real, then z = z and the above operations

are just the usual ones (for real numbers). Note that division by 0 is still forbidden.

We can now add, subtract, multiply and divide and our next task is to visualize

what these operations mean. To do this we introduce the complex plane. A plane

is clearly needed to plot z (and the operations on z) since z has two parts (a and

b) which are not related to each other. So: given a z = a + jb we associate with it

the point (a, b) of the (complex) plane.

z = a + jb

a

b

5



Note that the x-axis is the “real (number) axis” and the y-axis is the “imaginary

(number) axis.”

Addition and subtraction, being identical to the same operations for vectors,

can then be visualized via the parallelogram law with which we are already familiar.

1

z    + z

z

z 2
1 2

The next question is: how do we visualize multiplication, division and taking the

complex conjugate. To do this we use another form of expressing complex numbers:

polar form.
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I.b Polar Form, Magnitude, Argument, Euler’s Formula

Consider once again z = a + jb. Motivated by vectors, we set

|z| = magnitude of z =
√

a2 + b2.

| z |

θ

z = a + jb

The magnitude of z (a real number) has the same properties as the magnitude of a

vector (notice in particular |z1+z2| ≤ |z1|+|z2|, and |z1−z2| = distance from z1 to z2),

but it also has a very special connection with multiplication and division as we shall

see below. So if z = a + jb, then we can write z in polar form by dividing and mul-

tiplying by |z|, i.e.,

z = a + jb = |z|

(

a

|z|
+ j

b

|z|

)

= |z|(cos θ + j sin θ)

where θ is shown in the diagram.

We remark right away that θ may be replaced by θ ± 2kπ, k = 0, 1, 2, . . . .

That is,

z = |z|(cos(θ ± 2kπ) + j sin(θ ± 2kπ)).

This is due to the periodicity of sin and cos. So there are ∞ many angles for z. We

choose the one between −π and π and call it the Principal Argument of z, denoted

by Arg (z). Specifically, Arg (z) is the θ with −π < θ ≤ π. We denote the collection

of all possible θ by arg (z). Thus we have:

arg (z) = Arg (z) ± 2kπ, k = 0, 1, . . . .

7



Note that Arg (0) and arg (0) are not defined. Some examples:

Example 1. Let z = 1 + j. Write z in polar form, find |z|, Arg (z), arg (z).

Answer. |z| =
√

12 + 12 =
√

2,

/ 4

2

π

(1 + j)

1

1

so

z =
√

2

(

1
√

2
+ j

1
√

2

)

=
√

2
(

cos
π

4
+ j sin

π

4

)

=
√

2
(

cos
(π

4
± 2kπ

)

+ j sin
(π

4
± 2kπ

))

, k = 0, 1, 2, . . . .

So |z| =
√

2, Arg (z) = π/4, arg (z) = π/4 ± 2kπ, k = 0, 1, 2, . . . .

We now return to the visualization of z1z2. Suppose z1 = a1 + jb1,

z2 = a2 + jb2. To visualize z1z2 we write z1, z2 in polar form:

z1 = |z1|(cos θ1 + j sin θ1), z2 = |z2|(cos θ2 + j sin θ2)

and so

z1z2 = |z1| |z2|
(

[cos θ1 cos θ2 − sin θ1 sin θ2] + j[sin θ1 cos θ2 + sin θ2 cos θ1]
)

.

Recalling the trigonometric identities (which we shall not need in the future—see

below) gives

z1z2 = |z1| |z2|[cos(θ1 + θ2) + j sin(θ1 + θ2)].

So the product z1z2 is the number obtained by
8



1. multiplying the magnitudes,

2. adding the arguments.

1

θ1

θ2

z 2

+θ1 θ2

z 1
|

|
z

z

2
|

|

z1 z 2

We could do the visualization of division z1/z2 in the same way. It looks like we

shall need lots of trigonometric identities, but one key formula eliminates this need

and is very useful for many other results. This is Euler’s Formula. Let θ be a real

number. Then

ejθ = cos θ + j sin θ .

This formula is shown precisely in Math courses, but from an Engineering point of

view it can be justified from the Taylor expansion of both sides:

ejθ =

∞
∑

n=0

(jθ)n

n!
= 1 + jθ +

j2θ2

2!
+

j3θ3

3!
+ · · ·

sin θ =

∞
∑

n=0

(−1)nθ2n+1

(2n + 1)!
= θ −

θ3

3!
+

θ5

5!
− · · ·

cos θ =
∞
∑

n=0

(−1)nθ2n

(2n)!
= 1 −

θ2

2!
+

θ4

4!
− · · · .

Using j2 = −1 gives the result. An Engineering indication that such a result must

be true also comes from the differential equation for an LRC circuit. If we solve the

equation by setting i(t) = eαt (or v(t) = eαt), we find that for some values of L,
9



R, C the resulting α’s are complex. In such cases, direct experimental observations

show that i(t) (or v(t)) are oscillatory.

Since cos θ, sin θ are periodic, this formula shows that the exponential of a

complex number is very different from that of a real number. Note that if a, b are

different real numbers, then ea
6= eb, but here ejθ = ej(θ±2kπ)! Since we know ejθ

we can define ez = ex+jy by letting y play the role θ, i.e.,

ez = ex+jy = ex[cos y + j sin y].

This exponential function preserves standard formulas of the “real” exponential:

ez1+z2 = ez1 · ez2 , ez1−z2 = ez1/ez2 , and yet the function ez is very different in

some ways from ex as we have noted. We shall consider ez more later but now we

consider some examples to familiarize ourselves with ejθ.

Example 1. Note that |ejθ
| = 1 for any θ, e2πj = 1.

Example 2. Plot ejπ/4, e−jπ/2, ej9π/4, 7ejπ/4.

Answer.

ej
π

4 = cos
(π

4

)

+ j sin
(π

4

)

=

√

2

2
+ j

√

2

2
,

e−j
π

2 = cos
(

−
π

2

)

+ j sin
(

−
π

2

)

= −j,

ej
9π

4 = cos
9π

4
+ j sin

9π

4
=

√

2

2
+ j

√

2

2
,

alternatively,

ej
9π

4 = ej(2π+
π

4
) = e2πj

· e
π

4
j = 1 · ej

π

4

7ej
π

4 = 7
(

cos
π

4
+ j sin

π

4

)

= 7

(√
2

2
+ j

√
2

2

)

.
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je

π/2j-
e

9π/4je

π/2

π/4

-

=

π/4

9π/4

j7e π/4

7

π/4

Observe that now we can write:

z1 = a1 + jb1 = |z1|(cos θ1 + j sin θ1) = |z1|e
jθ1 ,

z2 = a2 + jb2 = |z2|(cos θ2 + j sin θ2) = |z2|e
jθ2 ,

and so

z1 · z2 = |z1| |z2|e
jθ1ejθ2 = |z1| |z2|e

j(θ1+θ2)

= |z1| |z2|
(

cos(θ1 + θ2) + j sin(θ1 + θ2)
)

,

exactly the same as before! In the same way

z1

z2

=
|z1|e

jθ1

|z2|ejθ2

=
|z1|

|z2|
ej(θ1−θ2) =

|z1|

|z2|
(cos(θ1 − θ2) + j sin(θ1 − θ2).

So we divide the magnitudes and subtract the angles.

1

z 2

z 1
z 1 z 2

z

z

2

2

/

θ1 − θ

11



Remark. Note that z1/z2, z1 · z2 can also still be calculated as we did at the 

beginning, particularly if z1, z2 are given in the form a + jb rather than rejθ. We can 

now appreciate what those operations mean, rather than just carrying them out.

We remark, finally, that we have found the following connection between mag-

nitude and the operations of multiplication/division:

(a) |z1z2| = |z1| |z2|,

(b) |z1/z2| = |z1|/|z2|.

Furthermore, since |z1 − z2| = distance from z1, then |z1| ≤ |z1 − z2| + |z2| as a

consequence of the fact that the shortest distance from the origin to z1 is along a

straight line.

1

z1 z 2

z 2

z1 z2

z

For the same reason,

|z2| ≤ |z1 − z2| + |z1|

and so

|z1| − |z2| ≤ |z1 − z2|,

|z2| − |z1| ≤ |z1 − z2|.

Since one of |z1| − |z2|, |z2| − |z1| must be
∣

∣|z1| − |z2|

∣

∣, we conclude

∣

∣|z1| − |z2|

∣

∣ ≤ |z1 − z2|.
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I.c Exponential, Logarithm, Trigonometric Functions, Hyperbolic Functions, Roots

and Powers

We introduced the exponential in the last section: Let z = x + jy. Then

ez = ex+jy = ex

· ejy = ex(cos y + j sin y).

We also noted that

ez1+z2 = ez1 · ez2

ez1−z2 =
ez1

ez2

.

However, we emphasize that unlike the real case, different z’s may have the same

ez. For example: if we set zk = x + j(y ± 2kπ) for k = 0, 1, . . . , then

ezk = ex

· ej(y±2kπ) = ex+jy = ez0

i.e., ezk is always the same for any k! So if we know ez, we can’t find z exactly.

Note that for a given z, there is exactly one ez .

Motivated by the exponential function, we define w = log z to be all the w’s

such that ew = z. So let z = |z|ejθ (note that it’s easier to work with the polar

form of z than with z = x + jy!). We seek all w such that

ew = |z|ejθ.

Put w = u + jv (notice: we use this form for w, but the polar form for z), then

eu+jv = |z|ejθ.

13



Take magnitude of both sides:

|eu+jv

| = |eu

| |ejv

| = |eu

| = eu,

||z|ejθ

| = |z|.

And so: |z| = eu, but u and |z| are real and thus u = Log |z| (understood as the

Log of a real number). Then we must have

ejv = ejθ.

So we seek all v which satisfy this relationship and get

v = θ ± 2kπ, k = 0, 1, 2, . . . .

In conclusion,

w = log z = Log |z| + (θ ± 2kπ)j, k = 0, 1, 2, . . . .

Before we pass to examples we note: Suppose θ = Arg (z), i.e., −π < θ ≤ π. Then

Log |z|+ θj is called the principal value of log z and is denoted by Log (z). Observe

that there are ∞ many values to log z, but there is only one Log z!

Example 1. Evaluate e
π

2
+

π

4
j .

Answer.

e
π

2
+

π

4
j = e

π

2 · e
π

4
j = e

π

2

(

cos
π

4
+ j sin

π

4

)

= e
π

2

(√
2

2
+ j

√
2

2

)

.

Example 2. Find all z such that ez = −1, i.e., find log(−1).

Remark. Note that if x is any real number, ex > 0, and yet there are z such that
14



ez = −1!

Answer. Put z = x + jy. Then we seek z such that ex+jy = −1. We write −1 in

polar form, i.e., −1 = | − 1|ejπ = 1 · ejπ. Thus

ex

· ejy = 1 · ejπ.

π

−1

Taking magnitudes gives ex = 1 or x = 0 (remember: x is real). To finish, we need

to find all y for which

ejy = ejπ,

and so

y = π ± 2kπ, k = 0, 1, 2, . . . .

Finally,

z = 0 + (π ± 2kπ)j, k = 0, 1, 2, . . . .

To define the trigonometric functions, we observe that, for θ real

ejθ = cos θ + j sin θ, e−jθ = cos θ − j sin θ.

So, adding and subtracting give:

cos θ =
ejθ + e−jθ

2
, sin θ =

ejθ
− e−jθ

2j
.

We wish to define cos z, sin z, so that when z is real these are the same as cos x,

15



sin x. Based on these observations, we define, for z = x + jy:

cos z =
ejz + e−jz

2
, sin z =

ejz
− e−jz

2j
.

The other trigonometric functions then follow:

tan z =
sin z

cos z
, cot z =

cos z

sin z
, sec z =

1

cos z
, etc.

Once again the key formulas are preserved. For example, we have the following.

Example 3. Show cos2 z + sin2 z = 1.

Answer.

cos2 z + sin2 z =
(ejz + e−jz)2

4
+

(ejz
− e−jz)2

−4

=
(e2jz + 2 + e−2jz) − (e2jz

− 2 + e−2jz)

4
=

4

4
= 1.

Yet there are differences between cos z, sin z and cos x, sin x. To illustrate this

remark and keeping in mind that −1 ≤ cos x, sin x ≤ 1, we shall show later that

there are z such that sin z = 2!

Next we recall that

cosh x =
ex + e−x

2
, sinh x =

ex
− e−x

2

and then define:

cosh z =
ez + e−z

2
, sinh z =

ez
− e−z

2
.

We can clearly connect cosh z and sinh z to the exponential and trigonometric func-

tions, and obtain other useful trigonometric formulas using Euler’s formula.
16



For example,

cosh(jx) = cos x, sinh(jx) = j sin x,

cos z = cos x cosh y − j sin x sinh y,

etc. Also, since cos θ = (ejθ + e−jθ)/2,

cosn θ =

(

ejθ + e−jθ

2

)n

.

So formulas for cosn θ can be obtained by expanding the right hand side. A similar

approach works for sin θ = (ejθ
− e−jθ)/(2j).

In an analogous way,

(ejθ)n = ejnθ.

That is,

(cos θ + j sin θ)n = (cos(nθ) + j sin(nθ)).

And we can get formulas for cos(nθ), sin(nθ) by expanding the left hand side.

We now pass to the definitions of powers and roots. Suppose first m is a

positive integer. We then set z = |z|ejθ,

zm = z · · · z
︸ ︷︷ ︸

m times

= |z|m ejmθ,

and

z−m =
1

zm

= |z|−m e−mjθ.

These are as is expected. Next we look at z1/m. It is reasonable to put z1/m to

be all the complex numbers w such that wm is the given z. We already know from

the real number case that there may be more than one w (11/2 is both +1 and −1).
17



We shall find that for z 6= 0 there are always exactly m mth roots in the complex

plane. To see this, let z = |z|ejθ, w = |w|ejφ and wm = z. I.e.,

|w|
mejmφ = |z|ejθ.

We then get |w|
m = |z| or |w| = |z|1/m. Since |w| ≥ 0 and |z|, |w| are real numbers,

this relationship specifies |w| exactly as |z|1/m.

Next, we need ejmφ = ejθ and so it seems we should choose φ = θ/m. This

is indeed a correct value, but remember we wish to find all w such that wm = z,

and keep in mind that z = |z|ejθ = |z|ej(θ±2kπ), k = 0, 1, . . . . So, for wm to be z it

suffices that mφ = θ ± 2kπ for some k, i.e.,

φ =
θ ± 2kπ

m
, k = 0, 1, 2, . . . .

We get ∞ many φ, and it looks like we should get ∞ many w as well, but note that

w = |z|
1

m ej(
θ±2kπ

m
), k = 0, 1, 2, . . . .

So we get putting k = 0, 1, 2, . . . in turn:

(∗) w = |z|
1

m ej
θ

m ; |z|
1

m ej(
θ+π

m
); |z|

1

m ej(
θ+2π

m
); . . . ; |z|

1

m ej(
θ+(m−1)2π

m
).

The next w would be |z|
1

m ej(
θ+2πm

m
) = |z|

1

m e
jθ

m and we get again the first root we

found. As k increases we simply repeat the roots given in (∗), and the same is true

for k negative. In summary, the m mth roots of z are

|z|
1

m ej( θ+2kπ

m
) for k = 0, 1, . . . , m − 1.

Before doing examples, some remarks.

Remark 1 There are clearly two square roots of z 6= 0. Note that if you find
18



one of them, call it w1, then the other w2 must be −w1. After all, z = w2

1
= (−w1)

2!

Remark 2 Let m, n be positive integers. Then we set zm/n = (z1/n)m and

z−(m/n) = 1/zm/n.

Remark 3 For any other number c, not of type m/n (for example, for
√

2,

π, e, 1 + j) we define zc to be ec log z.

Example 4. Find (1)1/3.

Answer. We know there will be three roots, and we already know one of these is

1. What are the other two? To find them, put w = |w|ejθ, then

|w|
3e3jθ = 1 = e(2πk)j , k = 0, 1, 2, . . . .

And so |w| = 1, 3θ = 2πk, and as we noted above, we need only use k = 0, 1, 2. So

w1 = e0j = 1, w2 = ej
2π

3 , w3 = ej
4π

3 .

In pictures:

4π/ 3

2π / 31

w

w

w

3

1

2

Note that w1, w2, w3 form a symmetric picture on the complex plane: between w1

and w2, w2 and w3, w3 and w1 there is an angle of 2π/3! This symmetry is always

found.
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Example 5. Find (1 + j)
1

5 .

Answer. We expect 5 roots. Again set w = |w|ejθ and note 1 + j =
√

2ej
π

4 . Then

|w|
5ej5θ =

√

2 ej
π

4

and so

w = 2
1

10 ej(

π

4
+2kπ

5
) for k = 0, 1, 2, 3, 4.

The other values of k give repetitions of these roots.

Example 6. Find (j)−
1

2 .

Answer. Note j−1/2 = 1/j1/2. Since j1/2 has 2 roots, there will be 2 values for

j−1/2.

Now j = ej
π

2 and so j
1

2 = ej
π

4 , ej(
π

4
+π) = −ej

π

4 . Consequently,

j−
1

2 = e−j
π

4 , −e−j
π

4 .

Example 7. Show that the quadratic formula holds, i.e., if

az2 + bz + c = 0

with a, b, c complex and a 6= 0, then

z = −
b

2a
+

(

b2
− 4ac

4a2

)1/2

.

(Keep in mind
(

b
2
−4ac

4a
2

)
1

2

has 2 values.)

20



Answer. az2 + bz + c = 0 is the same as z2 + b

a
z + c

a
= 0 or

(

z +
b

2a

)2

=
b2

4a2
−

c

a
=

b2
− 4ac

4a2
.

So z must be such that

(

z +
b

2a

)

=

(

b2
− 4ac

4a2

)1/2

.

We conclude

z = −
b

2a
+

(

b2
− 4ac

4a2

)1/2

.

Example 8. Find (j + 1)j.

Answer. Since j is not of type m/n, we have

(j + 1)j = ej log(j+1).

So we need to calculate log(j + 1) first. Now w = log(j + 1) iff ew = j + 1. Putting

w = u + jv, 1 + j =
√

2ejπ/4,

eu+jv =
√

2 ej
π

4

and eu =
√

2 or u = Log (
√

2) = 1

2
Log 2. Next v must be such that

ejv = ej
π

4

and so

v =
π

4
± 2kπ, k = 0, 1, 2, . . . .

We have

log(j + 1) =
1

2
Log 2 +

(π

4
± 2kπ

)

j
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and

(j + 1)j = ej( Log 2

2
+(

π

4
±2kπ)j) = e−(π

4
±2kπ)

[

cos

(

Log 2

2

)

+ j sin

(

Log 2

2

)]

.

The next example shows a difference between trigonometric functions of com-

plex numbers and those of real numbers.

Example 9. Find all z such that sin z = 2.

Answer. Note that for any real x, −1 ≤ sin x ≤ 1! Now

sin z =
ejz

− e−jz

2j
= 2

and so

ejz

− e−jz

− 4j = 0.

Multiply by ejz:

(ejz)2 − 4j(ejz) − 1 = 0.

By the quadratic formula (earlier example),

ejz = 4j +
(

(4j)2 − 4(−1)
)

1

2 = 4j + (−16 + 4)
1

2 = 4j + (−12)
1

2 .

Now −12 = 12eπj and so

(−12)
1

2 = ±(12)
1

2 ej
π

2 = ±(12)
1

2 j.

Here (12)
1

2 is the unique real number root of 12! So

ejz = (4 ± (12)
1

2 )j = |4 ± (12)
1

2 | ej
π

2 .
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Important Remark. Suppose “12” had been replaced by “25” then we would

have had:

(4 ± (25)
1

2 )j = (4 ± 5)j = 9j, −j.

You would then split the problem since 9j = 9ej
π

2 , while −j = e−j
π

2 ! In our case,

if z = x + jy, then

ej(x+jy) = |4 ± (12)
1

2 | ej
π

2

and so

−y = Log |4 ± (12)
1

2 |, x =
π

2
± 2kπ, k = 0, 1, 2, . . . ,

i.e.,

z = −jLog |4 ± (12)
1

2 | +
(π

2
± 2kπ

)

.

Example 10. Find all z such that cos z = 1.

Answer. We know cos x = 1 iff x = ±2kπ for k = 0, 1, 2, . . . . So we expect to find

these values of z (i.e., z = (±kπ) and 0j) and maybe more! Now cos z = 1 means

ejz + e−jz = 2

or

(ejz)2 − 2ejz + 1 = 0.

So

(ejz

− 1)2 = 0.
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This means

ejz = 1 = e0j

and so if z = x + jy, then

e−y = 1, ex = e0j = e±2kπ for k = 0, 1, 2, . . . .

I.e., y = 0 and x = ±2kπ, which yield

z = ±2kπ + 0j.

So there are no other values except for the “real” ones!
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Further Exercises:

Exercise 1. Let z1 = 1 − j, z2 = 1 + j, z3 = j. Find:

(a) z1 + z2; (b) z1 − z2; (c) z1/z2; (d) z1z2; (e) z1z3/(z1 + z2).

Answer.

(a) z1 + z2 = (1 − j) + (1 + j) = (1 + 1) + j(−1 + 1) = 2.

(b) z1 − z2 = (1 − j) − (1 + j) = −2j.

(c)
z1

z2

=
1 − j

1 + j
=

(1 − j)(1 − j)

(1 + j)(1 − j)
=

1 − 2j + j2

12 + 12
=

−2j

2
= −j.

(d) z1z2 = (1 − j)(1 + j) = 1 − j + j − j2 = 1 + 1 = 2.

(e)
z1z3

z1 + z2

=
(1 − j)(−j)

2
=

−j + j2

2
=

−1 − j

2
.

Exercise 2. Use polar form to find: (a) (1 − j)10; (b)

[

1 + j

1 − j

]100

.

Answer.

(a) 1− j =
√

2e−
π

4
j , so (1− j)10 = (

√
2)10e−

10π

4
j = 25e−

10π

4
j . Note that

√
2 here

means the “real” positive root of 2!

(b)

[

1 + j

1 − j

]100

=

[ √

2e
π

4
j

√

2e−
π

4
j

]100

= [e
π

2
j ]100 = e50πj = e25·2πj = 125 = 1.

(Equivalently, e
π

2
j = j, so j100 = (j2)50 = (−1)50 = 1)

Exercise 3. Find (−1)1/6.

Answer. (−1) = eπj = e(π+2kπ)j. so (−1)1/6 = e
(π+2kπ)

6
j for k = 0, 1, . . . , 5, i.e.,

(−1)
1

6 = e
π

6
j , e

3π

6
j , e

5π

6
j , e

7π

6
j , e

9π

6
j , e

11π

6
j .

Note that these roots have magnitude 1 and difference in argument from the pre-

ceding one by 2π/6.
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Exercise 4. Find log(j) and Log(j).

Answer. j = e
π

2
j = e(

π

2
±2kπ)j, k = 0, 1, 2, . . . . So

log(j) =
(π

2
± 2kπ

)

j, k = 0, 1, 2, . . . .

Now Log(j) is the logarithm corresponding to the principal value of the argument

of j, i.e., to Arg (j), which is π/2. So

Log(j) =
π

2
j.

Exercise 5. Find all z such that cos z = 2.

Answer. cos z =
ejz + e−jz

2
and so cos z = 2 iff

ejz + e−jz

2
= 2. Multiply by ejz

to get: (ejz)2 + 1 = 4ejz , i.e., (ejz)2 − 4ejz + 1 = 0. Thus

ejz =
4 ±

√

(−4)2 − 4

2
= 2 ±

√

3.

We recall that by
√

3 we mean the real, positive root of 3. Now

2 ±

√

3 = (2 ±

√

3)e0j = (2 ±

√

3)e±2kπj, k = 0, 1, 2, . . . ,

and if z = x + jy, then

ejx−y = (2 ±

√

3)e±2kπj .

So x = ±2kπ and e−y = 2 ±

√

3, i.e,

−y = Log(2 ±

√

3) or y = −Log(2 ±

√

3).

In conclusion, z = ±2kπ − Log(2 ±

√

3)j, k = 0, 1, 2, . . . .

Remark. Note that Log here means the “real” Log of 2 ±
√

3. This can be done
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because
√

3 < 2. Otherwise, we would have to split the problem. See the earlier

notes.

Exercise 6. Find (1 − j)1+j.

Answer. Since (1 − j)1+j = e(log(1−j))(1+j), we start by finding log(1 − j). Now

1 − j =
√

2e[−
π

4
±2kπ]j, k = 0, 1, . . .

and so

log(1 − j) = Log(
√

2) +
[

−
π

4
± 2kπ

]

j.

Thus

(1 − j)1+j = e(1+j){Log

√
2+[−

π

4
±2kπ]j}

and

(1 + j)
{

Log(
√

2) +
(

−
π

4
± 2kπ

)

j
}

=
[

Log(
√

2) +
(π

4
∓ 2kπ

)]

+ j
[

−
π

4
± 2kπ + Log(

√

2)
]

and finally,

(1 − j)1+j = e[Log(

√
2)+

π

4
∓2kπ]+j[−

π

4
±2kπ+Log(

√
2)].

This can be rewritten in various equivalent ways, for example,

(1 − j)1+j =
√

2e
π

4
∓2kπ

[

cos
(

−
π

4
± 2kπ + Log(

√

2)
)

+ j
[

sin
(

−
π

4
± 2kπ + Log(

√

2)
)]]

.

The term ±2kπ in cos and sin functions can also be clearly omitted.

Exercise 7. Solve for z if z2 + jz = 1.
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Answer. We can use the quadratic formula:

z =
−j ±

√

j2 + 4

2
=

−j ±
√

3

2
.

We have found

z1 =

√
3 − j

2
, z2 =

−
√

3 − j

2
.

Note that in this problem it is easy to check the answer, if at all in doubt. In fact,

z2

1
+ jz1 =

(√
3 − j

2

)2

+ j

(√
3 − j

2

)

=
2 − 2j

√
3

4
+ j

(√
3 − j

2

)

= 1,

as expected.
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I.d An Application: Electrical Circuits

The three fundamental electrical circuit components are: the resistor (of resistance

R), the inductor (of inductance L) and the capacitor (of capacitance C). Let t

denote time. The voltage drop v(t) across one of these components can be related

by observation to the current i(t) flowing through the component according to the

formulas:

(a) for a resistor: v(t) = Ri(t)

v (t)

R

i (t)

(b) for an inductor: v(t) = L
di

dt

i (t)

v (t)

L

(c) for a capacitor

Q(t) = Cv(t) (where Q = charge) or i(t) = C
dv

dt
.

C

v (t)

i (t)

These are the general relationships, and technically speaking could be used—

together with Kirchoff’s Laws—to derive all that follows by solving differential equa-

tions. However, if we deal with sinusoidal current/voltage situations and ignore

transients (e.g., charge on capacitor at t = 0), then complex number techniques can

be used to great advantage since they replace finding a derivative by multiplication

and finding an integral by division!
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We remark that by using Fourier Series technique, many inputs (square, tri-

angular, rectified sine/cosine, sawtooth, ...) can be expressed as an infinite series of

sines/cosines so that sinusoidal inputs are more important than what may be con-

jectured at first. Specifically, suppose now v = Im(̂V ejwt) with ̂V complex. This

corresponds to v = Im(|̂V |ej(wt+φ)) where ̂V = |̂V |ejφ, i.e., v = |̂V | sin(wt + φ).

Then,

(a) for a resistor:

Ri(t) = v(t), or i = Im

(

̂V

R
ejwt

)

.

So, if we write i = Im (̂Iejwt), then ̂I = ̂V /R. Note that this calculation

can be reversed, i.e., if we know i = Im (̂Iejwt) through the resistor, then

v = Im(̂V ejwt) with ̂IR = ̂V . We conclude: ̂IR = ̂V for a resistor.

(b) for an inductor:

L
di

dt
= v(t) = |̂V | sin(wt + φ)

and so (since we neglect transients):

i = −
|̂V |

Lw
cos(wt + φ) =

|̂V |

Lw
sin
(

wt + φ −
π

2

)

=
|̂V |

Lw
Im
(

ej(wt+φ−
π

2
)

)

=
|̂V |

Lw
Im

(

ej(wt+φ)

j

)

= Im

(

̂V ejwt

jLw

)

.

If we write i = Im (̂Iejwt), then ̂I = ̂V /jwL. Again we can reverse this. If

we know i = Im(̂Iejwt), then v = Im (̂V ejwt) with ̂V = ̂I(jwL). In summary,

̂V = ̂IjwL for an inductor!

(c) for a capacitor: we repeat the same process as we followed for an inductor and

conclude ̂I = ̂V (jwC).

These ideas can be combined to deal with more complicated circuits. As a
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first example we have the following.

Example 1. (Series Resonance). Consider the series circuit shown, and sup-

pose v = Im (̂V ejwt). We seek the current i(t) = Im (̂Iejwt).

i (t)

LR

v (t)

C

By Kirchoff’s Law, v(t) is the sum of the voltage drops across R, L, C. Now across R

we have i = Im(̂Iejwt) and vR = Im(R̂Iejwt), across L we have vL = Im(jwL̂Iejwt)

and across C we have vC = Im ((̂I/jwL)ejwt) since i is the same. Thus

v = vR + vC + vL

gives

Im (̂V ejwt) = Im (̂IRejwt) + Im (jwt̂Iejwt) + Im

(

̂I

jwC
ejwt

)

.

That is,

̂V = ̂I

(

R + jwL +
1

jwC

)

.

We define Z = impedance = R + jwL +
1

jwC
= R + j

(

wL −
1

wC

)

, and obtain

̂I =
̂V

Z
or

i = Im

(

̂V

Z
ejwt

)

= Im

(

̂V

|Z|
ej(wt−φ)

)

where Z = |Z|ejφ. Now suppose v = V sin(wt) (with V real note) or, equivalently,
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v = Im(V ejwt), then

i =
V

|Z|
sin(wt − φ) with

|Z| =

√

R2 +

(

wL −
1

wC

)2

,

tan φ =
(wL − 1/(wC))

R
.

Observe that |Z| has a minimum at wL = 1/(wC) (i.e., w = 1/
√

LC) This w is

the series circuit resonance frequency. For this w, i is maximal and equals i =

(V/R) sinwt. It is just as if L and C were not present in the circuit!

Example 2. (Parallel Resonance). Consider the parallel circuit shown.

R L C

v (t)

i (t)

Once again v = Im (̂V ejwt) and we seek i = Im (̂Iejwt). Clearly the same voltage

drop occurs across R, L and C and i is the sum of the three currents: through R,

through L, through C. Now

̂IR =
̂V

R
, ̂IL =

̂V

jwL
, ̂IC = ̂V jwC

and thus

̂I = ̂V

(

1

R
+

1

jwL
+ jwC

)

.

If we write ̂V = ̂IZ or

1

Z
=

1

R
+

1

jwL
+ jwC =

1

R
+ j

(

wC −
1

wL

)

,

32



then























∣

∣

∣

∣

1

Z

∣

∣

∣

∣

=

√

1

R2
+

(

wC −
1

wL

)2

Arg

(

1

Z

)

= tan−1

(

wC − 1/(wL)

1/R

)

= φ,

and so ̂I = ̂V ·
1

Z
.

Again if v(t) = V sin(wt) = Im (V ejwt), then

i(t) = V ·
1

|Z|
sin(wt + φ) = V

√

1

R2
+

(

wC −
1

wL

)2

sin(wt + φ)

and again if w = 1/
√

LC (the parallel resonance frequency), then i = (V/R) sinwt.

Except, unlike for the series circuit case, this frequency gives a minimum for i, not

a maximum.

We conclude by remarking that one of the main advantages of using complex

numbers for circuit analysis is that this method allows the simple decomposition of

complicated circuits into a collection of more elementary circuits. As an example

we have

Example 3. Consider the circuit shown. If v(t) = Im (̂V ejwt) find i(t).

C

v (t)

L

R L

R

1

1

22

Answer. We split the problem into sub-problems and find the Z for each.
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3

v (t)

v   (t)

v   (t)

1

v   (t)
2

Now v(t) = v1(t) + v2(t) + v3(t). Suppose i = Im(̂Iejwt). Then

v1(t) = Im (̂IZ1e
jwt) with

1

Z1

=
1

jwL1

+ jwC,

v2(t) = Im (̂IZ2e
jwt) with Z2 = R1,

v3(t) = Im (̂IZ3e
jwt) with

1

Z3

=
1

R2

+
1

jwL2

.

So

Im (̂V ejwt) = Im
(

̂I(Z1 + Z2 + Z3)e
jwt

)

and so

i(t) = Im

(

̂V

Z
ejwt

)

with

Z = Z1 + Z2 + Z3 =
1

j(wC −
1

wL1

)
+ R1 +

R2jwL2

R2 + jwL2

.
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I.e Graphs, Linear and Bilinear Maps

We recall that the graph of y = f(x) was of considerable importance in analyzing

the properties of f . Graphs are also of significance for complex functions but the

situation is more complicated. As we shall see, to really “graph” a complex function

we would need four dimensions.

We begin with a simpler problem, that is: find all those z (if any) on the

complex plane which satisfy some given relationship. This can also be tough to do,

and there are no general rules as to how one should go about it. We present several

examples to show how this problem is to be approached.

Example 1. Find all those z such that |z − 1| = 2.

Answer. The “honest” way—and the more general way—is as follows: put z =

x+ jy then z− 1 = (x− 1)+ jy and |z − 1|2 = (x− 1)2 + y2 = 4. So we get a circle,

centered at x = 1, y = 0 of radius 2. The best way to do this specific problem is

to note that |z − 1| = distance from z to 1. So we find all those points z that are 2

units distant from 1. Again a circle of radius 2 centered at 1.

1 + 0j

2

Example 2. Find all z such that

|z − j|

|z + j|
= 4.
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Answer. Except for complex variable experts, one should put z = x + jy. Then

|z − j|

|z + j|
=

|x + j(y − 1)|

|x + j(y + 1)|
= 4.

We square both sides and get

x2 + (y − 1)2 = 4(x2 + (y + 1)2)

or

x2 + y2
− 2y + 1 = 4x2 + 4y2 + 8y + 4.

I.e.,

3x2 + 3y2 + 10y + 3 = 0

or

x2 +

(

y +
5

3

)2

= −1 +
25

9
=

16

9
,

again a circle, centered at 0 −
5

3
j of radius 4/3.

You should not think that the above problem always has circles for solutions.

To see this note:

Example 3. Find all z such that

|z − j|

|z + j|
= 1.

Answer. Now we have x2 + (y − 1)2 = x2 + (y + 1)2. I.e., 4y = 0 or y = 0. We

have no restrictions on x. So z = x + 0j, i.e., the x-axis. This makes sense since we

are asking for those z which are equidistant from j and −j !
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- j

j

Example 4. Find all z such that

|z − j| + |z + j| = 4.

Answer. We want all those z such that the sum of the distances from z to j and

from z to −j gives 4. We expect therefore to get an ellipse. Now we have

√

x2 + (y − 1)2 +
√

x2 + (y + 1)2 = 4

or

x2 + (y − 1)2 + x2 + (y + 1)2 + 2
√

x2 + (y − 1)2
√

x2 + (y + 1)2 = 16.

That is,

x2 + y2 + 1 +
√

x2 + (y − 1)2
√

x2 + (y + 1)2 = 8

or

√

x2 + (y − 1)2
√

x2 + (y + 1)2 = 7 − x2
− y2.

Squaring again gives

16x2 + 12y2 = 48

which is an ellipse.
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- j

j

One needs again to be a little careful.

Example 5. Find all z such that

|z − j| + |z + j| = 1.

Answer. Since the distance from −j to j is 2, there are no z’s whose distance from

z to j is plus the distance from z to −j can be 1 (otherwise j itself would have to

be closer than 2 units from −j !). Let us see what happens in the calculations now.

We get, again

x2 + (y − 1)2 + x2 + (y + 1)2 + 2
√

x2 + (y − 1)2
√

x2 + (y + 1)2 = 1,

which gives

x2 + y2 + 1 +
√

x2 + (y − 1)2
√

x2 + (y + 1)2 =
1

2

or

√

x2 + (y − 1)2
√

x2 + (y + 1)2 = −
1

2
− x2

− y2.

Now this is impossible, since the left hand side is nonnegative, while the right hand

side is negative for any (x, y)! So no (x, y) work.

Now for some different examples.
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Example 6. Find all z such that

Im (z − j) = −2.

Answer. Put z = x + jy. Then z − j = x + j(y − 1) and Im (z − j) = y − 1. We

thus require y − 1 = −2 or y = −1. Note that x is not restricted. So z = x − j,

that is, a straight line.

z = x - j

Example 7. Find all those z such that

Arg (z − 1) =
π

4
.

Answer. Put z = x+jy. Then z−1 = (x−1)+jy and π/4 = Arg (z−1) = φ where

tan φ = y/(x − 1). We have y/(x − 1) = tanφ = tan(π/4) = 1 and so y = x − 1.

It appears that we got the entire straight line, but this is not right. The problem

comes from the fact that tan(−π/4) is also 1, so that the line y = x − 1 includes

both z where Arg (z − 1) = π/4 and those z where Arg (z − 1) = −π/4.

y = x - 1

z = 1
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We must remove the latter (we also must be careful at x = 1, since we can’t divide

by 0)! To see how to do this, note that Arg (z − 1) = π/4 also implies that z − 1

must be on the first quadrant. So z−1 = x−1+jy must have: x−1 > 0, y > 0. Of

course we also have y = x−1 from before. So, in summary, we have found y = x−1

with x > 1 is the 1/2 line we seek.

y = x - 1  (x > 1)

Note that at x = 1, y = 0 we get z − 1 = 0 and Arg (0) is not defined.

Not all graphs are curves.

Example 8. Find all z such that |z − j| ≤ 2.

Answer. Clearly we seek all z whose distance from j is ≤ 2. We thus find a disc

of radius 2 centered at j.

j
2

We now pass to the problem of “graphing” functions of z. That is, we suppose

w = f(z) and we try to get a “picture” of w. Note that if z = x + jy, then in

general w will also be complex so we set w = u + jv. For example, if w = z2, then
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(u + jv) = (x + jy)2 = (x2
− y2) + 2xyj. So u = x2 + y2, v = 2xy. To really

get a picture of this, we would need 4 axes (as mentioned above): one each for x,

y, u, v. This is impossible, nevertheless we can get an idea of the “graph” of f

by seeing how f maps certain curves in the (x, y) plane to (different) curves in the

(u, v) plane.

We illustrate this process with the simplest functions: the linear maps. Con-

sider the function w = z+a. That is: Let a = α+βj. Then u+jv = (x+jy)+(α+βj)

and so

{

u = x + α

v = y + β.

To see what this map does, observe that w takes any z to z+a. That is, w translates

every point of the plane by a.

z + a

x

y v

u
z

We conclude that any straight line in the (x, y) plane gets mapped by w to a straight

line (usually not the same one) in the (u, v) plane, and the same is true for circles.

As an example we have

Example 9. Find the image of the line y = x and of the circle (x−1)2+(y−2)2 = 4

under the map w = z + (1 + 2j).

Answer. Put z = x + jy, w = z + (1 + 2j). So here a = 1 + 2j and u = x + 1,

v = y + 2. To find what happens to the line y = x we replace y and x in this

equation by u and v. I.e., u− 1 = x = y = v − 2, and so u− 1 = v − 2 or v = u + 1.
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In pictures:

0 + 0j

y

x

v

u

w

y = x
v = u + 1

1 + 2j

Note that the point 0 + j0 in the (x, y) plane gets mapped to 1 + 2j in the (u, v)

plane.

We next consider what happens to the circle (x − 1)2 + (y − 2)2 = 4. Again

we replace (x, y) by (u, v) and get

((u − 1) − 1)2 + ((v − 2) − 2)2 = 4.

That is,

(u − 2)2 + (v − 4)2 = 4.

As might have been expected, the circle remains a circle with the same radius, but

the center has been “translated” to (2, 4).

u

w

2

2

1 + 2j

2 + 4j

x

y
v

The next simplest map is a multiplication by a constant: w = az with a =

α + jβ. Now u + jv = (α + jβ)(x + jy) or u = αx − βy, v = αy + βx. To see
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what this map does, write z = |z|ejθ, a = |a|ejφ. Then w = |a| |z|ej(θ+φ). So

under w, the point z gets mapped to a point with magnitude |a| |z| (i.e., dilation

or magnification by |a|) and Argument θ + φ (i.e., rotation by φ). So w = az is a

dilation or magnification by |a| and a rotation by Arg (a) of every z. What does

this do to lines and circles? A line y = mx + b is mapped to the (u, v) plane as

αv − βu

α2 + β2
= m

(

αu + βv

α2 + β2

)

+ b

or

αv − βu = m(αu + βv) + b(α2 + β2).

Here we have used the fact that x = (αu+βv)/(α2 +β2), y = (αv−βu)/(α2 +β2).

So lines stay lines, but rotated and moved (by the magnification). Note that lines

through the origin remain lines through the origin! Next suppose we have a circle

(x − x0)
2 + (y − y0)

2 = r2. We could replace (x, y) by (u, v) just like before, but it

is easier to deal with circles by noticing (x − x0)
2 + (y − y0)

2 = r2 is the same as

|z − z0| = r where z0 = x0 + jy0. Then

|a|r = |a| |z − z0| = |az − az0| = |w − az0|.

So the circle remains a circle with center az0 and radius |a|r.

Example 10. Find the image of the line y = x+1 and the circle x2 +(y−1)2 = 2

under the map w = (2 − j)z.

Answer. w = (2 − j)z = (2 − j)(x + jy) = (2x + y) + j(2y − x). So u = 2x + y,

v = 2y − x, or equivalently,

x =
2u − v

5
, y =

u + 2v

5
.
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The line y = x + 1 becomes
u + 2v

5
=

2u − v

5
+ 1 or v =

u + 5

3
.

v

x

y y = x + 1

v = u + 5
3

u

Now for the circle x2+(y−1)2 = 2, we rewrite this as |z−j| =
√

2 or |a||z−j| =
√

2 |a|

where a = 2−j and |a| =
√

5. We conclude |az−aj| =
√

10 or |w−(1+2j)| =
√

10,

and the original circle is mapped to a circle centered at 1 + 2j of radius
√

10.

Let us check this by using direct calculations. We have: x2 + (y − 1)2 = 2

becomes

(

2u − v

5

)2

+

(

u + 2v

5
− 1

)2

= 2.

That is,

(

4u2
− 4uv + v2

25

)

+

(

u2 + 4uv + 4v2
− 10u − 20v + 25

25

)

= 2

or

u2 + v2
− 2u − 4v = 5,

i.e.,

(u − 1)2 + (v − 2)2 = 10.

Just like before!
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10

x

y

v

u

1 + 2j
j

2

Observe that a map w = az + b can then be seen as a composition of the

earlier maps

z
magnification

−−−−−−−−→
rotation

az
translation
−−−−−−−→ az + b.

So w is a composition of a magnification, followed by a rotation followed by a

translation. Note that the order is important. A translation (by b) followed by

rotation and magnification would be the function

w1 = a(z + b).

And w1 is different from w !

The next map we consider is the inversion w = 1/z. If we let, one more time,

w = u + jv, z = x + jy, we get u + jv = (x − jy)/(x2 + y2) or

u =
x

x2 + y2
, v =

−y

x2 + y2
.

We shall use this later. Observe first that w = 1/z = (1/|z|)e−jθ where z = |z|ejθ.

So if w = |w|ejφ, then |w| = 1/|z| and φ = −θ. The map w = 1/z thus maps a

circle of radius r centered at the origin (i.e., |z| = r) to a circle of radius 1/r also

centered at the origin, but the individual points of the circle get mapped to points

with negative angles!
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u
r 1 / r

x

y
v

To see what happens in general, note that we can get any circle or straight

line into the form

a(x2 + y2) + bx + cy + d = 0

with a, b, c, d real numbers. This expression represents:

if a 6= 0 −→ circle

{

d = 0 through the origin

d 6= 0 not through the origin

if a = 0 −→ straight line

{

d = 0 through the origin

d 6= 0 not through the origin.

Now u = x/(x2 + y2), v = −y/(x2 + y2) imply x = u/(u2 + v2), y = −v/(u2 + v2).

So the expression a(x2 + y2) + bx + cy + d gets mapped to

a

(

1

u2 + v2

)

+ b

(

u

u2 + v2

)

− c

(

v

u2 + v2

)

+ d = 0

or

a + bu − cv + d(u2 + v2) = 0.

So circles not through the origin in (x, y) plane become circles not through the

origin in (u, v) plane since a, d are not zero; circles through the origin in (x, y)

plane become lines not through the origin in the (u, v) plane since a 6= 0 but d = 0;
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lines through the origin in (x, y) plane become lines through the origin in the (u, v)

plane since a = d = 0; and finally lines not through the origin become circles

through the origin since a = 0, d 6= 0.

Example 11. Find the image of x2 + y2 + 2x + 2y = 2 under w = 1/z.

Answer. x2 + y2 + 2x + 2y = 2 is the same as

(x + 1)2 + (y + 1)2 = 4,

that is, a circle not through the origin (since x = 0, y = 0 do not satisfy the

equation). We expect the image to also be a circle not through the origin. We find

x2 + y2 + 2x + 2y = 2 becomes

1

u2 + v2
+

2u

u2 + v2
−

2v

u2 + v2
= 2.

Equivalently,

1 + 2u − 2v = 2(u2 + v2) or

(

u −
1

2

)2

+

(

v +
1

2

)2

= 1.

In pictures:

1 + j
x

y v

u

1 - j
2

1

2

The final example of this kind that we present is the bilinear map:

w =
az + b

cz + d
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with a, b, c, d complex and c, d not both zero. We can decompose the bilinear map

into a sequence of earlier maps as follows: First note

w =
a

c
(cz + d) + b − ad

c

cz + d
=

a

c
+

cb−ad

c

cz + d
.

So we have

z
magnification

−−−−−−−−→
rotation

cz
translation
−−−−−−−→ cz + d

inversion
−−−−−→

1

cz + d

magnification

−−−−−−−−→
rotation

cb−ad

c

cz + d

translation
−−−−−−−→

a

c
+

cb−ad

c

cz + d
.

So this is quite a complicated map to visualize. There are some simple properties

that we mention.

(1) Given any 3 different numbers z1, z2, z3 on the z plane and 3 different numbers

w1, w2, w3 on the w plane we can find a bilinear map w such that

w(z1) = w1, w(z2) = w2, w(z3) = w3.

There are two ways to do this: one way is just to solve brutally for the a, b,

c, d that will do the job. The sneaky way is this:

(w − w1)

(w − w2)

(w3 − w2)

(w3 − w1)
=

(z − z1)

(z − z2)

(z3 − z2)

(z3 − z1)

and then solve for w. The idea behind the sneaky way is this: when z = z1,

the right hand side is zero and so the left hand side is zero too, and this means

w = w1. When z = z2, the left hand side is infinite, so is the right hand side

and thus w = w2. Finally when z = z3 the right side is one, then the left

hand side is one too and w = w3.

(2) If w = (az + b)/(cz + d), then the inverse of w (i.e., the map which gives

the original z for a given value of w) is also a bilinear transformation, usually

denoted by w−1. (Don’t get mixed up between this and 1/w!) To find w−1,
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just invert z and w, i.e.,

z =
aw + b

cw + d
,

or

z(cw + d) = aw + b.

And so

w =
b − zd

zc − a
.

We have w−1 = (b− zd)/(zc− a). Equivalently, solve for z (in terms of w) in

w = (az + b)/(cz + d), then z = (b − wd)/(wc − a), the same thing.

(3) Fixed points of w are those values of z (if any) such that w = z, i.e., z =

(az+b)/(cz+d). Note that there may not be any fixed points (e.g., w = z+j)

or all points may be fixed points (e.g., w = z).

We illustrate these remarks with examples.

Example 12. Find a bilinear map which maps 1, 0, j to 0, j, −j, respectively.

Answer. Here

{

z1 = 1, z2 = 0, z3 = j

w1 = 0, w2 = j, w3 = −j,

and so

(w − 0)(−j − j)

(w − j)(−j − 0)
=

(z − 1)(j − 0)

(z − 0)(j − 1)
.

That is,

−2jw

(w − j)(−j)
=

(z − 1) j

z(j − 1)
.
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Simplifying gives

w =
w − j

2

z − 1

z

j

j − 1
.

We find

w(j − 1)2z = w(z − 1)j + (z − 1).

Finally,

w =
z − 1

z(j − 2) + j
.

We check:

when z = 1, w = 0 X

z = 0, w =
−1

j
= j X

z = j, w =
j − 1

j(j − 2) + j
=

j − 1

−1 − j
.

The last w should equal −j. Does it? Note

j − 1

−1 − j
=

1 − j

1 + j
=

(1 − j)(1 − j)

(1 + j)(1 − j)
=

1 − 2j − 1

1 + 1
= −j X.

Example 13. Find the inverse map to w =
z − j

z + 2j
.

Answer. This is the map that, given w, return the original z. The easiest way to

find this map is to interchange z, w in the formula for w and then solve for w. Here

we have

z =
w − j

w + 2j
.

Thus

zw + 2jz = w − j
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or

w(z − 1) = −2jz − j.

Finally

w =
−2jz − j

z − 1
.

Let us see if this works. Suppose we choose z = 0 in the original w. Then the

original map sends z = 0 to (−j)/(2j), i.e., to −1/2. The inverse map sends −1/2

to (−2j(−1/2) − j)/(−1/2 − 1) = 0, which is the original z.

Example 14. Find the fixed points (if any) of

w =
jz + 1

(j + 1)z + j
.

Answer. We seek those z such that

z =
jz + 1

(j + 1)z + j

or

(j + 1)z2 + jz = jz + 1.

We have

z2 =
1

j + 1
=

1
√

2 ej
π

4

.

This gives

z = ±
1

2
1

4

e−j(
π

8
).
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Example 15. Find the image of the circle |z − j| = 2 under the map

w =
jz

z + 1
.

Answer. We could try to find equations for x, y in terms of (u, v) and substitute

these into |z − j| = 2. In essence this is what we do, but in a slightly different way.

Note that

w =
j[(z + 1) − 1]

z + 1
= j −

j

z + 1
.

So

w − j

j
=

−1

z + 1
.

We conclude

z + 1 =
j

j − w
or z =

j

j − w
− 1 =

w

j − w
.

(Note that we have found the inverse transformation.) Then |z − j| = 2 becomes

|w/(j − w) − j| = 2. We simplify this to

∣

∣

∣

∣

(1 + j)w + 1

j − w

∣

∣

∣

∣

= 2 or
|w + 1

j+1
|

|j − w|
=

2

|1 + j|
=

√

2.

That is,

|w + 1−j

2
|

|w − j|
=

√

2.

Put w = u + jv and square both sides to get

(

u +
1

2

)2

+

(

v −
1

2

)2

= 2(u2 + (v − 1)2)

or

u2 + u +
1

4
+ v2

− v +
1

4
= 2(u2 + v2

− 2v + 1).
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We conclude

u2 + v2
− 3v − u +

3

2
= 0

(

u −
1

2

)2

+

(

v −
3

2

)2

=
1

4
+

9

4
−

3

2
= 1.

So we get a circle, centered at z = 1

2
+ 3

2
j, radius = 1.

Remark. There is another way to do this example, but it is very special to this

type of function w, namely a bilinear transformation, and to this type of curve,

namely a circle. Specifically, we use the fact that a bilinear transformation being a

composition of translations, inversions, etc. maps circles and lines to either circles

or lines. Now |z − j| = 2 is a circle so its image under w is either a circle or a

line. Note that the points 2 + j, −j, 3j are on the circle. The image of 2 + j is

w1 = [j(2+j)]/(3+j), that of j is w2 = j(j)/(j+1), that of 3j is w3 = j(3j)/(3j+1).

We plot w1, w2, w3 and determine if these points lie on a circle or a straight line:

there are no other possibilities. This still requires some work in this example, but

in some cases this is the fastest way. Do not use this approach except for bilinear

transformations mapping either circles or lines.
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Further Exercises:

Exercise 1. Find all z such that |z − j| = 3 and sketch.

Answer. z = x + jy will satisfy this equation iff the distance from z to j is 3. We

thus have a circle, centered at j, of radius 3.

j

3

This is the fastest way to do this. Alternatively and more generally, put z = x+ jy

into |z − j| = 3 and get

|x + j(y − 1)| = 3 or, by squaring, x2 + (y − 1)2 = 9.

This is the same as before.

Exercise 2. Find all z such that |z − j| = |z| and sketch.

Answer. We seek all points equidistant from j and 0. This can be seen by noting

|z| = |z − 0|. So the answer is the straight line z = j/2. This is the fast way. The

slow way (again) is as follows: put z = x + jy, then

|x+j(y−1)| = |x+jy| or |x+j(y−1)|2 = |x+jy|2 or x2 +(y−1)2 = x2 +y2.

Thus x2 + y2
− 2y + 1 = x2 + y2 or y = 1/2.
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j/2

j

Exercise 3. Find all z such that |z − 1| + |z + 1| = 2 and sketch.

Answer. We seek all points z whose sum of the distance to +1 and −1 is 2. We

expect an ellipse, but since +1 and −1 are 2 units apart, the only z which work are

z = x with −1 ≤ x ≤ 1. I.e., the ellipse is degenerate. To see this the slow way, we

get

√

(x − 1)2 + y2 +
√

(x + 1)2 + y2 = 2,

or

(x − 1)2 + y2 + (x + 1)2 + y2 + 2
√

(x − 1)2 + y2

√

(x + 1)2 + y2 = 4

=⇒ x2
− 2x + 1 + y2 + x2 + 2x + 1 + y2 + 2

√

(x − 1)2 + y2

√

(x + 1)2 + y2 = 4

=⇒ x2 + y2 +
√

(x − 1)2 + y2

√

(x + 1)2 + y2 = 1.

That is,

[(x − 1)2 + y2][(x + 1)2 + y2] = (1 − (x2 + y2))2

which becomes

(x − 1)2(x + 1)2 + y2[(x − 1)2 + (x + 1)2] + y4 = 1 − 2(x2 + y2) + (x2 + y2)2.

We simplify

x4
− 2x2 + 1 + y2(x2 + 1)2 + y4 = 1 − 2(x2 + y2) + x4 + 2x2y2 + y4

55



or 4y2 = 0. This gives us y = 0. What about x? It seems that x is free, but note

that we have

x2 +
√

(x − 1)2
√

(x + 1)2 = 1 or
√

(x − 1)2
√

(x + 1)2 = 1 − x2.

But
√

(x − 1)2
√

(x + 1)2 ≥ 0, so 1 − x2
≥ 0, i.e., x2

≤ 1, and we get the same

result.

1-1

Exercise 4. Find all z such that |z − j| + |z + j| = 4.

Answer. There does not seem to be any very simple way to do this problem, so

just put z = x + jy and get

√

x2 + (y − 1)2 +
√

x2 + (y + 1)2 = 4

or

x2 + (y − 1)2 + x2 + (y + 1)2 + 2
√

x2 + (y − 1)2
√

x2 + (y + 1)2 = 16.

This gives

x2 + y2 +
√

x2 + (y − 1)2
√

x2 + (y + 1)2 = 7

or

(x2 + (y − 1)2)(x2 + (y + 1)2) = (7 − (x2 + y2))2
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which implies

x4 + x2[(y− 1)2 + (y + 1)2] + (y − 1)2(y + 1)2 = 49− 14(x2 + y2) + x4 + 2x2y2 + y4.

This gives

x4 + x2(y2 + 1)2 + y4
− 2y2 + 1 = 49 − 14(x2 + y2) + x4 + 2x2y2 + y4

or

2x2
− 2y2 + 14x2 + 14y2 = 48.

Finally,

4x2 + 3y2 = 12.

Exercise 5. Find the image of the circle |z − 2j| = 1 under the map w = 1/z.

Answer. Again if w = u+ jv, z = x+ jy, then x = u/(u2 + v2), y = −v/(u2 + v2).

So

√

x2 + (y − 2)2 = 1 or x2 + y2
− 4y + 4 = 1.

We have

x2 + y2
− 4y = −3 or

1

u2 + v2
+

4v

u2 + v2
= −3

which gives

1 + 4v + 3u2 + 3v2 = 0 or u2 + v2 +
4

3
v +

1

3
= 0

which becomes

u2 +

(

v +
2

3

)2

=
4

9
−

3

9
=

1

9
.

This is a circle centered at u = 0, v = −2/3 of radius 1/3.
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Exercise 6. Find the image of the line x = 1 under the map w =
z − j

z + j
.

Answer. We have (z + j)w = z − j, or z(w − 1) = −j − jw. This gives z =

−j(1 + w)/(w − 1). So if z = x + jy and w = u + jv, we have

x + jy = −j

(

(u + 1) + jv

(u − 1) + jv

)

.

This is the same as

x + jy =
v − j(1 + u)

(u − 1) + jv
=

[v − j(1 + u)][(u − 1) − jv]

[(u − 1) + jv][(u− 1) − jv]

=
[v(u − 1) − v(1 + u)] − j[(1 + u)(u − 1) + v2]

(u − 1)2 + v2
.

So, since x = 1, we get

1 =
2v(−1)

(u − 1)2 + v2

(so can’t have u = 1, v = 0 or get 0/0) which gives

(u − 1)2 + v2 = −2v.

Finally, (u − 1)2 + (v + 1)2 = 1, which is a circle of radius 1, centered at (1,−1),

except for u = 1, v = 0. Note that u = 1, v = 0 does not work, since then

1 = (z − j)/(z + j), which is impossible.

Exercise 7. Find the fixed points of the map w =
jz − j

z + 2j
.

Answer. We seek all z such that z = (jz − j)/(z + 2j). Equivalently,

z2 + 2jz = jz − j or z2 + jz + j = 0.

From this we obtain z = (−j +
√
−1 − 4j)/2 (both values of

√
to be used). Now

√
−1 − 4j = j

√
1 + 4j, and 1 + 4j =

√
17ejθ0 where tan θ0 = 4. So

√
1 + 4j =
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−(17)
1

4 e
jθ0

2 and

z =
−j ± (17)

1

4 e
jθ0

2

2
=

−j ± (17)
1

4 [cos( θ0

2
) + j sin( θ0

2
)]

2
.

Note θ0 ≈ 1.326, cos( θ0

2
) ≈ .7882, sin( θ0

2
) ≈ .6154.
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II. Limits and Derivatives

II.a Limits

We do this briefly. Let w = f(z). If we set w = u + jv, z = x + jy, then w = f(z)

gives u and v as functions of (x, y). We term (the complex number) L to be the

limit as z → z0 iff as |z − z0| → 0 (but z 6= z0!) we have |f(z) − L| → 0. Now put

L = `1 + j`2. Then |f(z) − L| → 0 iff
√

(u(x, y)− `1)2 + (v(x, y)− `2)2 → 0, i.e.,

both |u(x, y) − `1| → 0 and |v(x, y) − `2| → 0. In the same way, set z0 = x0 + jy0.

The |z − z0| → 0 iff both x → x0 and y → y0. So lim
z→z0

f(z) = L is exactly the same

as










lim
(x,y)→(x0,y0)

u(x, y) = `1

lim
(x,y)→(x0,y0)

v(x, y) = `2.

As was done before, we say f is continuous at z = z0 iff lim
z→z0

f(z) = f(z0). Equiv-

alently, lim
(x,y)→(x0,y0)

u(x, y) = u(x0, y0) and lim
(x,y)→(x0,y0)

v(x, y) = v(x0, y0). So this

is exactly the same as the situation encountered in advanced calculus courses! The

problem you recall, is that (x, y) may approach (x0, y0) in ∞ many ways ( in com-

plex lingo: z → z0 in ∞ many ways) so that using the definition directly to show

there is a limit, is basically futile. We recall the following rules which are useful.

1. Polynomials in (x, y) are continuous.

2. Rational functions (i.e., poly/poly) are continuous (except where the bottom =

0).

3. Let r = f(s) be a continuous function of one variable s (for this it more than

suffices that f be differentiable) and s = h(x, y) be a continuous function of

(x, y). Then r = f(s(x, y)) is a continuous function of (x, y).

4. Sums, Differences, Products, Quotients (except where the bottom= 0) of con-

tinuous functions are continuous.
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Before doing examples, we recall that the definition of limit is directly useful

in showing limits do not exist. If we choose two different paths on the complex

plane passing through z0 and one of u, v has different limits along the two paths

as z → z0, then lim
z→z0

f(z) does not exist.

Example 1. Show w = z2 is continuous at all z.

Answer. Put w = u + jv, z = x + jy. Then w = z2 is the same as

u = x2 + y2, v = 2xy.

Now let z0 = x0+jy0 be chosen at random. Then since both u and v are polynomials

in x and y, we have by Rule 1

lim
(x,y)→(x0,y0)

u = x2

0
+ y2

0
, lim

(x,y)→(x0,y0)

v = 2x0y0.

So

lim
z→z0

w = (x2

0
+ y2

0
) + 2x0y0j = w(x0, y0)

and w is continuous.

Example 2. Show w = ez is continuous at all z.

Answer. Same procedure as before: u = ex cos y, v = ex sin y. Note that u and v

are continuous (since ex is differentiable and so are cos y and sin y) by Rules 3 and

4. Then

lim
z→z0

w = lim
(x,y)→(x0,y0)

u + j lim
(x,y)→(x0,y0)

v

= ex0 cos y0 + jex0 sin y0 = ez0 = w(z0).
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Example 3. Show if w =
Re (z) − Im (z)

Re 2(z) + Im 2(z)
+ jIm (z), then lim

z→0

w does not exist.

Answer. Observe that z → 0 means z → 0 + j0, i.e., x → 0 and y → 0. We now

have u = (x − y)/(x2 + y2), v = y. Note that lim
(x,y)→(0,0)

y = 0. So v is continuous.

We check u. Note that if (x, y) → (0, 0) along x = y with x > 0, we get u → 0 while

if (x, y) → (0, 0) along y = 0 with x > 0, u blows up. So lim
(x,y)→(0,0)

u(x, y) does not

exist and thus neither does lim
z→z0

f(z).

Remark. In practice, the complex functions encountered will usually either be

continuous (and differentiable even) at the point in question or else blow up there.

So the existence/nonexistence of limits will usually be obvious.

We now pass to the definition of the most important limit.
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II.b Derivatives

In the last section, z sort of disappeared. We did everything in terms of x, y, u,

v. Now z returns. We have: If lim
z→z0

f(z) − f(z0)

z − z0

exists, we call it the derivative

of f with respect to z at z = z0, and denote it by
df

dz
(z0) or f ′(z0). There is no

counterpart of this concept for vectors.

When it comes to calculating f ′(z0), there are 2 immediate difficulties with

this definition.

(1)
f(z) − f(z0)

z − z0

is a fraction with the bottom = 0 at z = z0, so we can’t use our

Rules directly to help us find f ′(z0).

(2) We recall that z can approach z0 in ∞ many ways!

We don’t even attempt to use the definition directly to find f ′(z0). You could

actually use it for very simple cases, but there is a much better practical way. Before

we see what this way is, we introduce some notation. If f is differentiable at z0 (i.e.,

f ′(z0) exists) and at all points near z0, then f is analytic (also called holomorphic)

at z0. If f is analytic at all points of the plane, then f is entire (so an entire function

is one which has a derivative everywhere). In practice, most functions are either

analytic everywhere except at some points (where they blow up or have jumps), or

entire.

We now see how to calculate f ′(z).
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II.c Cauchy-Riemann Equations and Consequences

Here we shall use partial derivatives to help us compute f ′(z). Suppose first that

we know (by some miracle) that f ′(z0) actually exists. So

f ′(z0) = lim
z→z0

f(z) − f(z0)

z − z0

and z can approach z0 in any of the ∞ many possible ways. This means we can

choose a specific way and since f ′(z0) is always the same, will actually get f ′(z0)

as z → z0 along this special chosen way.

We now choose a way. We let z approach z0 = x0 + jy0 by keeping y fixed (at

y0). So z = x + jy0, and

f(z) − f(z0)

z − z0

=
u(x, y0) − u(x0, y0)

x − x0

+ j

(

v(x, y0) − v(x0, y0)

x − x0

)

.

0 0 0z   = x   + jy
0z = x + jy

Let now z → z0 along this path. Then x → x0 and y → y0 (actually y is y0). So

f ′(z0) = lim
z→z0

f(z) − f(z0)

z − z0

= lim
(x,y0)→(x0,y0)

u(x, y0) − u(x0, y0)

x − x0

+ j lim
(x,y0)→(x0,y0)

v(x, y0) − v(x0, y0)

x − x0

.

But we know the right hand side!!! It is ∂u/∂x+ j(∂v/∂x)! So if f ′(z0) exists, then

f ′(z0) =
∂u

∂x
(x0, y0) + j

∂v

∂x
(x0, y0).

This tells us how to calculate f ′(z0), if we know it exists. But when does f ′(z0)

exist? After all z can approach z0 in ∞ many ways, and we have so far considered

only one way. Maybe all is fine if z approaches z0 parallel to the x-axis (as we
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actually did), but things can go wrong if z approaches z0 at an angle, say.

Let us, for the moment, have z approach z0 in another way: parallel to the

y-axis. So now z = x0 + jy and, once again, if f ′(z0) exists, then

lim
z→z0

f(z) − f(z0)

z − z0

= lim
(x0,y)→(x0,y0)

u(x0, y) − u(x0, y0)

jy
+ lim

(x0,y)→(x0,y0)

j
v(x0, y) − u(x0, y0)

jy
.

z   = x   + jy

z = x   + jy

00

0

0

But once again we know the right hand side! It is
∂u

∂y

1

j
+

∂v

∂y
. So we get

f ′(z0) =
∂u

∂y

1

j
+

∂v

∂y
=

∂v

∂y
− j

∂u

∂y
.

We had found earlier that

f ′(z0) =
∂u

∂x
+ j

∂v

∂x
.

We must therefore have

∂u

∂x
=

∂v

∂y
,

∂u

∂y
= −

∂v

∂x

at points where f ′(z) exists. These are the Cauchy-Riemann Equations.

These equations enable us to find f ′(z) when it exists, but more than that:

It can be shown that for functions encountered in practice, if the Cauchy-Riemann

equations hold in a region R of the plane, then f is differentiable there. The basic

idea is similar to the calculation of a directional derivative for a “real” function of
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two variables g in terms of ∂g/∂x and ∂g/∂y.

In summary,

(1) For functions encountered in practice, f(z) exists wherever the Cauchy-Riemann

equations hold;

(2) If the Cauchy-Riemann equations hold, then

f ′(z) =
∂u

∂x
+ j

∂v

∂x

(or if you do not like this, f ′(z) =
∂v

∂y
− j

∂u

∂x
!)

(3) If f is differentiable at z0 and at all points near z0 we say f is analytic. If f

is differentiable everywhere f is entire.

Now some examples.

Example 1. Show that ez is differentiable everywhere (entire) and find its deriv-

ative.

Answer. Can you imagine doing this directly from the definition? Instead we put

u + jv = ex(cos y + j sin y). So

∂u

∂x
= ex cos y,

∂u

∂y
= −ex sin y

∂v

∂x
= ex sin y,

∂v

∂y
= ex cos y.

So ∂u/∂x = ∂v/∂y and ∂u/∂y = −∂v/∂x for every (x, y), i.e., for every z. Thus ez

is entire and, furthermore, its derivative is

∂u

∂x
+ j

∂v

∂x
= ex(cos y + j sin y) = ez.
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I.e.,

d

dz
(ez) = ez.

Remark. Note that d(ez)/dz is also

∂v

∂y
− j

∂u

∂y
= ex(cos y + j sin y).

Example 2. Find
d

dz
(z2).

Answer. u = x2
− y2, v = 2xy. So

∂u

∂x
= 2x,

∂u

∂y
= −2y

∂v

∂x
= 2y,

∂v

∂y
= 2x.

Now

∂u

∂x
=

∂v

∂y
,

∂v

∂x
= −

∂u

∂y

for all z! So z2 is also entire, and

d

dz
(z2) = 2x + j2y = 2z.

Important Remark. From the Cauchy-Riemann Equations, it is easy to show

that

(1) all the standard derivative rules (product, quotient, sum, etc.) hold;

(2) all the standard formulas hold:

dzn

dz
= nzn−1,

d

dz
(sin z) = cos z,

d

dz
(cos z) = − sin z,

d

dz
(cosh z) = sinh z,
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etc. This makes calculations often much faster and easier. There is a problem

with log z however, because there are many values to log z. If we restrict

ourselves to Log z (i.e., the principal value) then indeed, d(Log z)/dz = 1/z!

The same comment applies to z
1

n . Note first that z
1

n can be defined as z
1

n =

e(log z)
1

n . By writing out what log z is, you can check that z
1

n given this way

is exactly the same as z
1

n which we had earlier. Again, if we select, amongst

all n values of z
1

n , the one given by e(Log z)
1

n = |z|
1

n e
jθ

n with −π < θ < π, we

indeed get the usual derivative formula

d

dz
(z

1

n ) =
1

n
z

1

n
−1

where z
1

n is defined in terms of Log z!

Example 3. Find f ′(z) if f(z) = e(z
2
) sin z.

Answer. We could do this via the Cauchy-Riemann equations, but this is much

too long. Instead we use the rules from Remark 1 (namely product rule and chain

rule) to get

f ′(z) = e(z
2
)(2z) sin z + e(z

2
) cos z.

Of course, this requires knowing the derivatives of the exponential and the sine.

After that, it’s just like in the “real” case. Since f ′(z) exists for all z, f is entire.

Example 4. Find f ′(z) if f(z) = (z + 2 + j)10.

Answer. Again by the chain rule: put r = z + 2 + j. Then f = r10 and

df

dz
=

df

dr

dr

dz
= 10r9

dr

dz
.

68



Note that 2 + j is a constant, so that dr/dz = 1 and

df

dz
= 10(z + 2 + j)9.

Again, just like the “real” case, and again, f is entire.

Example 5. Find all points z = x + jy where the function

w =
x

x2 + y2
−

jy

x2 + y2

is differentiable (w.r.t. z).

Answer. Unless you happen to recognize what w is (in terms of z), it is best to

use the Cauchy-Riemann equations. Here

u =
x

x2 + y2
, v =

−y

x2 + y2
,

so

∂u

∂x
=

1

x2 + y2
−

2x2

(x2 + y2)2
,

∂u

∂y
=

−x

(x2 + y2)2
· 2y,

∂v

∂x
=

2yx

(x2 + y2)2
,

∂v

∂y
=

−1

x2 + y2
+

2y2

(x2 + y2)2
.

Now

∂u

∂y
= −

∂v

∂x
,

∂u

∂x
=

y2
− x2

(x2 + y2)2
=

∂v

∂y

so the equations are satisfied, except at x = y = 0 (where the bottom is zero, and

w is not defined). So dw/dz exists for all z except z = 0 and

dw

dz
=

y2
− x2

(x2 + y2)2
+ j

2xy

(x2 + y2)2
.

You may also have noticed that w = 1/z. If you did notice, then right away you
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would find w′ = −1/z2 by the quotient rule. Note that

−
1

z2
= −

(z)2

(z z)2
= −

(x − jy)2

(x2 + y2)2
=

(y2
− x2) + 2jxy

(x2 + y2)2

exactly the same as before, however note that we first found dw/dz without knowing

what w was in terms of z. Note that f is analytic at all points z except for z = 0.

Example 6. Same as Example 5 with w = x − jy2.

Answer. Here

∂u

∂x
= 1,

∂u

∂y
= 0,

∂v

∂x
= 0,

∂v

∂y
= −2y.

So the Cauchy-Riemann Equations hold for y = −1/2 and any x. Thus dw/dz

exists only on the line y = −1/2. Note that w is nowhere analytic since it’s not

differentiable at all points near any given point of the line.

Example 7. Let w = |z|2. Find all points where dw/dz exists.

Answer. Now w = u + jv = x2 + y2, so u = x2 + y2, v = 0 and thus need to find

those points where

∂u

∂x
= 2x = 0 and

∂u

∂y
= 2y = 0.

There is only one such point: x = y = 0, i.e., z = 0. We conclude dw/dz exists

at z = 0 but nowhere else. Note that w is not analytic at z = 0 (since only

differentiable at z = 0 and not near z = 0).
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Further Exercises:

Exercise 1. Find lim
x→(1+j)

z2
− 2j

z − (1 + j)
or show it does not exist.

Answer. Note that as z → 1 + j we have z2
− 2j → (1 + j)2 − 2j = 2j − 2j = 0.

So we are in the situation 0/0 and can’t use the rules. We try to divide:

z+ (1 + j)

z − (1 + j)

)

z2
−2j

z2
−z(1 + j)

z(1 + j)−2j

z(1 + j)−(1 + j)2

(1 + j)2 − 2j

But (1 + j)2 = 1 + 2j − j2 = 2j! Thus z2
− 2j = [z − (1 + j)][z + (1 + j)] and so

lim
z→(1+j)

z2
− 2j

z − (1 + j)
= lim

z→(1+j)

[z + (1 + j)] = 2(1 + j).

Exercise 2. Find lim
z→0

(

z2
− 2

z − j

)

or show it does not exist.

Answer. Here we use the rules first:

lim
z→0

(z − j) = −j

lim
z→0

(z2
− 2) = −2











(since polynomials are continuous).

Thus we obtain

lim
z→0

(

z2
− 2

z − j

)

=
2

j
.

Exercise 3. Find lim
z→0

(

z

z

)

or show it does not exist.
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Answer. Note that here we are in the 0/0 case. We have

lim
z→0

(

z

z

)

= lim
z→0

(

x − jy

x + jy

)

= lim
z→0

[

(x − jy)2

x2 + y2

]

= lim
(x,y)→(0,0)

[

x2
− y2

x2 − y2
+

−2jyx

x2 + y2

]

.

Observe

lim
(x,y)→(0,0)

[

x2
− y2

x2 + y2

]

=

{

0 along x = y

1 along y = 0.

So it has no limit. We thus conclude that lim
z→0

(z/z) does not exist. Note that we

did not need to consider lim
(x,y)→(0,0)

(−2xy)/(x2 + y2).

Exercise 4. Find all z at which sin z is continuous.

Answer. Note that sin z = (ejz
− e−jz)/(2j). But ejz is continuous for all z, since

ejz = ej(x+jy) = e−y(cos x + j sin x) and e−y cos x, e−y sin x are both continuous.

The same is true of e−jz, and of (ejz
− e−jz)/(2j). So sin z is continuous for all z.

Exercise 5. For what z is f(z) = (z2
− 1)/(z2 + 1) continuous and why?

Answer. f(z) = (z2
−1)/(z2+1). Now the bottom and top are polynomials and so

f(z) is continuous at all z where the bottom 6= 0, i.e., at all z such that z2 + 1 6= 0.

What happens at z2 + 1 = 0, i.e., at z = ±j? We look at lim
z→j

z2
− 1

z2 + 1
. Observe that

z2
− 1 → j2

− 1 = −2,

z2 + 1 → j2 + 1 = 0.

Thus as z → j, (z2
− 1)/(z2 +1) blows up. Consequently there is no limit at z = j,

and the function is not continuous at z = j. The same thing happens at z = −j.

In conclusion, f(z) = (z2
− 1)/(z2 + 1) is continuous at all z not equal to ±j.

Exercise 6. Find all points where f(z) = z is differentiable.
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Answer. Let f(z) = z = x − jy. Then u = x, v = −y and thus ∂u/∂x = 1,

∂v/∂y = −1. The Caucy-Riemann equations are never satisfied and f(z) is never

differentiable.

Exercise 7. Find d(z tan z)/dz.

Answer. We must find d(tan z)/dz. Now tan z = sin z/ cos z and d(sin z)/dz =

cos z, d(cos z)/dz = − sin z. These formulas can be obtained by writing sin z in

terms of (ejz
− e−jz)/(2j), and repeating with cos z. Now

d(tan z)

dz
=

(cos z)(cos z) − sin z(− sin z)

cos2 z
=

1

cos2 z
= sec2 z

by the quotient rule. Thus, by the product rule,

d(z tan z)

dz
= tan z + z sec2 z.

Exercise 8. Find all points where w = e−Im (z)[cos(Re z) + j sin(Re z)] is differ-

entiable with respect to z. What is dw/dz at these points?

Answer. We have w = e−y(cos x + j sin x). So u = e−y cos x, v = e−y sin x and

∂u

∂x
= −e−y sin x,

∂v

∂y
= −e−y sin x,

∂u

∂y
= −e−y cos x,

∂v

∂x
= e−y cos x.

The Cauchy-Riemann equations are always satisfied, and w has a derivative for all

z. At any z = x + jy,

dw

dz
= −e−y sin x + j(e−y cos x).
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II.d Harmonic Functions, Harmonic Conjugates, Singular Points

Let f(z) = u + jv be analytic in some region of the plane. In this region we then

have the Cauchy-Riemann Equations:

∂u

∂x
=

∂v

∂y
,

∂u

∂y
= −

∂v

∂x
.

If we differentiate these w.r.t. x and y respectively, we get

∂2u

∂x2
=

∂2v

∂x∂y
,

∂2u

∂y2
= −

∂2v

∂x∂y

and thus

∂2u

∂x2
+

∂2u

∂y2
=

∂2v

∂x∂y
−

∂2v

∂x∂y
= 0.

So u satisfies Laplace’s Equation

∂2u

∂x2
+

∂2u

∂y2
= 0

in the region. This is an important equation which arises in a variety of steady-

state problems (temperature distribution in bodies, electrostatic potentials, etc.).

Its solutions are said to be harmonic functions. So if f(z) is analytic, then u is

harmonic. If we differentiate the original Cauchy-Riemann equations the other way

around, then we find that v is also harmonic. So if f is analytic, both its real

and imaginary parts are harmonic. There is one more thing. Suppose u, v are 2

harmonic functions which also satisfy the Cauchy-Riemann equations. Then u, v

are harmonic conjugates and f = u+jv is analytic. Note that the Cauchy-Riemann

equations are not symmetric (due to the − sign in the second equation). This fixes

which is u and which is v in f = u + jv. In general these cannot be interchanged.
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Example 1. Show that r = x2
− y2 is harmonic, find its harmonic conjugate

and use the two functions to construct an analytic function with these as real and

imaginary parts.

Answer. To see that r is harmonic we compute ∂
2
r

∂x
2 + ∂

2
r

∂y
2 = 2 − 2 = 0. So r is

harmonic. We next find a harmonic conjugate. Suppose we first think of r as “u”,

then we need v such that

2x =
∂v

∂y
and − 2y = −

∂v

∂x
.

This is the same problem as finding the “potential,” or solving “exact differential

equations.” The first equation gives v = 2xy + H(x) for some function H. The

second gives 2y = 2y+H ′(x). So H ′(x) = 0, i.e., H = a constant C. We have found

v = 2xy+C is a harmonic conjugate for any C and thus f = (x2
−y2)+ j(2xy+C)

is the associated analytic function. You may have recognized f as z2 + Cj for a

(real) constant C.

Suppose now we think of r as “v”. Then we need u such that

∂u

∂x
= −2y,

∂u

∂y
= −2x.

Now we find u = −2xy + H(y) and then H(y) = C. So, in this case u = −2xy + C

with C real. The function now becomes g = (−2xy + C) + j(x2
− y2). Note that

f and g are different. But we see the connection after a minute: f = −jg, and the

arbitrary constants are negatives of each other. Does this make any sense? Yes, if

you notice that if f = −jg, then the real part of f is the imaginary part of g and

the imaginary part of f is the minus the real part of g.

In summary, given a harmonic function r, we can construct by means of
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the Cauchy-Riemann equations its harmonic conjugate. What this depends on is

whether we think of r as the real or as the imaginary part of an analytic function.

Usually, if we write u (for r) then we mean that u is to be the real part, while if we

write v (for r) we mean that v is to be the imaginary part of f .

A point z0 such that f ′ does not exist at z0, but does so at all points near z0,

is called a singular point of f . In practice, almost all singular points arise because

f is not defined (blows up) at the point in question, for example,

Example 2. Let f(z) = z/(z2 +1). If z2 +1 6= 0, then f ′(z) exists: we just apply

the quotient rule and the fact that z, z2 + 1 are differentiable. If z2 + 1 = 0, i.e.,

z = ±j, then f does not exist, so f ′ does not exist, so ±j are singular points.
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II.e Angular Properties: Conformal Maps, Orthogonal Families

We start by recalling the following. Let

C =

{

x = x(t)

y = y(t)
a ≤ t ≤ b

be a curve in the xy plane. The position vector is r(t) = x(t) i + y(t) j. (Note that

here j is a vector, not j =
√
−1!) Then the velocity vector is dr/dt = x′ i+ y′ j, and

its direction is tangential to C (in the direction of increasing t).

r/dt

r(t)

d
C

x

y

We now pass to the complex plane, and use the analogy between z and 2-d vectors.

Again let C be the given curve, then z(t) = x(t) + jy(t) (now j is
√
−1) is a

curve in the complex plane. It is of course the same curve as before, just written

in different form. We differentiate z with respect to the real variable t, and get

z′(t) = x′(t) + jy′(t). Note that this is not a derivative with respect to z. It is just

lim
t→t0

[z(t)− z(t0)]/(t− t0), the same as for ordinary differentiation. We observe that

z′(t) when plotted, is tangential to C, indeed we have the same picture as before.

C
dz / dt

z (t)

x

y

Now suppose w = f(z) is an analytic function. This function maps points from
77



the z-plane to the w-plane. We are interested in what happens to points on the

given curve C : z = x(t) + jy(t). They get taken to w(t) = f(z(t)), which will vary

depending on the specific choice of f (and C).

There is one thing however which we notice. By the Chain Rule,

dw

dt
=

df

dz
·
dz

dt
, so

∣

∣

∣

∣

dw

dt

∣

∣

∣

∣

=

∣

∣

∣

∣

df

dz

∣

∣

∣

∣

·

∣

∣

∣

∣

dz

dt

∣

∣

∣

∣

and

arg

[

dw

dt

]

= arg

[

df

dz

]

+ arg

[

dz

dt

]

.

)

x

y v

u

w

dz / dt dw / dt
C

Cw (

We observe that dw/dt is a tangent vector to the image of C under w, and focus on

the second equation. We note that arg [dw/dt] (i.e., the angle the tangent makes

w.r.t. the u-axis) is the original angle of the tangent (i.e., arg [dz/dt]) plus the

argument of df/dz, unless df/dz = 0 or dz/dt = 0 in which case dw/dt = 0 and

thus dw/dt does not have a defined argument.

The key observation is that df/dz does not have any dependence on the specific

C, i.e., choose a point z0 and suppose 2 curves C1 and C2 pass through z0, say at

t = 0. The two curves get mapped by w to w(C1) and w(C2) respectively, while z0

is taken to w(z0), as in the picture.
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w

y

x

C

C

z 0

z   (t)

z   (t)
1

2

φ

1

φ2

v

u

w (C    )

w (C   )

w (z   )0

2

1

Suppose none of
df

dz
(z0),

dz1

dt
(0),

dz2

dt
(0) are zero. Then the tangent vectors to C1,

C2 at the meeting point z0 get rotated by the same angle (namely arg [ df

dz
(z0)]), so

the angle between C1, C2 at z0 and their images w(C1), w(C2) at w(z0) stays the

same.

In summary : let w = f(z) and suppose df

dz
(z0) 6= 0, then w maps curves

intersecting at z0 into the w plane in such a way that the angle between them is

preserved at w(z0). Such a map is called conformal. In particular, if two curves meet

at right angles in the z-plane, so do their images in the w-plane. We emphasize that

each curve may be distorted by the map w. It is only the angle between them that

stays the same.

The previous discussion had to do with the connection between “angles” in

the z plane and in the w plane. There is another “angular” property of analytic

functions which should be mentioned, which deals with angles just in the z-plane.

Again, let w = u + jv and consider the families of curves u(x, y) = c, v(x, y) = d

(for arbitrary constants c, d) in the (x, y) plane. Note that u(x, y) = c will give y,

say, as a function of x, denoted by y1(x). We find, differentiating implicitly w.r.t.

x, and treating y1 as a function of x:

∂u

∂x

∂x

∂x
+

∂u

∂y

dy1

dx
= 0.
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That is,

∂u

∂x
+

∂u

∂y

dy1

dx
= 0.

In the same way, for any curve (i.e., for any constant d) of the second family

v(x, y) = d we have y as a function of x, denoted by y2(x) and

∂v

∂x
+

∂v

∂y

dy2

dx
= 0.

Now suppose a member of the first family meets a member of the second at z0 =

x0 + jy0. Then at this point we find from the Cauchy-Riemann equations:

dy1

dx
·
dy2

dx
=

∂u

∂x

∂u

∂y

·

∂v

∂x

∂v

∂y

= −1.

So the two curves meet at right angles!

In summary, the family of curves u(x, y) = c, v(x, y) = d in the (x, y) plane

meet at right angles (if at all) at a point where w = u+jv is analytic unless of course

one of the derivatives ∂u/∂y, ∂v/∂y are zero. Since we can however interchange x

with y in the previous discussion, all that we need again is that f ′(z) 6= 0. What

happens at this last possibility requires a special treatment, as does the situation

where w is not analytic at the point in question, which is beyond the scope of this

course. We pass to examples.

Example 1. We consider the situation for a relatively simple case: w = z2.

Observe first that dw/dz = 2z, so w is conformal except at z = 0, and angles

between curves are preserved. To illustrate this, consider two straight lines on the

z-plane y = 0 and y = x − 1. Clearly these meet at x = 1, y = 0 with an angle of

θ = π/4. (To see this, note that a tangent vector to y = x − 1 is i + j.)
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y

x
π / 4

y = x - 1

(1 , 0) y = 0

C1

C 2

Consider their images. Note that u + jv = (x2
− y2)− 2jxy. So y = 0 gets taken to

{

u = x2

v = 0
−∞ < x < ∞.

This is the positive u semiaxis (crossed over twice note, as x goes from −∞ to ∞).

On the other hand, y = x − 1 gets taken to:

{

u = x2
− (x − 1)2 = 2x − 1

v = 2x(x − 1) = 2x2
− 2x

.

Solving for x in terms of u and substituting into the equation for v gives

v =
(u + 1)(u − 1)

2
=

u2
− 1

2

which is a parabola. Finally, z = 1 becomes w = 12 = 1, i.e., u = 1, v = 0. So in

the w plane the picture is:

(1 , 0)

φ
u

v

w (C   )2

w (C   )1

We check what φ is. By the theory, it should be π/4. Now w(C2) in parametric
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form is: u = u, v = (u2
− 1)/2, so the position vector r = u i + (u2

− 1)/2 j and the

tangent vector is dr/du = i+uj (in the direction of increasing u). So at w = 1 (i.e.,

u = 1, v = 0) we get dr/du = i + j and we find φ = π/4.

Next, let us see what happens to x = 0 and y = 0 (i.e., the two axes). Clearly

these meet at π/2 in the (x, y) plane. Their images under w are

{

u = −y2

v = 0
and

{

u = x2

v = 0
.

So x = 0 gets mapped to the negative u semiaxis, while y = 0 gets mapped to the

positive u semiaxis. The angle between these is clearly not π/2!

ux

y v

The problem is that the x and y axes meet at (0, 0) and there dw/dz = 2z is zero,

so the map is not conformal there.

Finally, consider the family of curves u = x2
− y2 = c1, v = 2xy = c2 in the

(x, y) plane, for constants c1, c2. We expect these two to meet at right angles, at

points where derivatives 6= 0 are involved. We sketch a few curves.
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1 = -1

C1 = -1

C1 = 1 C1 = 1

C 2 = 1/2

C 2 = 1/2C 2 = -1/2

C

C

1

2 = -1/2

C 2 = 0

C1 = 0 C   = 0

We can check (by taking tangents) that indeed these meet at right angles, except

for the cases c1 = c2 = 0. Here the curves meet at (0, 0) but not at right angles!

Again the difficulty is that dw/dz = 2z = 0 there.

In conclusion, these geometric properties of analytic function are useful in

solving numerically (and otherwise) a variety of practical problems in Electrical

Engineering. In fairness, I feel such an approach was more important in the past,

since today we have a variety of different solution procedures on the computer:

finite elements, adaptive grids, etc., etc., etc. Furthermore, while most significant

practical problems involve 3 space dimensions, analytic function approaches really

belong to a 2-d world, i.e., u, v are just functions of (x, y).
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Further Exercises:

Exercise 1. Find df/dz if it exists: f(z) = sinh(z) + |z − j|2.

Answer. Let f(z) = sinh z + |z − j|2. Now d(sinh z)/dz = cosh z everywhere. This

can be seen by writing sinh z = (ez
− e−z)/2. What about d(|z − j|2)/dz? Now

|z−j|2 = x2+(y−1)2. So u = x2+(y−1)2, v = 0. The Cauchy-Riemann equations

give: 2x = 0, 2(y − 1) = 0. So we need x = 0, y = 1 and then the derivative of

|z − j|2 is ∂u/∂x + j∂v/∂x = 0. So f(z) = sinh z + |z − j|2 is differentiable only at

z = 0 + 1j = j.

Exercise 2. Find df/dz if it exists: f(z) = z2z + e(z
2
).

Answer. Let f(z) = z2z + ez
2

. Now ez
2

is entire, i.e., differentiable everywhere.

In fact, d(ez
2

)/dz = ez
2

2z by the chain rule. Now

z2
|z| = [(x2

− y2) + 2xyj][x2 + y2].

So

u = (x2
− y2)(x2 + y2) = x4

− y4, v = (x2 + y2)(2xy).

Thus

∂u

∂x
= 4x3,

∂v

∂x
= (2x)(2xy) + (x2 + y2)(2y),

∂u

∂y
= −4y3,

∂v

∂y
= (2y)(2xy) + (x2 + y2)(2x).

So

4x3 = 6xy2 + 2x3

−4y3 = −(6x2y + 2y3).







(∗)
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Well, x = y = 0 works. Do any other points work? We rewrite the equations of (∗)

as

2x3 = 6xy2

2y3 = 6x2y.

These show that if one of x, y is zero so is the other. We may assume that both x,

y are 6= 0. Then we have 2x2 = 6y2 and 2y2 = 6x2. Consequently we must have

x = y = 0 and there are no other solutions.

Exercise 3. It is known that f(z) is entire and that f(z) = f(z). What is f(z)?

Answer. We know that f(z) is entire, so df/dz exists for all z. Now put f = u+jv.

Then f = f and so u + jv = u − jv, i.e., v ≡ 0. But ∂u/∂x = ∂v/∂y = 0 and

∂u/∂y = 0 also. So u = constant. In summary, f is a real constant.

Exercise 4. Let u = 2y(1 − x). Show that u is harmonic, find its harmonic

conjugate v and a function f(z) = u + jv which is entire.

Answer. u = 2y(1 − x). Then we note uxx = 0, uyy = 0 and thus uxx + uyy = 0.

We conclude that u is harmonic. Now we find v from the Cauchy-Riemann equatins:

∂u

∂x
= −2y =

∂v

∂y
−→ v = −y2 + C(x) −→

∂v

∂x
=

dC

dx
.

Then

∂u

∂y
= −2x + 2 = −

∂v

∂x
.

We conclude dC/dx = 2x − 2, and thus C = x2
− 2x + D with D = constant. In

summary, v = −y2 + x2
− 2x + D and w = 2y(1 − x) + (−y2 + x2

− 2x + D)j.
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Exercise 5. Repeat exercise 4, except now v = 2y(1 − x) and you are to find u,

and f(z) = u + jv.

Answer. Now v = 2y(1− x). We already know v is harmonic from exercise 4. We

wish to find u. Observe that ∂u/∂x = ∂v/∂y = 2(1 − x). Consequently,

u = 2x − x2 + C(y).

Next

dC

dy
=

∂u

∂y
= −

∂v

∂x
= 2y.

We conclude dC/dy = 2y or C = y2 + D for a constant D. Finally, u = 2x − x2 +

y2 + D and f = (2x − x2 + y2 + D) + j2y(1− x).

Remark: Note that this f is j times the f found in exercise 4.

Exercise 6. Repeat exercise 4, with u = cos x sinh y.

Answer. Now u = cos x sinh y, so uxx = − cos x sinh y and uyy = cos x sinh y. We

conclude uxx + uyy = 0 and u is harmonic. Now

∂u

∂x
= − sin x sinh y =

∂v

∂y

and thus

v = − sin x cosh y + C(x).

But

∂u

∂y
= cos x cosh y = −

∂v

∂x
= cos x cosh y −

dC

dx
.

Thus dC/dx = 0 and C = constant. Finally,

f = cos x sinh y + (− sin x cosh y + C)j.
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Exercise 7. It is known that both f = u + jv and g = v + ju are entire. What

are u and v?

Answer. Now f = u + jv is entire and so

∂u

∂x
=

∂v

∂y
,

∂u

∂y
= −

∂v

∂x
.

But g = v + ju is also entire, i.e.,

∂v

∂x
=

∂u

∂y
,

∂v

∂y
= −

∂u

∂x
.

We conclude

∂u

∂x
= 0,

∂u

∂y
= 0,

∂v

∂y
= 0,

∂v

∂x
= 0.

But then

∂u

∂x
=

∂u

∂y
= 0 −→ u = constant,

∂v

∂x
=

∂v

∂y
= 0 −→ v = constant.

So u and v are both constants.

Exercise 8. Construct by complex variable methods a family of curves orthogonal

to the family x + y = c.

Answer. The first family is x+y = c. We recall that if f = u+ jv is analytic, with

df/dz 6= 0, then the families u = c, v = d for constants c, d meet at right angles.

Now choose u = x + y. Now uxx + uyy = 0 and we choose v by

∂u

∂x
= 1 =

∂v

∂y
,

∂u

∂y
= 1 = −

∂v

∂x
.
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We have v = y − x + const. So the second family is y − x = d. Note that

df

dz
=

∂u

∂x
+ j

∂v

∂x
= 1 − j 6= 0.

So we conclude the members of the family y − x = d meet those of the family

x + y = c at right angles.
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III. Integrals

III.a Introduction

We begin by recalling “real” vector path integrals. Let C be a curve in the (x, y)

plane given by

C =

{

x = x(t)

y = y(t)
a ≤ t ≤ b,

and let F = M i + N j be a vector field.

y

C

x

We define

∫

C

F · dr =

∫

b

t=a

(

M
dx

dt
+ N

dy

dt

)

dt.

Let us now further suppose that C is a simple closed path, i.e., the start point of

C = end point of C, and C does not otherwise cross itself. We denote by 	
∫

F ·dr, the

integral of F around C in the counterclockwise direction, i.e., with the “inside” of C

on the left side as we traverse C. We could evaluate such integrals by parametrizing

C and proceeding just as for the first part. It is important for us to note another

way, given by Green’s Theorem: Let C be a simple closed path and suppose R is

the region enclosed by C. Then

	

∫

C

F · dr =

∫∫

R

[

∂N

∂x
−

∂M

∂y

]

dx dy.
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C
R

It is assumed that ∂N/∂x and ∂M/∂y both exist and are continuous inside R and

on C. This will be the case for what follows, except for important situations when

N , M blow up at some point inside R. Green’s Theorem then fails, and we replace

it by the following version: Let R be a region of the plane, with boundary C1, and

a hole with boundary C2 as shown. (Note that earlier we started with a path C

and R denoted the “inside” of C. Now we start with R, and C1, C2 denote its two

boundaries.)

2C

1

R

C

Then

	

∫

C1

F · dr =

∫∫

R

[

∂N

∂x
−

∂M

∂y

]

dx dy+ 	

∫

C2

F · dr.

So, if ∂N/∂x ≡ ∂M/∂y in R, then

	

∫

C1

F · dr =	

∫

C2

F · dr.

This is important for us, because the result holds if ∂N/∂x, ∂M/∂y both exist and

are continuous in R, in particular: M , N could blow up inside “the hole.” What

happens inside the “hole” does not matter, but the price we pay is the calculation

of 	
∫

C2

F · dr.
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We conclude this review by pointing out that the second result follows from

the first, if we make a cut from C1 to C2. We have:

∫∫

R

[

∂N

∂x
−

∂M

∂y

]

dx dy =	

∫

C1

F · dr +

∫

C3

F · dr+ �

∫

C2

F · dr +

∫

C4

F · dr.

1C
C2

C3

C4

But C3 is C4 traversed backwards while C2 is traversed clockwise and thus

∫

C3

F · dr = −

∫

C4

F · dr

�

∫

C2

F · dr = − 	

∫

C2

F · dr,

and the result.
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III.b Path Integrals in the Complex Plane

We are now ready to return to the complex plane. Given a path C, we define the

integral of a complex function f(z), i.e.,
∫

C
f(z) dz, just like we did for vectors,

keeping in mind that j2 = −1.

y
dz

z (t) z (t + dt)

C

x

∫

C

f(z) dz =

∫

C

(u + jv)(dx + jdy)

=

∫

C

[(udx − vdy) + j(vdx + udy)]

=

∫

b

t=a

[

u
dx

dt
− v

dy

dt

]

dt + j

∫

b

t=a

[

v
dx

dt
+ u

dy

dt

]

dt

where C is given by

{

x = x(t)

y = y(t)
a ≤ t ≤ b.

In more condensed notation:

∫

C

f(z) dz =

∫

b

t=a

[f(z(t))]

(

dz

dt

)

dt.

Note that we can interpret intuitively
∫

C
f(z) dz as follows: Let t vary from t to

t + dt, then z changes from z(t) to z(t + dt). Thus

f(z) dz ∼= f(z)[z(t + dt) − z(t)] ∼= f(z)

[

dz

dt

]

dt.
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Summing as t goes from a to b and taking the limit as dt → 0 gives the result.

Observe that there is no immediate physical interpretation to
∫

C
f(z) dz (unlike

∫

C
F · dr = work).

Before doing an example, we note

(1) Let dw/dz = f in a region with no holes containing the path C. Then

f dz/dt = (dw/dz)(dz/dt) = dw and thus
∫

C
f dz = w(end point)−w(start point).

(2)
∫

C
f(z) dz will depend in general not only on the start/end points, but also

on the specific path taken.

(3) If we denote by −C, the path C travelled backwards, then

∫

C

f(z) dz = −

∫

−C

f(z) dz.

(4) If the path C = C1 + C2 as shown, then

∫

C

f(z) dz =

∫

C1

f(z) dz +

∫

C2

f(z) dz.

2

C

C

1

(5) Let

C =

{

x = x(t)

y = y(t)
a ≤ t ≤ b.

Then

∫

t=b

t=a

|z′| dt =

∫

t=b

t=a

√

(x′)2 + (y′)2 dt = L,
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the length of C.

(6) If C is a path parallel to the x-axis, i.e.,

C =

{

x = x(t)

y = y0

a ≤ t ≤ b

with y0 constant, then dy = 0 and

∫

C

f(z) dz =

∫

b

a

(

u
dx

dt
+ jv

dx

dt

)

dt.

C

x

y

Now some examples.

Example 1. Calculate
∫

C
z2 dz where C is the part of the parabola y = x2 from

z = 0 to z = 1 + j.

Answer. First note that d(z3/3)/dz = z2. Thus

∫

C

z2 dz =
z3

3

∣

∣

∣

∣

1+j

0

=
(1 + j)3

3
.

To practice, we also parametrize:

C =

{

x = t

y = t2
0 ≤ t ≤ 1

(of course we could also parametrize C as

{

x = x

y = x2
0 ≤ x ≤ 1,
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and in other ways as well). Then z = t + jt2 on C and

∫

C

z2 dz =

∫

1

t=0

(t + jt2)2(1 + 2jt) dt =

∫

1

t=0

(t2 + 2jt3 − t4)(1 + 2jt) dt

=

∫

1

0

[

(t2 − 5t4) + j(4t3 − 2t5)
]

dt =

(

1

3
− 1

)

+ j

(

1 −
2

6

)

.

C

Example 2. Calculate 	
∫

C
1/z dz if C is the circle centered at z = 0, of radius 1,

traversed counterclockwise.

Answer. We first parametrize C, and the angle θ seems useful as a parameter.

C

So

C =

{

x = cos θ

y = sin θ
0 ≤ θ ≤ 2π.

Then, on C, z = cos θ + j sin θ = ejθ! And

	

∫

C

1

z
dz =

∫

2π

θ=0

1

ejθ

(

dz

dθ

)

dθ =

∫

2π

θ=0

jejθ

ejθ

dθ = j

∫

2π

0

dθ = 2πj.
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Important Remark. Note that we can’t use Green’s Theorem directly here—see

below—(and indeed 	
∫

1/z dz 6= 0) since 1/z blows up at z = 0. Yet intuitively there

should be a connection between 	
∫

C
f(z) dz over simple closed paths C—just like our

circle—and Green’s Theorem. Indeed there is, see below, but for now we do such

integrals by parametrizing.

Important Example 3. Let n be an integer, positive or negative but not equal

−1, and let z0 be a fixed point of the plane. Calculate

	

∫

C

(z − z0)
n dz

where C is a circle of radius r centered at z0.

Answer. Again, parametrize C first. So let z0 = x0 + jy0.

0

r
θ

z

Then C is

{

x = x0 + r cos θ

y = y0 + r sin θ
0 ≤ θ ≤ 2π,

i.e., z = z0 + r(cos θ + j sin θ) = z0 + rejθ. Then

	

∫

C

(z − z0)
n dz =

∫

2π

θ=0

(rnenjθ)rjejθ dθ

=

∫

2π

θ=0

jrn+1e(n+1)jθ dθ = jrn+1
e(n+1)jθ

(n + 1)j

∣

∣

∣

∣

2π

θ=0

.
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Here we have used the fact that n 6= −1, so n + 1 6= 0. So

	

∫

C

(z − z0)
n dz =

rn+1

n + 1

[

e(n+1)j2π

− e0

]

.

But

ej(n+1)2π = cos(2π(n + 1)) + j sin(2π(n + 1)) = 1 + 0j

and thus 	
∫

C
(z − z0)

n dz = 0, regardless of n or of r or z0 (except n 6= −1).

Remark. Note that if, actually, n = −1, then

	

∫

C

(z − z0)
−1 dz =

∫

2π

θ=0

j dθ = 2πj 6= 0 !

So 	
∫

C
(z − z0)

−1 dz is not zero, and equals 2πj regardless of z0 or r.

We now focus on the connection between the integrals of f(z) over simple

closed paths C and the properties of f inside C.
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III.c Cauchy’s Theorem, Cauchy’s Integral Formula and Consequences

We have the following result.

Theorem. Let C be a simple closed path and f(z) an analytic function inside and

on C. Then

	

∫

C

f(z) dz = 0.

Proof: We use Green’s Theorem. Let f = u + jv and remember ∂u/∂x = ∂v/∂y,

∂u/∂y = −∂v/∂x inside and on C.

CR

So

	

∫

C

f(z) dz =	

∫

C

(u + jv)(dx + j dy)

=	

∫

C

(u dx − v dy) + j 	

∫

C

v dx + u dy.

Now

	

∫

C

(u dx − v dy)
Green
=

∫∫

R

(

−
∂v

∂x
−

∂u

∂y

)

dx dy
C. R. equations

= 0

and

	

∫

C

(v dx + u dy)
Green
=

∫∫

R

(

∂u

∂x
−

∂v

∂y

)

dx dy
C. R. equations

= 0.

So

	

∫

C

f(z) dz = 0.
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Consequences.

(1) If f is analytic, C not closed, then
∫

C
f(z) dz depends only on start/stop

points. Indeed, if C is given, and C1 is another path with the same start/stop

points, C1 + (−C) make a simple closed path, so then

∫

C1

f(z) dz −

∫

C

f(z) dz = 0,

i.e.,

∫

C

f(z) dz =

∫

C1

f(z) dz.

C

C1

Of course we require f to be analytic on C1, C2 and the region between them.

(2) Let C be any simple closed path. Then

	

∫

C

ez dz = 0, 	

∫

C

z3 dz = 0, 	

∫

C

sin z dz = 0, etc.

(3) Let C1, C2 be as shown.

2C

C1

Suppose f is analytic in the region between C1 and C2. Then

	

∫

C1

f(z) dz =	

∫

C2

f(z) dz.
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To see this, look at cuts, just like before.

C C

3
C4

2 1

C

We now pass to a closely related result: Cauchy’s integral formula. Before we

do, we observe a couple of preliminary results. Recall that from the defintion of

the integral,
∫

C
f(z) dz is obtained by discretizing C into pieces as t goes from t to

t + dt. We then sum
∑

f(z(t))[z(t+ dt)− z(t)] over all the subsegments into which

C has been decomposed and take limit as dt → 0.

l
z (t)

z (t+dt)

|dz| = d

Now we recall that |a| |b| = |ab| and |a + b| ≤ |a| + |b| for any complex a, b. So

∣

∣

∣

∣

∑

f(z(t)) dz

∣

∣

∣

∣

≤

∑

|f(z(t))| |dz|

where we have put dz for z(t + dt) − z(t). If we know |f(z(t))| ≤ M for some M ,

we conclude that

∣

∣

∣

∣

∫

C

f(z(t)) dz

∣

∣

∣

∣

≤

∫

C

M |dz|.

Now

|dz| =
√

(dx)2 + (dy)2 =
√

(x′)2 + (y′)2 dt = d`,
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the bit of length of C between z(t) and z(t + dt). So

∣

∣

∣

∣

∫

C

f(z(t)) dz

∣

∣

∣

∣

≤ M

∫

C

|dz| = M`

where ` = length of C. Note that this is true for C closed or not. Now we pass to

our next result. Let C be any simple closed path and z0 any point inside C. We

consider 	
∫

f(z)/(z − z0) dz for any f analytic inside and on C.

z

C
0

R

At first sight, one may think that this integral should be zero, but then one notices

that Cauchy’s Theorem does not hold inside C since f(z)/(z − z0) has zero for the

bottom at z = z0. Thus f(z)/(z − z0) does not exist at z = z0, never mind being

differentiable. So, we take z0 “out” by introducing a new path C1 which is a small

circle of radius ε centered at z0 (as shown).

1z
R’ C

0 C

Let R′ be the region between C and C1. Then f(z)/(z − z0) is analytic in R′

(remember: the quotient rule holds, and z0 is not in R′). So

	

∫

C

f(z)

z − z0

dz =	

∫

C1

f(z)

z − z0

dz,
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just as noted before. We focus on the right hand side. We add and subtract f(z0):

	

∫

C1

f(z)

z − z0

dz =	

∫

C1

f(z) − f(z0)

z − z0

dz+ 	

∫

C1

f(z0)

z − z0

dz.

Now the second integral is

	

∫

C1

f(z0)

z − z0

dz = f(z0) 	

∫

C1

dz

z − z0

= f(z0) · 2πj

since C1 is a circle centered at z0. (This is exactly one of the earlier examples!)

On the other hand, if C1 has small enough radius, for z on C1 we have

f(z) − f(z0)

z − z0

∼=
df

dz
(z0).

Then

∣

∣

∣

∣

	

∫

C1

f(z) − f(z0)

z − z0

dz

∣

∣

∣

∣

≤	

∫

C1

∣

∣

∣

∣

f(z) − f(z0)

z − z0

∣

∣

∣

∣

|dz|

≤ M 	

∫

C1

|dz| = M · length of C1

= M · 2πε −→ 0 as ε → 0

where M is an estimate on |
df

dz
(z0)|. So, we get by letting ε → 0,

	

∫

C

f(z)

z − z0

dz = (2πj)f(z0)

or

f(z0) =
1

2πj
	

∫

C

f(z)

z − z0

dz .

This is an amazing formula. It shows that if f is analytic and we choose any C and

any z0 inside C, then

f(z0) =
1

2πj
	

∫

C

f(z)

z − z0

dz.
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This means that if I know just f(z) on C, for any C containing a point z0, then I

know f(z0)!

So if an analytic function f is given on a simple closed path C, then we

automatically specify f inside C. Any changes from these values of f must destroy

the property of f being differentiable! Totally different from the “real” world! We

consider some examples.

Example 1. Evaluate 1

2πj
	
∫

C

f(z)

z−z0

dz if (a) f(z) = ez ; (b) f(z) = sin z; (c) f(z) =

z10; and z0 is a point inside the simple closed path C.

Answer. (a) ez0 ; (b) sin(z0); (c) z10

0
.

Example 2. Same as Example 1, except z0 is outside C.

Answer. (a) 0; (b) 0; (c) 0.

Note that in Examples 1 and 2 we did not specify C, nor the specific z0 either

inside or outside C !

There are more consequences of this formula. We have

f(z0) =
1

2πj
	

∫

C
f(z)

z − z0

dz.

It is useful to change notation: let s replace z and z replace z0. We get

f(z) =
1

2πj
	

∫

C

f(s)

s − z
ds

for any z inside the simple closed contour C. We then have

df(z)

dz
=

1

2πj
	

∫

C

f(s)

(s − z)2
ds
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by differentiating both sides with respect to z. If we do it again, we get

d2f(z)

dz2
=

2

2πj
	

∫

C

f(s)

(s − z)3
ds.

Then

d3f

dz3
(z) =

3 · 2

2πj
	

∫

C

f(s)

(s − z)4
ds

and so

dnf

dzn
(z) =

n!

2πj
	

∫

C

f(s)

(s − z)n+1
ds.

These formulas, connecting integrals and derivatives, will be used in what follows.
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Further Exercises:

Exercise 1. Let C1 be the circle x2 + y2 = 1, and C2 be the straight line y = x

in the z-plane. These curves meet at z0 = 1/
√

2 + 1/
√

2 j. Find the angle between

their image curves w(C1), w(C2) at the point of intersection w(z0) if w = 1/z.

Answer. Now C1 is the circle x2 + y2 = 1 and C2 is the line y = x. So we can

parametrize C1 as

{

x = cos θ

y = sin θ
0 ≤ θ ≤ 2π.

Let r1(θ) = i cos θ + j sin θ be the position vector for C1. Then d(r1(θ))/dθ =

−i sin θ + j cos θ. In the same way

C2 =

{

x = t

y = t
−∞ < t < ∞, r2(t) = ti + tj,

dr2

dt
= i + j.

So C1, C2 meet at 1/
√

2 + j1/
√

2 (thus cos θ = 1/
√

2, sin θ = 1/
√

2) at an angle φ

given by

(

−
1
√

2
i + j

1
√

2

)

· (i + j) = cos φ

∣

∣

∣

∣

−
1
√

2
+ j

1
√

2

∣

∣

∣

∣

|i + j|.

So cos φ = 0 and φ = π/2. Now w = 1/z, dw/dz = −1/z2 and dw/dz 6= 0 at

z = 1/
√

2 + j 1/
√

2. Thus w(C1), w(C2) meet at the same angle as C1, C2, namely

π/2.

Evaluate the following integrals:
∫

C
f(z) dz.

Exercise 2. f(z) = (z)2, C is the piece of parabola y = x2 from (0, 0) to (1, 1).

Answer.

∫

C

(z)2 dz =

∫

C

(x − jy)2(dx + jdy).

105



C can be parametrized as

{

x = t

y = t2
0 ≤ t ≤ 1. Thus

∫

C

(z)2 dz =

∫

1

t=0

(t − jt2)2(1 + 2tj) dt =

∫

1

t=0

(t2 − 2jt3 − t4)(1 + 2tj) dt

=

(

1

3
−

2j

4
−

1

5

)

+ 2j

(

1

4
−

2j

5
−

1

6

)

.

Exercise 3. f(z) = 1/z, C is the semicircle x2 + y2 = 4 from (0, 2) to (0,−2)

with x ≥ 0.

Answer.
∫

C

1

z
dz, C =

{

x = 2 sin θ

y = 2 cos θ
0 ≤ θ ≤ π.

2

C

Since z = 2(sin θ + j cos θ) = 2j(cos θ − j sin θ) = 2je−jθ,

∫

C

1

z
dz =

∫

π

θ=0

(2je−jθ)−1(2j)(−j)e−jθ dθ =

∫

π

0

(−j) dθ = −πj.

Exercise 4. f(z) = ez , C is any smooth path joining 1 − j to j.

Answer. Put w = ez. Then dw/dz = ez. So

∫

C

f(z)dz = w(end)−w(start) = ej

−e1−j = [cos(1)+ j sin(1)]−e[cos(1)− j sin(1)].
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Exercise 5. f(z) = sin z, C is any smooth path joining 0 to 2j.

Answer. Same as 4: w = − cos z. So

∫

C

f(z) dz = − cos(2j) − (− cos 0) = 1 − cos(2j).

Now

cos(2j) =
e(2j)j + e(−2j)j

2
=

e−2 + e2

2
, and

∫

C

f(z) dz = 1 −
1

2
(e2

− e−2).

Exercise 6. f(z) = z, C is the straight line joining z = 0 to z = 1 + j.

Answer. In this case

C =

{

x = t

y = t
0 ≤ t ≤ 1.

So

∫

C

f(z) dz =

∫

1

t=0

(t − jt)(1 + j) dt =

∫

1

t=0

2t dt = 1.

Exercise 7. f(z) = (z)−1, C is the circle x2 + y2 = 1, traversed counterclockwise

once.

Answer. Once again,

C =

{

x = cos θ

y = sin θ
0 ≤ θ ≤ 2π.

So x + jy on C is cos θ + j sin θ = ejθ, x − jy = e−jθ. Then

∫

C

1

z
dz =

∫

2π

θ=0

1

e−jθ

jejθ dθ = j

∫

2π

0

e2jθ dθ =
e2jθ

2

∣

∣

∣

∣

2π

0

= 0.

Exercise 8. Evaluate 	
∫

f(z) dz if f(z) = ez/(z − j) and C is the circle centered

at z = 0 of radius 1/2.
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Answer. Since z = j is not inside/on C, ez/(z − j) is analytic in and on C and

	
∫

f(z) dz = 0.

Exercise 9. Same as exercise 8 except C is the circle centered at z = 2j of

radius 4.

Answer.

C

4 2j

j

Now j is inside C so

	

∫

ez

z − j
dz = 2πj

[

ez

∣

∣

∣

j

]

= 2πjej.

Exercise 10. Evaluate 	
∫

1/(z + j) dz if C is the circle of radius 1 centered at j.

Answer. It would be tempting to say 	
∫

1/(z + j) dz = 2πj(0), but since −j is not

in/on C, this is wrong since we have z, not z! So the only way to deal with this,

given that also z is not analytic, is to parametrize and carry out the calculations.

Now C = circle of radius 1 centered at j.

j
C

1

θ
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Thus

C =

{

x = 0 + cos θ

y = 1 + sin θ 0 ≤ θ ≤ 2π,

i.e., on C,

z = x + jy = j + ejθ, dz = jejθ dθ

z = −j + e−jθ =⇒ z + j = e−jθ.

So

	

∫

C

1

z + j
dz =

∫

2π

θ=0

jejθ

e−jθ
dθ = j

∫

2π

0

e2jθ dθ = j

[

e2jθ

2j

]2π

0

= 0.

So we get 0 anyway!

Exercise 11. Evaluate 	
∫

cos z/z dz if C is the path consisting of straight lines,

joining the points −j to 1 to j to −1.

Answer.

	

∫

C

cos z

z
dz = 2πj[cos 0] since 0 is inside C

= 2πj.

j

C

1-1

-j

Exercise 12. Same as exercise 11 except C is the semicircle centered at z = 1 + j

of radius 4 with Re (z) ≥ 1 and the straight line from 1 + 5j to 1 − 3j.
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Answer.

1+j

1+5j

1-3j

4 C

In this case z = 0 is outside C. Thus 	
∫

C
cos z/z dz = 0 as cos z/z is analytic inside

and on C.
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III.d Taylor Series and Laurent Series

So far we have discussed three situations: (1)
∫

C
f(z) dz with C just a path encoun-

tered in practice (i.e., maybe not a simple closed path); (2) 	
∫

C
f(z) dz for C a simple

closed path; (3) 	
∫

C
f(s)/(s − z) ds for C a simple closed path, and z inside C.

In case (1) (which includes simple closed paths), for general f(z), we can

only calculate
∫

C
f(z) dz by parametrizing the path and actually working out the

integral. For case (2), if f(z) is analytic inside and on C, then 	
∫

C
f(z) dz = 0. This

result also has an implication for case (1). If C, C1 are two paths with f analytic

between and on C1, C2, then

∫

C1

f(z) dz =

∫

C2

f(z) dz.

Indeed C1 + (−C2) can be viewed as a simple closed path, so

0 =	

∫

C1+(−C2)

f(z) dz =

∫

C1

f(z) dz −

∫

C2

f(z) dz

and we can do the calculation with a simpler path. Finally, in case (3),

	

∫

C

f(s)

s − z
ds = [f(z)]2πj,

if again f is analytic inside and on C.

Unfortunately for the applications we seek (inverting transforms and inter-

preting the answer) cases (1), (2), (3) are not enough. We shall wish to work out

	
∫

C
f(z) dz, with C a simple closed path, but with f(z) complicated and blowing up

at various points inside C, say at z1, z2, . . . . So we cannot usually use either cases

(2) or (3) directly. Of course, once again one could try to replace C by a simpler

path C1, say a circle, such that f is analytic between and on C1 and C.
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1
z 2

z 3
z

C

C1

Then

	

∫

C

f(z) dz =	

∫

C1

f(z) dz,

and one could attempt to parametrize C1 and actually carry out the calculations.

Unfortunately, for most problems of practical interest, even this attempt does not

work, since f(z) will simply be too complicated for us to do the needed calculations

on C1. It seems that integrals for problems of practical interest cannot be solved,

and yet there is a “sneaky” way (related to case (3)) by means of which we can find

	
∫

C
f(z) dz relatively easily. This has to do with series expansions for f(z), which

we now consider.

III.d.1. Power Series.

We recall first a few results about power series, that is, series of type

∞
∑

n=0

an(z − z0)
n = a0 + a1(z − z0) + a2(z − z0)

2 + a3(z − z0)
3 + · · ·

with a0, a1, a2, a3, . . . , complex constants. It is clear that as we begin to calculate

SN (z) =
∑

N

n=0
an(z − z0)

n we may find that |SN (z)| blows up or oscillates wildly

as N → ∞. A trivial example of this is
∑∞

n=0
(z − 1)n with z0 = 1; a1, a2, · · · = 1.

Then if z = 2, say,

SN (2) =
N

∑

n=0

(2 − 1)n = 1 + 1 + 1 + · · · + 1
︸ ︷︷ ︸

N+1 times

= N + 1.

So |SN (2)| = N + 1 → ∞. We state in such a case that
∑∞

n=0
an(z − z0)

n diverges.
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On the other hand, if |z − z0| is small enough, then SN will actually approach a

complex number L as N → ∞. In this case we state that
∑∞

0
an(z−z0)

n converges

(to L) and write L =
∑∞

n=0
an(z − z0)

n.

One can spend a lot of time on these problems, but for us it will suffice to

note a few facts.

Suppose we want to just see if a given power series converges without trying

to evaluate the limit L. One of the most useful criteria is the ratio test. Look at

the ratio of two consecutive terms of the series:

|an+1(z − z0)
n+1

|

|an(z − z0)n|
=

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

|z − z0|.

For convergence, we ask that z be such that this ratio, for n large, is less than 1.

I.e.,

lim
n→∞

[
∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

|z − z0|

]

< 1

or

|z − z0| lim
n→∞

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

< 1.

Finally,

|z − z0| < lim
n→∞

∣

∣

∣

∣

an

an+1

∣

∣

∣

∣

.

So, if this estimate holds, the series converges. On the other hand if z is such that

|z − z0| > lim
n→∞

∣

∣

∣

∣

an

an+1

∣

∣

∣

∣

,

then the series diverges. If

|z − z0| = lim
n→∞

∣

∣

∣

∣

an

an+1

∣

∣

∣

∣
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the problem is delicate, and not within the scope of this course. We illustrate this

with a useful example.

Example 1. Consider (for some given z0) the series
∑∞

n=0
(z − z0)

n. Here all

an = 1 and so we have convergence if

|z − z0| < lim
n→∞

∣

∣

∣

∣

an

an+1

∣

∣

∣

∣

= lim
n→∞

∣

∣

∣

∣

1

1

∣

∣

∣

∣

= 1

and divergence if

|z − z0| > lim
n→∞

∣

∣

∣

∣

1

1

∣

∣

∣

∣

= 1.

So if |z − z0| < 1 the series converges, if |z − z0| > 1, the series diverges. The radius

of the circle centered at z0 which divides the region of convergence from the region

of divergence, is called the radius of convergence. In this case, it’s 1.

0

convergent

divergent

1

z

Note that in general we do not have a clue from the ratio test as to what a convergent

series actually converges to (i.e., what L is). But for
∑∞

n=0
(z−z0)

n we can actually

work out what L is. Set

SN =

N
∑

n=0

(z − z0)
n = 1 + (z − z0) + · · ·+ (z − z0)

N .

Then

(z − z0)SN = (z − z0) + (z − z0)
2 + · · ·+ (z − z0)

N+1
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and so

SN [1 − (z − z0)] = 1 − (z − z0)
N+1.

That is,

SN =
1 − (z − z0)

N+1

1 − (z − z0)
.

Since |z − z0| < 1, then

|(z − z0)
N+1

| = |z − z0|
N+1

−→ 0 as N → ∞

and so

SN −→
1

1 − (z − z0)
as N → ∞.

I.e.,

∞
∑

n=0

(z − z0)
n =

1

1 − (z − z0)
.

In summary,

∞
∑

n=0

(z − z0)
n =

1

1 − (z − z0)
if |z − z0| < 1.

But
∑∞

n=0
(z − z0)

n does not exist if |z − z0| > 1. Note that if |z − z0| > 1,

1/(1 − (z − z0)) does exist; it just does not equal
∑∞

0
(z − z0)

n. What happens if

|z − z0| = 1, is not clear from these arguments, and of not much interest to us.

III.d.2. Taylor and Laurent Series (Mathematics).

In this section we consider the purely mathematical aspects of the series we

wish to use. Unfortunately, the Laurent series part as presented in this section

cannot be effectively used in practice, since it’s nonconstructive.

We now return to complex functions. We have first of all (as a warm up)

Taylor’s Series. Let f be analytic inside and on C0, a circle of radius r0 centered
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at z0, and let z be a point inside C0 as shown.

C
s

0z
z

0

We have

f(z) =
1

2πj
	

∫

C

f(s)

s − z
ds.

Now we write

1

s − z
=

1

(s − z0) − (z − z0)
=

1

s − z0

[

1

1 −
z−z0

s−z0

]

.

But |z − z0| < |s − z0| = r0 since z0 is the center of the circle. That is,

1

s − z
=

1

s − z0

∞
∑

n=0

(z − z0)
n

(s − z0)n
=

∞
∑

n=0

(z − z0)
n

(s − z0)n+1
.

We conclude

f(z) =
1

2πj
	

∫

C

f(s)

s − z
ds =

1

2πj
	

∫

C

f(s)
∞
∑

n=0

(z − z0)
n

(s − z0)n+1
ds

=

∞
∑

n=0

(

1

2πj
	

∫

C

f(s)

(s − z0)n+1
ds

)

︸ ︷︷ ︸

1

n!

d
n

f

dz
n (z0) from the previous section

(z − z0)
n.

So

f(z) =
∞
∑

n=0

1

n!

dnf

dzn

(z0)(z − z0)
n .

We have found the good old Taylor’s Series! Unfortunately, this is not quite enough.

We need a variation of this series, called the Laurent Series.
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Suppose f is analytic in the region between the two concentric circles C1, C2

as shown. Let z0 be the center, and z a point in between the two circles.

C

0

C

z

1

z

r2

2 1

r

Now repeating our earlier procedures, we cut the region between C1, C2 by intro-

ducing the paths C3, C4.

C

4

1
C2 C3

C

Then C = C1 + C3 + (−C2) + C4 is a path which encloses a region in which f is

analytic (observe C2 is traversed backwards) and z is a point in this region. We

have

f(z) =
1

2πj

∫

C

f(s)

s − z
ds =

1

2πj

[
∫

C1

+

∫

C3

+

∫

−C2

+

∫

C4

]

.

But

∫

C3

f(s)

s − z
ds = −

∫

C4

f(s)

s − z
ds.

So

f(z) =
1

2πj
	

∫

C1

f(s)

s − z
ds −

1

2πj
	

∫

C2

f(s)

s − z
ds.

Let us focus first on 	
∫

C1

f(s)/(s− z) ds. Observe that s is a point on C1, so

|z − z0| < |z0 − s|
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0| z    - s |

| z - z    |

C

z0

z

C2 1

s0

and

1

s − z
=

1

(s − z0) + (z0 − z)
=

1

s − z0

[

1

1 −
(z−z0)

s−z0

]

=
1

s − z0

∞
∑

n=0

(z − z0)
n

(s − z0)n

.

So

	

∫

C1

f(s)

s − z
ds =

∞
∑

n=0

[

	

∫

C1

f(s)

(s − z0)n+1
ds

]

(z − z0)
n.

Note that 	
∫

C1

f(s)/(s−z0)
n+1ds may not be at all related to a derivative of f , since f

may not have a derivative at z0. We focus on the 2nd integral: − 	
∫

C2

f(s)/(s−z) ds.

Now, s is on C2, and so |s − z0| < |z − z0|.

2C
C

z

s

0z

1

We have

1

s − z
=

1

(s − z0) + (z0 − z)
=

1

z0 − z

[

1
s−z0

z0−z
+ 1

]

=
1

z − z0

[

−1

1 −
(s−z0)

z−z0

]

.

So

− 	

∫

C2

f(s)

s − z
ds =	

∫

C2

f(s)

(z − z0)

[

1

1 −
(s−z0)

z−z0

]

ds =	

∫

C2

f(s)

z − z0

∞
∑

n=0

(

s − z0

z − z0

)

n

ds
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=

∞
∑

n=0

[

	

∫

C2

f(s)(s − z0)
n

]

1

(z − z0)n+1
ds.

In summary,

f(z) =

∞
∑

n=0

[

1

2πj
	

∫

C1

f(s)

(s − z0)n+1
ds

]

(z − z0)
n

+

∞
∑

n=0

[

1

2πj
	

∫

C2

f(s)(s− z0)
n ds

]

1

(z − z0)n+1
.

Observe that, for a given z0, the integrals over C1 and C2 are constants. This

is called the Laurent Series for f . In view of what was said at the beginning of

this section about the difficulty of calculating integrals in practical situations, the

Laurent Series is basically never calculated in a practical problem from its definition.

The importance of this series comes from the first term in the second sum (i.e., for

n = 0). In this case the term is

1

2πj

[

	
∫

C2

f(s) ds

s − z0

]

.

So if by some miracle we can find the Laurent Series for f , then 	
∫

C2

f(s) ds can be

found just by reading the coefficient of 1/(z − z0)! Even more usefully, if we can

just find the coefficient of 1/(z − z0)—never mind the rest of the series—then we

are done as far as finding 	
∫

C2

f(s) ds is concerned. How to achieve this goal is the

topic of the next section.

One notational remark: Note that the Laurent series can be expressed after

a summation index change as:

f(z) =
∞
∑

−∞

cn(z − z0)
n
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with

cn =
1

2πj
	

∫

C1

f(s)

(s − z0)n+1
ds

for any n = 0,±1,±2,±3, . . . . It is valid for all z between C1 and C2!

We conclude with the following important remark. Suppose—as is usually

the case in practice—that f blows up at z0 and z1 and nowhere else in the disc D

centered at z0 of radius |z0 − z1|.

0
1

| z   - z
   |

1

D

z 0

z

Let C1, C2 be two circles in D as shown.

z

C

1

Cz 0 1 2

We calculate (at least in theory) the Laurent series using our earlier formulas and

the given C1, C2. The coefficients cn in the series involve path integrals, some over

C1 and others over C2. So it would appear at first that the cn depend on the specific

C1, C2 chosen. This is not the case. Suppose C ′
1
, C ′

2
are two other paths, as shown,

which may not be circles.
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z 0

2

z 1

C1 C ’1

C’2 C

Then 	
∫

C1

=	
∫

C
′

1

and 	
∫

C2

=	
∫

C
′

2

since the functions being integrated have a derivative

in the disc centered at z0 of radius |z − z0|, except at z0 itself and on the rim of

the disc. So the cn are always the same for any pair of nested paths, in the disc D,

which also contain z0. That is to say, the dependence of the coefficients cn on C1,

C2 is fictitious, since any pair of paths C1, C2 inside D can be used. The resulting

cn will be the same. In other words, cn really only depend on z0, z1 and f(z).

III.d.3. Taylor and Laurent Series (Engineering).

The previous section was theoretical, and the part on the Laurent series is not

of much practical use due to the inability to calculate the integrals involved.

From a practical point of view, the following considerations are more useful,

and summarize what we did in the previous section. First, suppose f(z) is analytic

at z0. Then we can write a Taylor series for f using the formula you have already

seen in the past:

f(z) =
∞
∑

n=0

[

dnf

dzn

(z0)

]

(z − z0)
n

n!
.

We can be sure that this series converges, i.e., actually equals f , for z near z0.

Indeed it will converge for all z inside a disc centered at z0 which does not contain

any singular points of f(z).

On the other hand, suppose f(z) has a singular point at z0, but is analytic at
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all points near z0. What we have in mind is a function that blows up at z0 but is

differentiable near z0, e.g., f(z) = z2/(z2 + 1) with z0 either +j or −j. We then

can represent f(z) in the Laurent series form

f(z) =
∞
∑

n=−∞

cn(z − z0)
n

for some coefficients cn. These coefficients cannot be found from the definition of the

Laurent series, since they involve integrals too complicated to be evaluated for f(z)

of practical interest. The cn must be evaluated in some other way, and in general

this is virtually impossible. For the f(z) found in practice, this can however be done

fairly easily, see the next section. We observe two things. First, the Laurent series

will converge in the largest disc centered at z0 (except at z0 itself) which contains

no other singular points.

Second, note that if

f(z) =

∞
∑

n=−∞

cn(z − z0)
n

and C is a circle centered at z0, then

	

∫

f(z) dz =
∞
∑

n=−∞

cn 	

∫

C

(z − z0)
n dz = c−12πj

since 	
∫

C
(z − z0)

n dz = 0 except if n = −1, when it equals 2πj (by the ear-

lier important example). Thus if we know c−1 (by some miracle), then we know

	
∫

C
f(z) dz.
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III.e Calculation of the Laurent Series; Poles and Residues

We begin this section by examining ways in which the Laurent series can actually

be calculated. We then pass to the question of how to find just the coefficient of

1/(z − z0). Finding the complete Laurent series is harder than finding just the

coefficient of 1/(z − z0).

As mentioned in the last section, a direct calculation of the Laurent series, by

evaluating the integrals involved in the definition, is basically impossible. Instead

we use Taylor and other series, as well as division, multiplication, etc. These steps

will be illustrated in the examples that follow. We just have two important remarks.

(1) When a series is obtained—on the way to finding the Laurent series—pay

attention to where it converges.

(2) We know the Laurent series is of type: f(z) =
∑

n=∞

n=−∞
cn(z − z0)

n with cn

constants. It can be shown that any series of this type must be the Laurent

series for f about z0.

Example 1. Let f(z) = 1/z(2 − z). Find the Laurent series for f(z) valid about

z = 0 (i.e., z0 = 0).

Answer. Note that the paths C1, C2 are not given here. We discussed this point

in the last section. We seek a series of type f(z) =
∑∞

n=−∞
cnzn which converges

near z = 0. We don’t even dream of using the definition of the series. Instead, note

1

2 − z
=

1

2

1

1 −
z

2

.

Now

1

1 −
z

2

=

∞
∑

n=0

(z

2

)

n

, converges if |z| < 2.
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So

1

z(2 − z)
=

1

z

1

2

∞
∑

n=0

(z

2

)

n

=

∞
∑

n=0

zn−1

2n+1

=
1

z2
+

1

22
+

z

23
+

z2

24
+ · · · .

We have thus found a series for f(z) = 1/(z(2 − z)) of the right type. This is the

Laurent series for f in the region D : 0 < |z| < 2.

0

z  = 2D

z

Example 2. Same problem as Example 1, except the series is to be valid about

z = 2.

Answer. As a first step, we examine why the series found in Example 1 does not

work. We got there

f(z) =

∞
∑

n=0

zn−1

2n+1
=

1

4

∞
∑

n=0

zn−1

2n−1
=

1

4

∞
∑

n=0

(z

2

)

n−1

.

So if z is any number with |z| > 2, then this series diverges (|z/2| > 1!). So f(z)

is O.K. for z 6= 2 but the series is not, and we wish a series valid for some disc

centered at z = 2! The idea is to get a series so that if |z − 2| is small then it

converges, and to do this we rearrange f(z) as follows:

1

z(z − 2)
=

1

[(z − 2) + 2](z − 2)
=

1

z − 2

[

1

2 − (2 − z)

]

=
1

(z − 2)

1

2

[

1

1 −
(2−z)

2

]

=
1

2(z − 2)

∞
∑

n=0

(2 − z)n

2n
=

∞
∑

n=0

(z − 2)n−1(−1)n

2n+1
.
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This series converges for |z − 2| < 2, i.e., in the region shown.

D

20

Remark 1. That the answer for Example 2 is so similar to that for Example 1—

with z − 2 in place of z—is basically a fluke.

Remark 2. Note that on the border of |z − 2| < 2, we have the other singular

point!

Example 3. Same as Examples 1 and 2, except now the Laurent series is to hold

in a disc about z = 4j.

Answer. We need to find a series valid in a disc centered at z = 4j of radius 4

(since the nearest singular point will be at z = 0, 4 units from z = 4j).

2

4j

0

Since at z = 4j the function is differentiable, we could calculate the Taylor series.

This would be correct, but better to proceed as follows. We write 1/z(z − 2) in
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powers of z − 4j, i.e.,

1

z(z − 2)
=

1

[(z − 4j) + 4j]

1

[(z − 4j) + (4j − 2)]
.

We could expand

1

(z − 4j) + 4j
=

1

4j

1
(z−4j)

4j
+ 1

=
1

4j

1

1 −
(−z+4j)

4j

and

1

z − 4j + 4j − 2
=

1

4j − 2

1

1 −
(4j−z)

4j−2

and multiply the series term by term. This is not recommended, since series multi-

plication term by term is a recipe for making mistakes. Series addition however is

easy. So we use a partial fraction expansion (more on this later)

1

z(z − 2)
=

A

z
+

B

z − 2
,

so

1 = A(z − 2) + Bz for all z, i.e., A = −
1

2
, B =

1

2

and

1

z(z − 2)
=

1

2

1

z − 2
−

1

2

1

z
.

Now

1

z − 2
=

1

(z − 4j) + 4j − 2
=

1

4j − 2

1

1 −
4j−z

4j−2

=
1

4j − 2

∞
∑

n=0

(

4j − z

4j − 2

)

n

.

In the same way,

1

z
=

1

(z − 4j) + 4j
=

1

4j

1

1 − ( 4j−z

4j
)

=
1

4j

∞
∑

n=0

(

4j − z

4j

)

n

.
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So

1

z(z − 2)
=

1

2

( ∞
∑

n=0

(4j − z)n

(4j − 2)n+1
−

∞
∑

n=0

(4j − z)n

(4j)n+1

)

=
∞
∑

n=0

(−4j + z)n
1

2

[

1

(4j − 2)n+1
−

1

(4j)n+1

]

(−1)n.

Note that the first series converges for |4j − z| < |4j − 2| =
√

20, the second for

|4j − z| < |4j| = 4, so the sum converges for |4j − z| < 4. We can relate this to the

location of the singular points: 1/(z − 2) blows up at z = 2, 1/z at z = 0. So from

4j these points are
√

20 and 4 units distant respectively.

20

2

4j

4

disc of convergence for series 1

disc of convergence for  series  2

0

Example 4. Find a Laurent series for e
1

z valid about z = 0.

Answer. e
1

z has only one singular point (z = 0), so we expect a series valid for all

z 6= 0. Now to do this, we actually use the Taylor series. We know

ew =

∞
∑

n=0

wn

n!
,

so put w = 1/z to get

e
1

z =
∞
∑

n=0

(

1

z

)

n

1

n!
.

Note that by the ratio test this converges for all z 6= 0, as n! will ensure that the
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ratio of two consecutive terms is eventually (i.e., for n large enough) less than one,

regardless of how small |z| may be.

Example 5. Same as Example 4, except f(z) = e
1

z /z3.

Answer. After Example 4 this is easy.

f(z) =
1

z3

( ∞
∑

n=0

1

zn

1

n!

)

=

∞
∑

n=0

1

zn+3

1

n!
.

Do not let the above examples fool you. Finding a Laurent series can be really

tough! Fortunately, for most practical problems we do not need to find the whole

series, just the residue, i.e., the coefficient of 1/(z − z0).

In Example 5, we found an example of a function whose Laurent series had

terms of type 1/zn with n arbitrarily large. This is not the situation usually found

in practice. Instead, the “practical” functions have the property that the part of

the Laurent series with negative (z − z0) powers terminates after a few terms, i.e.,

the series look like:

f(z) =

∞
∑

n=0

cn(z − z0)
n +

d1

(z − z0)
+

d2

(z − z0)2
+ · · ·+

dm

(z − z0)m

with the d’s= 0 after dm. Some d’s before dm could also be zero but dm itself is

not. In such cases, f is said to have a pole of order m at z0. If m = 1, the pole is

simple.

As an example:

Example 6. Find the Laurent expansion of ez/z4 about z = 0.
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Answer.

ez =

∞
∑

n=0

zn

n!
=⇒

ez

z4
=

∞
∑

n=0

zn−4

n!
.

That is,

ez

z4
=

1

z4
+

1

z3
+

1

z2

1

2!
+

1

z3!
+

∞
∑

n=4

zn−4

n!

=
1

z4
+

1

z3
+

1

2z2
+

1

6z
+

∞
∑

n=0

zn

(n + 4)!
.

We conclude that ez/z4 has a pole of order 4 at z = 0.

There is a way, given f(z), to tell when it has a pole of order m at z = z0.

This happens when:

(a) f(z)(z − z0)
m

∣

∣

z=z0

gives a finite number (6= zero)

(b) f(z)(z − z0)
p

∣

∣

z=z0

= 0 if p > m

(c) f(z)(z − z0)
q

∣

∣

z=z0

blows up if q < m.

In practical situations, poles correspond to zeros of the transfer function, and

are relatively easy to both spot and find their order. For example, in the previous

case, we find

f(z) =
ez

z4
,

so

ez

z4
· zp

∣

∣

∣

z=0

= ezzp−4

∣

∣

∣

z=0

=











0 if p > 4

1 if p = 4

∞ if p < 4

and the function has a pole of order 4.

Now suppose f has a pole of order m at z = z0. I.e., the Laurent series is

f(z) =

∞
∑

n=0

cn(z − z0)
n +

d1

(z − z0)
+ · · ·+

dm

(z − z0)m
.
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Then

f(z)(z − z0)
m =

∞
∑

n=0

cn(z − z0)
n+m + d1(z − z0)

m−1 + · · ·+ +dm−1(z − z0) + dm.

We have

dm = lim
z→z0

(f(z)(z − z0)
m) .

Next, differentiating both sides setting z = z0 gives

dm−1 =
d

dz
[f(z)(z − z0)

m]
∣

∣

∣

z=z0

.

Differentiate again

dm−2 =
1

2

d2

dz2
[f(z)(z − z0)

m]
∣

∣

∣

z=z0

,

and so on. The way to remember this is that the right side is just the Taylor series

for f(z)(z − z0)
m and the coefficients are given accordingly. In particular,

d1 =
1

(m − 1)!

dm−1

dzm−1
[f(z)(z − z0)

m]
∣

∣

∣

z=z0

except, if m = 1, then

d1 = lim
z→z0

(f(z)(z − z0)) .

So we can find d1 (indeed as many coefficients of the Laurent series as we wish)

reasonably easily if f just has a pole of order m at z = z0. We pass to examples.

Example 7. Find the part of the Laurent series for f(z) = 1/z(2 − z) about z = 0

and z = 2, which involves negative exponents.

Answer. This is exactly the same function as in Examples 1 and 2. Now about
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z = 0 we have

zf(z)
∣

∣

∣

z=0

=
1

2 − z

∣

∣

∣

z=0

=
1

2

so z = 0 is a pole of order 1 (i.e., a simple pole) and its coefficient is 1/2. About

z = 2:

(z − 2)f(z)
∣

∣

∣

z=2

= −
1

z

∣

∣

∣

z=2

= −
1

2

so z = 2 is also a simple pole, and the coefficient is −1/2. In the first case, the

Laurent series starts with 1

z
·
1

2
and in the second case with −

1

2
·

1

(z−2)
. In both cases,

all other series terms involve nonnegative exponents of z and z − 2 respectively.

Example 8. Same as Example 7, except f(z) = cot z and z0 = 0.

Answer. First of all note that f(0) does not exist, so z = 0 is a singular point.

We wish to multiply f(z) by a power of z, say zm, so that zmf(z)|z=0 is a nonzero

number. Now

cot z =
cos z

sin z
and sin z = z −

z3

3!
+

z5

5!
− · · · ,

so sin z/z → 1 as z → 0, and the same is true of z/ sin z. In summary, zf(z)|z=0 =

cos 0 = 1, so f(z) has a pole of order 1 at z = 0 and the coefficient of 1/z = 1.

We conclude by recalling that the functions found in practice have the form

f(z)

(z − z0)n0(z − z1)n1 · · · (z − zm)nm

with f(z) differentiable. So the poles will be at z0, z1, . . . , zm and these will have

multiplicities n0, n1, . . . , nm, respectively except if f turns out to be also zero at

one or more of z0, . . . , zm. This is extremely rare in practice. If it happens, say at

z0, one just divides out (z − z0) from the top and bottom until the resulting f(z)
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is not zero at z0 or (z − z0) is no longer in the bottom. More examples in the next

section.
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Further Exercises:

Exercise 1. Find Laurent series expansion for 1/(z + j) valid in the regions:

(a) |z| < 1, (b) |z| > 1, (c) |z − 2j| < 1, (d) |z + j| < 1.

Answer. (a) Since |z| < 1, we write (as we wish to expand about z = 0)

1

z + j
=

1

j

1

1 + (z/j)
=

1

j

1

1 − (−z/j)
=

1

j

∞
∑

n=0

(

−
z

j

)

n

=

∞
∑

n=0

(−1)nzn

jn+1
.

This converges if |z/j| < 1, i.e., |z| < |j| = 1, as needed.

(b) Since |z| > 1,

1

z + j
=

1

z

1

1 + j/z
=

1

z

∞
∑

n=0

(−1)njn

zn
=

∞
∑

n=0

(−1)njn

zn+1
.

(c) Now |z − 2j| < 1, so

1

z + j
=

1

(z − 2j) + (2j + j)
=

1

(z − 2j) + 3j

=
1

3j

1

[1 −
(2j−z)

3j
]

=
1

3j

∞
∑

n=0

(2j − z)n

(3j)n
.

(d) Finally, 1/(z + j) is already in the Laurent series expansion form for

f(z) = 1/(z + j) valid for |z + j| < 1.

Exercise 2. Find Laurent series representations for sin z/z3. For what z is this

representation valid?

Answer. Now

sin z = z −
z3

3!
+

z5

5!
−

z7

7!
+ · · · =

∞
∑

n=0

(−1)nz2n+1

(2n + 1)!
.

133



Thus

sin z

z3
=

∞
∑

n=0

(−1)nz2n−2

(2n + 1)!
, valid at z = 0.

Since there are no other singular points for sin z/(z3) but z = 0, we conclude that

this series holds for all z 6= 0. (We can see this also by the ratio test for convergence:

∣

∣

∣

∣

z2(n+1)+1

z2n+1

∣

∣

∣

∣

< lim
n→∞

[

1

(2n+1)!

1

(2(n+1)+1)!

]

,

i.e., |z2
| < lim

n→∞
(2n + 2)(2n + 3) = ∞.)

Exercise 3. Determine the Laurent series expansion for f(z) = 1/(z + 1)(z + 2)

valid in the regions: (a) |z + 1| < 1, (b) |z + 2| < 1, (c) |z| < 1, (d) |z| > 2.

Answer. (a) Since |z + 1| < 1, we have

1

(z + 1)(z + 2)
=

1

(z + 1)[(z + 1) + 1]
=

1

(z + 1)[1 − (−(z + 1))]

=
1

z + 1

∞
∑

n=0

(−1)n(z + 1)n =

∞
∑

n=0

(−1)n(z + 1)n−1.

(b) Now |z + 2| < 1, thus:

1

(z + 1)(z + 2)
=

1

[(z + 2) − 1](z + 2)
=

−1

z + 2

1

[1 − (z + 2)]

=
−1

z + 2

∞
∑

n=0

(z + 2)n = −

∞
∑

n=0

(z + 2)n−1.

(c) Next,
1

(z + 1)(z + 2)
=

A

z + 1
+

B

z + 2
with A(z + 2) + B(z + 1) = 1. So

A + B = 0

2A + B = 1







A = 1

B = −1
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and
1

(z + 1)(z + 2)
=

1

z + 1
−

1

z + 2
. But

1

z + 1
=

∞
∑

n=0

(−1)nzn,

1

z + 2
=

1

2

∞
∑

n=0

(−1)n

(z

2

)

n

=

∞
∑

n=0

(−1)nzn

2n+1
.

Finally,

1

(z + 1)(z + 2)
=

∞
∑

n=0

(−1)nzn

(

1 −
1

2n+1

)

.

(d) Now |z| > 2. We still have:
1

(z + 1)(z + 2)
=

1

z + 1
−

1

z + 2
and

1

z + 1
=

1

z
·

1

1 + 1

z

=
1

z

∞
∑

n=0

(−1)n

(

1

z

)

n

,

1

z + 2
=

1

z
·

1

1 + 2

z

=
1

z

∞
∑

n=0

(−1)n

(

2

z

)

n

.

Finally,
1

z + 1
−

1

z + 2
=

∞
∑

n=0

(−1)n(1 − 2n)

zn+1
.

Exercise 4. Determine the Laurent series expansion for f(z) = z4e
1

z valid for

|z| > 0.

Answer. Now ew =
∞
∑

n=0

wn

n!
. Thus e

1

z =
∞
∑

n=0

z−n

n!
. Finally,

z4e
1

z =
∞
∑

n=0

z4−n

n!
.

Exercise 5. Same as exercise 4 if f(z) = z3 cos(1/z).
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Answer. Observe that

cos w = 1 −
w2

2!
+

w4

4!
−

w6

6!
+ · · · =

∞
∑

n=0

(−1)nw2n

(2n)!
.

So

z3 cos

(

1

z

)

= z3

∞
∑

n=0

(−1)nz−2n

(2n)!
=

∞
∑

n=0

(−1)nz3−2n

(2n)!
.
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III.f Summary and the Residue Theorem

We first summarize the situation of the previous section and prepare for the practical

problems that follow in the next sections.

The main problem, as we shall see, is this: We are given a function f(z) and

a contour C. Our problem is to evaluate 	
∫

C
f(z)dz. Since we know that f(z) has

poles at z1, z2, . . . , zm inside C, the integral will not = 0.

2

zm

z 1
z

C

In practice, f will be given by the physical problem, and spotting z1, . . . , zm and

their order is reasonably easy—see below. Since f is differentiable apart from the

poles, we can, by introducing cuts, replace 	
∫

C
f(z)dz by the sum

	

∫

C1

f(z) dz+ 	

∫

C2

f(z) dz + · · ·+ 	

∫

Cm

f(z) dz,

where C1, C2, . . . , Cm are small circles centered at z1, . . . , zm, respectively. The ra-

dius of C1, . . . , Cm is so small that f(z) has no other singular point inside C1, . . . , Cm

besides z1, . . . , zm.

1

z2

z m

z

m

C
C

1

C2

C
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So

	

∫

C

f(z) dz =	

∫

C1

f(z) dz + · · ·+ 	

∫

Cm

f(z) dz.

Consider 	
∫

C1

f(z) dz. Suppose we can find the residue of f at z1: this means finding

the coefficient of 1/(z − z1) in the Laurent series for f , but we don’t even dream of

finding the whole series! Then

	

∫

C1

f(z) dz = 2πj (Res (z1)) ,

where Res (z1) means the residue of f at z1. We do the same for 	
∫

C2

, 	
∫

C3

, . . . , etc.

and get

	

∫

C

f(z) dz = 2πj (Res (z1) + Res (z2) + · · ·+ Res (zm)) .

We now practice this important result.

Example 1. Find 	
∫

C

(z−3j)

(z+j)(z−j)
dz if C is a simple closed path enclosing both z = j

and z = −j.

Answer. Here f(z) = (z−3j)/(z+j)(z−j) has two poles: at z = j and at z = −j,

and both poles are inside C.

- j

Cj
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Now at z = j, we have

(z − j)
(z − 3j)

(z + j)(z − j)

∣

∣

∣

∣

z=j

=
z − 3j

z + j

∣

∣

∣

∣

z=j

=
−2j

2j
= −1.

Since this is not zero but had we multiplied by a higher power of (t − j) we would

have gotten zero, we have both that z = j is a pole of order 1 (i.e., simple) and

that the residue is −1.

In the same way, at z = −j,

(z + j)
(z − 3j)

(z + j)(z − j)

∣

∣

∣

∣

z=−j

=
z − 3j

z − j

∣

∣

∣

∣

z=−j

=
−4j

−2j
= 2.

So, again, z = −j is a simple pole and the residue is 2.

Finally,

	

∫

C

z − 3j

(z + j)(z − j)
dz = 2πj(−1 + 2) = 2πj.

Example 2. Same as Example 1, except C now only encloses z = j and not

z = −j.

Answer. Now there is only one pole inside C, namely z = j, and so

	

∫

C

z − 3j

(z + j)(z − j)
dz = 2πj(−1).

j

- j

C

Note that the fact z = −j is no longer inside C has no effect whatsoever on the
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calculations we perform at z = j. The residue at z = j is exactly the same as

before.

Example 3. Find 	
∫

C

sin z

(z−1)(z−j)
dz where C is a path enclosing both z = 1

and z = j.

Answer. Note that once again we do not specify C exactly! Since C encloses both

z = 1 and z = j and since sin z is always differentiable, sin z/(z − 1)(z − j) has two

poles, namely at z = 1 and z = j, both inside C.

C
j

1

Thus

	

∫

C

sin z

(z − 1)(z − j)
dz = 2πj [(Residue at z = 1) + (Residue at z = j)] .

Now at z = 1 we have

(z − 1)

[

sin z

(z − 1)(z − j)

]
∣

∣

∣

∣

z=1

=
sin z

z − j

∣

∣

∣

∣

z=1

=
sin(1)

1 − j
6= 0.

Thus at z = 1 we have a pole of order 1 for the same reason as in the earlier

examples, and

Residue =
sin(1)

1 − j
.
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At z = j, we have

(z − j)

[

sin z

(z − 1)(z − j)

]
∣

∣

∣

∣

z=j

=
sin z

z − 1

∣

∣

∣

∣

z=j

=
sin(j)

j − 1

and

Residue =
sin(j)

j − 1
=

ej
2

− e−j
2

2j(j − 1)
=

e−1
− e1

2j(j − 1)
.

Finally,

	

∫

C

sin z

(z − 1)(z − j)
dz = 2πj

[

sin(1)

1 − j
+

e−1
− e1

2j(j − 1)

]

.

Example 4. Same as Example 3, except f is now sin z/(z − 1)2(z − j).

Answer. Note that now the pole at z = 1 is of order 2 (since sin(1)/(1 − j) 6= 0).

1

Cj

We need to calculate the residues and this is not as easy as the earlier examples!

To practice, we do it in two ways. First, we expand sin z/(z − j) as a Taylor series

about z = 1, or more precisely, we calculate the first few terms in this expansion.

We have

sin z

z − j

∣

∣

∣

∣

z=1

=
sin(1)

1 − j

d

dz

(

sin z

z − j

)
∣

∣

∣

∣

z=1

=
(cos z)(z − j) − sin z

(z − j)2

∣

∣

∣

∣

z=1

=
cos(1)(1 − j) − sin(1)

(1 − j)2
.
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These are the first two terms of the Taylor series for sin z/(z − j), i.e.,

sin z

z − j
=

sin(1)

1 − j
+

cos(1)(1 − j) − sin(1)

(1 − j)2
(z − 1) + Junk · (z − 1)2.

If we divide by (z − 1)2, we find that the residue is

cos(1)(1 − j) − sin(1)

(1 − j)2
,

exactly as given by the earlier formulas in the preceding section.

Now, for the fast way, since z = 1 is a pole of order 2,

d

dz

(

sin z

z − j

)
∣

∣

∣

∣

z=1

=
cos(1)(1 − j) − sin(1)

(1 − j)2
.

Next, z = j is still a simple pole, so the residue there is sin(1)/(j − 1)2, and

we get

	

∫

C

sin z

(z − 1)2(z − j)
dz = 2πj

[

cos(1)(1 − j) − sin(1)

(1 − j)2
+

sin(j)

(j − 1)2

]

.

Example 5. Find 	
∫

C
f(z) dz is C encloses the point z = j and

f(z) =
1

(z − j)3
+

127

(z − j)2
+ 100(z − j) + 10(z − j)3 + ez.

Answer. There is nothing to calculate in this example! f(z) is already given as a

Laurent series about z = j, except for ez. But ez is always differentiable and can

be expanded in a Taylor series about z = j and it does not have the term 1/(z− j)

since all powers of (z − j) will be positive. Equivalently, f(z) contains the term

0/(z − j), so the residue is zero and 	
∫

C
f(z)dz = 0 even though j is inside C!
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j C

Example 8. 	
∫

C
sin z/z dz where z = 0 is inside C.

Answer. Note that at z = 0 we have sin z = 0, so

z ·
sin z

z

∣

∣

∣

∣

z=0

= 0,

and clearly

zm

·
sin z

z

∣

∣

∣

∣

z=0

= 0, for any m > 1.

So sin z/z does not blow up at z = 0, and z = 0 is not a pole, despite appearances.

You can see this also from the expansion

sin z

z
=

(

z −
z3

3!
+

z5

5!
− · · ·

)

1

z
= 1 −

z2

3!
+

z4

5!
− · · · .

This is actually the Laurent series, and there are no negative powers of z. So the

residue = coeff. of 1/z = 0 and

	

∫

C

sin z

z
dz = 0.

This situation is called a removable singularity: it looks like a pole, but it is not

since the top also vanishes at z0 and the ratio stays bounded.
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Further Exercises:

Calculate the residue at each singular point.

Exercise 1. f(z) = 1/(z2 + 3jz − 2).

Answer. f(z) = 1/(z2 + 3jz − 2). We factor the bottom:

z2 + 3jz − 2 = 0 ⇐⇒ z =
−3j ±

√
−9 + 8

2
=

−3j ± j

2
= −j, −2j.

So z2
−3jz−2 = (z + j)(z+2j) and f(z) = 1/(z + j)(z+2j). We have two singular

points at z = −j, −2j. Note that each is a pole of order 1 and thus:

residue at z = −j is
1

(−j + 2j)
=

1

j
;

residue at z = −2j is
1

(−2j + j)
=

−1

j
.

Exercise 2. f(z) = 1/(z2
− 2jz − 1).

Answer. f(z) = 1/(z2
− 2jz − 1). Now

z2
− 2jz − 1 = 0 ⇐⇒ z =

2j ±
√
−4 + 4

2
.

We have z2
− 2jz − 1 = (z − j)2 and f(z) = 1/(z − j)2. There is only one singular

point, at z = j, and the residue there is

d

dz
(f(z)(z − j)2)

∣

∣

∣

∣

z=j

=
d

dz
(1)

∣

∣

∣

∣

z=j

= 0.

You could have seen this immediately, since f(z) = 1/(z − j)2 is already written in

a Laurent series about z = j, and the coefficient of 1/(z − j) is 0, since there is no

1/(z − j) term.

Exercise 3. f(z) = csc z.
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Answer. f(z) = csc z = 1/ sin z. Note that f(z) has a singular point whenever

sin z = 0, i.e., (ejz
− e−jz)/(2j) = 0 or e2jz = 1 or 2jz = log(1) = 2nπj, (n =

0,±1,±2, . . . ) or z = nπ. Now what is the order of the pole at z = nπ? Observe

that we can expand sin z about nπ and get

sin z = sin(nπ) +
d

dz
(sin z)

∣

∣

∣

∣

z=nπ

(z − nπ) +
1

2!

d2

dz2
(sin z)

∣

∣

∣

∣

z=nπ

(z − nπ)2

+
1

3!

d3

dz3
(sin z)

∣

∣

∣

∣

z=nπ

(z − nπ)3 + . . .

= cos(nπ)(z − nπ) +
1

3!
(− cos(nπ))(z − nπ)3 + . . .

= (−1)n(z − nπ) +
1

3!
(−1)n+1(z − nπ)3 + . . . .

Thus

f(z)(z − nπ)

∣

∣

∣

∣

z=nπ

=
1

(−1)n + 1

3!
(−1)n+1(z − nπ)2 + . . .

∣

∣

∣

∣

z=nπ

=
1

(−1)n

and the pole is simple at each nπ with residue 1/(−1)n.

Exercise 4. f(z) = cos z/(ez
− 1).

Answer. f(z) = cos z/(ez
− 1). Now a singular point will arise whenever ez = 1,

i.e., z = 2kπj, k = 0,±1,±2, . . . . Also,

ez =
∞
∑

n=0

1

n!
(z − z0)

n for any z0,

so

ez =

∞
∑

n=0

1

n!
(z − 2kπj)n and ez

− 1 = (z − 2kπj) +
(z − 2kπj)2

2!
+ . . .
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and at z = 2kπj,

f(z)(z − 2kπj)

∣

∣

∣

∣

z=2kπj

=
cos z

1 + (z−2kπj)2

2!
+ . . .

∣

∣

∣

∣

z=2kπj

=
cos(2kπj)

1

=
ej(2kπj) + e−j(2kπj)

2
=

e−2kπ + e2kπ

2

which is the residue.

Exercise 5. Calculate the part of the Laurent series for z0 = 0 that involves

negative powers of (z − z0) if f = sin z/[(z2 + 1)z3].

Answer. Now f(z) = sin z/[(z2 + 1)z3]. It appears that z = 0 is a pole of order 3,

but this is not so, since sin z = 0 at z = 0 too. Then

(sin z)z2

(z2 + 1)z3

∣

∣

∣

∣

z=0

=
z −

z
3

3!
+ z

5

5!
+ · · ·

(z2 + 1)z

∣

∣

∣

∣

z=0

=
1

1
= 1

while

(sin z)zm

(z2 + 1)z3

∣

∣

∣

∣

z=0

= 0 if m > 2.

So the pole of order 2 and the Laurent series for f has negative power part:

d1/(z − 0)2 + d2/(z − 0)2 with

d2 =
(sin z)z2

(z2 + 1)z3

∣

∣

∣

∣

z=0

= 1, d1 =
d

dz

[

sin z

(z2 + 1)z

]
∣

∣

∣

∣

z=0

.

Now

d

dz

[

sin z

z(z2 + 1)

]

=
(cos z)(z3 + z) − (sin z)(3z2 + 1)

z2(z2 + 1)2

=
z3 cos z − (sin z)3z2

z2(z2 + 1)2
+

z(cos z) − sin z

z2(z2 + 1)2

=
z cos z − (sin z)3

(z2 + 1)2
+

z(1 −
z
2

2!
+ z

4

4!
− · · · ) − (z −

z
3

3!
+ z

5

5!
− · · · )

z2(z2 + 1)2
.
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Now let z → 0. The first piece tends to 0/12 = 0. The second piece is

−
z
2

2!
+ z

3

3!
+ higher powers of z

z2(z2 + 1)2
.

So, as z → 0, the second piece also tends to 0 and d1 = 0. Thus the negative part

of the series is just 1/z2.

Evaluate the following integrals.

Exercise 6. 	
∫

C
ze

1

z dz, if C is any simple closed path that contains z = 0.

Answer. 	
∫

C
ze

1

z dz = 2πj (residue at z = 0). Now e
1

z =
∞
∑

n=0

1

n!zn

, so

ze
1

z = z

(

1 +
1

z
+

1

2!z2
+ · · ·

)

= z + 1 +
1

2!z
+

1

3!z2
+ · · · .

Observe that ze
1

z does not have a pole at z = 0, or, if you prefer, it has a pole of

infinite order there. We conclude

	

∫

C

ze
1

z dz = 2πj

(

1

2!

)

= πj.

Exercise 7. 	
∫

C
sin z/[z(z + j)2] dz, if C is the circle |z| = 10.

Answer. Since |z| = 10 has for interior points both z = 0 and z = −j, we consider

both points. Note that z = 0 is not a pole (since sin z = 0 at z = 0 too, and

sin z = z − z3/3! + z5/5! + · · · ). The only pole is z = −j, which is double. So

d

dz

[

sin z

z

]
∣

∣

∣

∣

z=−j

=
(cos z)z − sin z

1

∣

∣

∣

∣

−j

= cos(−j)(−j) − sin(−j)

and

	

∫

C

sin z

z(z + j)2
= 2πj [cos(−j)(−j) − sin(−j)] .
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Exercise 8. (a) 	
∫

C

ez

z10
dz, if (a) C is the circle |z| = 1, (b) C is the circle

|z + 4j| = 2.

Answer. (a) 	
∫

C
ez/z10 dz = 2πj (residue at z = 0). Now ez/z10 has a pole of

order 10 at z = 0, so

residue at z = 0 =
1

9!

d9

dz9
(ez)

∣

∣

∣

∣

z=0

=
1

9!
e0 =

1

9!
.

We conclude

	

∫

ez

z10
dz =

2πj

9!
.

(b) z = 0 is not inside nor on |z + 4j| = 2. So ez/z10 is analytic inside and on

C and

	

∫

C

ez

z10
dz = 0.
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III.g An Application: Evaluation of Improper Real Integrals

Complex integrals can be used to evaluate some real integrals. As a first example,

consider integrals of the type
∫ ∞

−∞
f(x)dx. We emphasize that x here denotes a

real variable, and illustrate the concept by considering the following examples. The

basic idea is to form these “real” integrals into path integrals in the complex plane.

Example 1. Evaluate
∫ ∞

−∞

1

1+x
2 dx.

Answer. We recall that

∫ ∞

−∞

1

1 + x2
dx = lim

R→∞

[
∫

R

−R

1

1 + x2
dx

]

and we start by looking at
∫

R

−R

1

1+x
2 dx. Now consider for a moment f(z) = 1/(1+z2)

and suppose we wish to find 	
∫

C
f(z) dz where C = C1 + C2 as shown.

- R 1 R

C

C

2

In particular, C2 can be taken to be the semicircle of radius R. Now

	

∫

C

f(z) dz =

∫

C1

f(z) dz +

∫

C2

f(z) dz

and note that we can parametrize C1 by

C1 =

{

x = x

y = 0.
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So z = x, dz = dx on C1 and

∫

C1

f(z) dz =

∫

R

x=−R

f(x) dx =

∫

R

−R

1

1 + x2
dx

and this is precisely what we wish to calculate! Now 	
∫

C
f(z) dz can be done by

residues, but unfortunately,

	

∫

C1

f(z) dz =

∫

R

−R

1

1 + x2
dx +

∫

C2

f(z) dz

and we need to deal with
∫

C2

f(z)dz =
∫

C2

1

1+z
2 dz. Observe that

C2 =

{

x = R cos θ

y = R sin θ
0 ≤ θ ≤ π,

i.e., z = Rejθ. This enables us to estimate
∫

C2

1

1+z
2 dz:

∣

∣

∣

∣

∫

C2

1

1 + z2
dz

∣

∣

∣

∣

≤

∫

π

θ=0

∣

∣

∣

∣

1

1 + z2

∣

∣

∣

∣

∣

∣

∣

∣

dz

dθ

∣

∣

∣

∣

dθ.

We have

∣

∣

∣

∣

dz

dθ

∣

∣

∣

∣

= |Rjejθ

| = R

|1 + z2
| ≥ |z2

| − |1| = |z|2 − 1 = R2
− 1.

So

∣

∣

∣

∣

∫

C2

1

1 + z2
dz

∣

∣

∣

∣

≤

∫

π

θ=0

1

R2 − 1
· R dθ =

πR

R2 − 1
→ 0 as R → ∞.

Remark. The above estimate is often not carried out in detail. It suffices to note

that if f(x) = P (x)/Q(x) with P , Q polynomials and the order of Q is at least two

more than the order of P (x), then the above estimate always goes through. I.e.,

∣

∣

∣

∣

∫

C2

P (z)

Q(z)
dz

∣

∣

∣

∣

→ 0 as R → ∞.
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In summary,

	

∫

C

f(z) dz =

∫

R

−R

1

1 + x2
dx +

∫

C2

f(z) dz

and

∫

C2

f(z) dz → 0 as |z| (i.e., R) → ∞.

But for R big, 	
∫

C
f(z)dz never changes: Observe that f(z) has 2 (simple) poles

at z = ±j. So

	

∫

C

f(z) dz = 2πj(Res z = j) = 2πj ·
1

2j
= π

for all such R, i.e.,

π =

∫

R

−R

1

1 + x2
dx +

∫

C2

f(z) dz.

So taking limit of both sides as R → ∞ gives

π =

∫ ∞

−∞

1

1 + x2
dx + lim

R→0

[
∫

C2

f(z) dz

]

=

∫ ∞

−∞

1

1 + x2
dx

and we are done.

Example 2.

∫ ∞

−∞

x

(x2 + 1)(x2 + 4)
dx.

Answer. We repeat the earlier process. Note first that the order of the bottom = 4,

order of the top = 1 so we construct the path C just like before and know

∣

∣

∣

∣

∫

C2

z

(z2 + 1)(z2 + 4)
dz

∣

∣

∣

∣

→ 0 as R → ∞.

All we need to calculate is 	
∫

C

z

(z2+1)(z2+4)
dz by means of residues.
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-R

2

R

j

2j

C1

C

Now the poles are z = ±j, ±2j (the zeros of the bottom) and these are all of order 1

(i.e., simple), but only two: j, 2j are inside C. Thus

Residue at j :
j

2j(j2 + 4)
=

1

2(3)
=

1

6

Residue at 2j :
2j

((2j)2 + 1)(4j)
=

1

2(−3)
= −

1

6
.

So

∫ ∞

−∞

x

(x2 + 1)(x2 + 4)
dx = 2πj

(

1

6
−

1

6

)

= 0.

We consider a different type of “real” integrals which can be done by complex

path integrals. Specifically, we look at

∫

2π

0

f(sin θ, cos θ) dθ.

We keep in mind that θ was used as a parameter when we evaluate a complex

integral over the unit circle, so it seems reasonable to put z = ejθ, then

sin θ =
ejθ

− e−jθ

2j
=

1

2j

(

z −
1

z

)

, cos θ =
1

2

(

z +
1

z

)

and

dz = jejθd θ = jz dθ =⇒ dθ =
dz

jz
.

152



In summary:

∫

2π

0

f(sin θ, cos θ) dθ =	

∫

C

f

(

1

2j

(

z −
1

z

)

,
1

2

(

z +
1

z

))

dz

jz

where C is the unit circle.

Example 3. Evaluate

∫

2π

0

1

sin θ + 2
dθ.

Answer. We put z = ejθ and get

∫

2π

0

1

sin θ + 2
dθ =	

∫

C

1

(z −
1

z
) 1

2j
+ 2

dz

jz

where C is the unit circle. Now

	

∫

C

dz

2jz + (z2 − 1) 1

2

=	

∫

C

2 dz

z2 − 1 + 4jz
.

The roots of the bottom are

z =
−4j ±

√
−16 + 4

2
= (−2 ±

√

3)j,

so

z2 + 4jz − 1 = (z + (2 +
√

3)j)(z + (2 −

√

3)j).

C
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Observe that (−2 +
√

3)j is inside C, but (−2 −
√

3)j is not, since

{

|(−2 +
√

3)j| = 2 −

√

3 < 1,

|(−2 −

√

3)j| = 2 +
√

3 > 1.

We also note that the pole at (−2 +
√

3)j is simple. Then

	

∫

C

2

z2 + 4jz − 1
dz = 2πj

(

2

2
√

3j

)

=
2π
√

3
.

As a final comment, we recall that f(x) is even iff f(x) = f(−x). Suppose

f(x) is even, then
∫ ∞

0

f(x) dx =
1

2

∫ ∞

−∞

f(x) dx.

We can thus evaluate
∫ ∞

0
f(x)dx by evaluating

∫ ∞

−∞
f(x)dx and dividing by 2. As

an example consider
∫ ∞

0

1

1+x
2 dx. Here f(x) = 1

1+x
2 for f(x) = f(−x) and f is

even. We thus have
∫ ∞

0

1

1+x
2 dx = 1

2
·π from Example 1. Note also that f(x) is odd

if f(x) = −f(−x), so

∫ ∞

−∞

f(x) dx = lim
R→∞

[
∫

R

−R

f(x) dx

]

but

∫

R

−R

f(x) dx =

∫

0

−R

f(x) dx +

∫

R

0

f(x) dx = −

∫

R

0

f(x) dx +

∫

R

0

f(x) dx = 0,

and
∫ ∞

−∞
f(x)dx = 0! Unfortunately, we can’t do

∫ ∞

0
f(x)dx if f(x) is odd.
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III.h Inverting the Laplace Transform and Applications

We now come one of the main reasons for all the work we have done: inverting

the Laplace Transform. The basic idea—constructing suitable paths in the complex

plane—is similar to the previous section. You may recall that given y = f(t)

(usually t is actually time), L(f)(s)—the Laplace Transform of f—is given by

L(f)(s) =

∫ ∞

0

e−stf(t) dt.

In elementary courses, s is thought of as being a real number, but in practical

problems this is not the case and you should think of s as being complex. Indeed,

s = jw with w = frequency is of particular significance. So we wish to think as

L(f)(s) being given for any complex s. The formulas you hopefully recall hold

unchanged for s complex. In particular, L(eat)(s) = 1/(s − a) if Re (s) > Re (a).

Now let f(s) be the transform of some function h(t). We know f(s) and wish

to find h(t), i.e., we wish to invert the transform. In practice, f(s) will have some

poles at some points s1, . . . , sm of the complex plane. As is often the case in practice

we start by assuming s1, . . . , sm all lie in the left half plane. (We shall deal with

the other case later.) We construct the path C = C1 + C2 with C2 a semicircle of

radius R as shown.

C2C

R

1

s1
s2

sm

s 3

s

j R

- j R

Think of R as being large. If s is any point inside the semicircle (as shown), then
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since f is analytic inside and on C we have

f(s) =
1

2πj
	

∫

C

f(z)

z − s
dz.

Think of s as being temporarily fixed, and assume |f(z)| → 0 as |z| → ∞. This

is the case for most “practical” functions but not for all. The latter case is more

complicated and we do not deal with it in this course. Look at C2: if z is on C2

then |f(z)| → 0 as |z| (i.e., R) approaches ∞, and 1/|z − s| also goes to zero as

|z| → ∞. One can formally show that as a consequence
∫

C2

f(z)/(z − s)dz → 0 as

R → ∞, and a detailed proof is given in theoretical courses. So, since f(s) never

changes as R → ∞, we get

f(s) =
1

2πj
	

∫

C

f(z)

z − s
dz =

1

2πj

[
∫

C1

f(z)

z − s
dz +

∫

C2

f(z)

z − s
dz

]

−→
1

2πj

[
∫

C
∗
1

f(z)

z − s
dz

]

as |z| → ∞

where C∗
1

is the y-axis traversed from +∞ to −∞. In summary,

f(s) =
1

2πj

∫

C
∗
1

f(z)

z − s
dz.

Note that C∗
1

can be parametrized as

{

x = 0

y = −`
−∞ ≤ ` ≤ ∞.

So, on C∗
1
, z = −j`, −∞ ≤ ` ≤ ∞. Next, remember

L(eat) =
1

s − a
, so L(ezt) =

1

s − z

and thus

f(s) = −
1

2πj

∫

C
∗
1

f(z)L(ezt) dz = L

[

−
1

2πj

∫

C
∗
1

f(z)ezt dz

]

.
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On the other hand, L(h(t)) = f(s), so

L(h(t)) = L

[

−
1

2πj

∫

C
∗
1

f(z)ezt dz

]

or

h(t) = −
1

2πj

∫

C
∗
1

f(z)ezt dz.

You might be tempted, since we know the parametrization of C∗
1

and since C∗
1

is

not a simple closed path, to try to actually evaluate the integral over C∗
1

directly,

i.e., by parametrizing and working out the integral for each t. This would be fatal.

Instead, much as we did in the last section, we turn
∫

C
∗
1

into an integral over a

simple closed path, which we can then evaluate by residues! Since C = C1 +C2 was

a simple closed path, you might think we would go back to C and pass to the limit

as R → ∞, but usually not so. Instead we start by looking at t, which as pointed

out earlier, is almost always time. We are interested in what happens for t > 0,

since in Laplace transform approaches, the clock starts at t = 0 (if it does not—say

it starts at t = a we can always move this to t = 0 by a shift in time). Look at
∫

C1

,

it is:

∫

C1

f(z)ezt dz.

So over the old C2 for the same function f(z)ezt we would have |ezt
| = |eR(cos θ+j sin θ)t

|

= eR(cos θ)t (note C2 can be parametrized as z = Rejθ, −π

2
≤ θ ≤

π

2
). This is really

bad news if t > 0, since eR(cos θ)t blows up as R → ∞.

In summary, for most f(z) of practical interest,

∣

∣

∣

∣

∫

C2

f(z)ezt dz

∣

∣

∣

∣

blows up as R → ∞, due to t > 0. This is not always the case, as an example
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indicates. If t < 0 note that
∫

C2

f(z)ezt dz → 0 as a general rule. Thus, in this case,

h(t) = −
1

2πj

∫

C
∗
1

f(z)ezt dz

= lim
R→∞

[

−
1

2πj

∫

C1

f(z)ezt dz

]

= lim
R→∞

[

−
1

2πj

∫

C1

f(z)ezt dz −
1

2πj

∫

C2

f(z)ezt dz

]

= lim
R→∞

[

−
1

2πj

∫

C

f(z)ezt dz

]

.

But f(z)ezt is differentiable inside and on C (the poles are on the left 1/2 plane,

remember), and we have

1

2πj

∫

C

f(z)ezt dz = 0

and so h(t) = 0 for t < 0. True, but of not much practical interest! We want to

know what h(t) is for t > 0! To do this, we use the same idea, but use C3: also a

semicircle but on the left half plane.

- j R

j R

s

1

1
s2

s s m
3

C3

C

Remember that R is big, so we may assume C4 = C3 + (−C1)—which is a simple

closed path—encloses all the poles at s1, s2, . . . , sm. Now since t > 0 and z = Rejθ

on C3 with π

2
< θ < 3π

2
then cos θ < 0 and so |ezt

| = eR(cos θ)t
→ 0 as R → ∞! We
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can now conclude

∣

∣

∣

∣

∫

C3

f(z)ezt dz

∣

∣

∣

∣

→ 0 as |z| → ∞.

So

h(t) = −
1

2πj

∫

C
∗
1

f(z)ezt dz

= lim
R→∞

[

−
1

2πj

∫

C1

f(z)ezt dz

]

= lim
R→∞

[

1

2πj

∫

−C1

f(z)ezt dz +
1

2πj

∫

C3

f(z)ezt dz

]

= lim
R→∞

[

1

2πj

∫

C4

f(z)ezt dz

]

.

But

1

2πj

∫

C4

f(z)ezt dz =
1

2πj
· 2πj{Res. at s1 + Res. at s2 + · · · + Res. at sm}

= Res. at s1 + Res. at s2 + · · ·+ Res. at sm.

This never changes as R gets larger, so

h(t) = lim
R→∞

[

1

2πj

∫

C4

f(z)ezt dz

]

= Res. at s1 + Res. at s2 + · · · + Res. at sm.

We emphasize that the residues are those of f(z)ezt, not of f(z) but the poles will

be those of f(z), since ezt is always differentiable, 6= 0, and cannot contribute “new”

poles.

One final notational change. By tradition we write f(s)est in place of f(z)ezt.

We pass to examples.
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Example 1. Find the inverse Laplace transform of

f(s) =
s

(s + 1)(s + 2)
.

Answer. We use partial fraction expansions. Note that since s is complex, we can

factor any polynomial into the product of linear factors (s− s1)
α1(s− s2)

α2 · · · (s−

sm)αm and with every factor of type (s − s1)
α1 we associate the expansion:

A1

(s − s1)
+

A2

(s − s1)2
+ · · ·+

Aα

(s − s1)α1

.

In the present case,

f(s) =
s

(s + 1)(s + 2)
=

A

s + 1
+

B

s + 2

and thus

s = A(s + 2) + B(s + 1).

Choosing
{

s = −1 gives − 1 = A(1) or A = −1

s = −2 gives − 2 = B(−1) or B = 2.

So

f(s) = −
1

s + 1
+

2

s + 2
,

and it suffices to invert each piece separately. We choose C4 just like before. Now

−est/(s + 1) has a simple pole at s = −1, so the inverse of this part is the residue

of −est/(s + 1) at s = −1, i.e., −e(−1)t = −e−t. In the same way, 2est/(s + 2) has

a simple pole at s = −2 and the residue is 2e−2t. The final answer is

−e−t + 2e−2t.
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The previous method, using partial fractions, is useful since it decomposes the

problem into simpler pieces. However, for a simple problem as given in Example 1,

it is easier to just do it directly:

f(s)est =
sest

(s + 1)(s + 2)

has two simple poles at s = −1 and s = −2. The sum of the residues is

(−1)e−t

(−1 + 2)
+

(−2)e−2t

(−2 + 1)
= −e−t + 2e−2t,

just like before!

Important Remark. Suppose the problem were

s

(2s + 2)(s + 2)

(we just multiplied the bottom by two). Again the poles are at s = −1, s = −2,

but the residue at s = −1 is not (−1)e−t/(−1 + 2). This is due to the fact that the

residue is the Laurent series coefficient of 1/(s+1), not of 1/(2s+2). So, we must

divide by two, i.e., write

s

(2s + 2)(s + 2)
=

s

2(s + 1)(s + 2)

and the residue at s = −1 is

(−1)e−t

2(−1 + 2)
!

Example 2. Find the inverse Laplace transform of

f(s) =
1

(s − 1)(s − 2)
.
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Answer. f(s) and thus f(s)est has poles at s = 1 and s = 2 so we can’t use the

same simple closed path as before with C1 being the imaginary axis, because in

such a case the poles would actually be on the right of C1 as shown in the following

picture.

1

C1

C2

2

So we move C1 and C2 to the left of s = 2 by choosing C1 to lie on the line with

real part σ0 > 2 as shown in the picture below.

0

σ0

σ

s C2C1

1 2

- jR

+ jR

We repeat exactly what we did and conclude as before

h(t) = −
1

2πj

∫

C
∗
1

f(z)ezt dz.

Again we introduce the other semicircle; but we face an apparent problem: on C4,

the real part of z is not always negative so it looks like we can’t conclude that for

t > 0,
∣

∣

∣

∣

∫

C4

f(z)ezt dz

∣

∣

∣

∣

→ 0 as R → ∞.

162



1

1 2

C4

C

But this is not a real problem since for most z we have Re (z) < 0 as R → ∞. So,

we just make the variable change z = z′ + σ0. Then

h(t) =
1

2πj

∫

σ0+j∞

z=σ0−j∞

f(z)ezt dz

becomes

h(t) =
1

2πj

∫

j∞

z
′=−j∞

f(z′ + σ0)e
(z

′
+σ0)t dz′

=
1

2πj
eσ0t

∫

j∞

z
′=−j∞

f(z′ + σ0)e
z
′
t dz′.

Now we can repeat exactly what we did before! So

h(t) =
∑

Residues of
[

eσ0tf(z′ + σ0)e
z
′
t

]

=
∑

Residues of
[

f(z′ + σ0)e
(z

′
+σ0)t

]

.

But notice that

∑

Residues of [f(z′ + σ0)e
(z

′
+σ0)t] =

∑

Residues of [f(z)ezt]

since the poles of f(z′ + σ0)e
(z

′
+σ0)t have moved relative to those of f(z)ezt (by

−σ0) but the residue is the same!

In summary, we still get in many practical cases that the inverse transform is
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the sum of the residues even if the poles are in the right 1/2 plane. You must be a bit

careful with this as one of the examples below indicates. So, if f(s) = 1/(s−1)(s−2),

then f(s)est = est/(s − 1)(s − 2) and the sum of the residues is

et

(1 − 2)
+

e2t

(2 − 1)
= −et + e2t.

Note however the useful observation that when some of the poles are in the right

1/2 plane the inverse transform blows up as t → ∞.

Example 3. Find the inverse transform of: f(s) =
s

s2 + 1
.

Answer. The poles are at s = ±j, but based on the discussion given in Example 2

we do not worry about this. We get

f(s)est =
sest

(s + j)(s − j)
,

so the sum of the residues is

j

2j
ejt +

(−j)

(−2j)
e−jt =

ejt + e−jt

2
= cos t.

Note that the poles are on the imaginary axis, and the inverse transform oscillates

but does not decay as t → ∞.

We conclude with the following practical and important example.

Example 4. Consider the circuit shown.

C

L R

v1

v (t)2
(t)
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Determine v2(t) if: (a) v1(t) = sin wt, (b) v1(t) is

{

0, t < 1

1, 1 ≤ t < ∞.

Assume that all the initial conditions are zero.

Answer. We have

L
di

dt
+ Ri +

Q

C
= v1(t),

Q

C
= v2(t).

Since Q =
∫

t

0
i(t) dt, we let I denote the Laplace transform of i, V1 the transform

of v1(t) and V2 the transform of v2(t), and take the transform of both sides of each

equation to get:

sLI + RI +
I

sC
= V1

I

sC
= V2

and so

V2

V1

=
1

sC

sL + R + 1

sC

=
1

s2LC + sRC + 1
.

Observe that the poles are at s2LC + sRC + 1 = 0. So we find the roots of

s2 + s
R

L
+

1

LC
= 0,

i.e.,

s =
1

2

[

−
R

L
±

√

R2

L2
−

4

LC

]

.

Put

s0 = −
R

2L
+

1

2

√

R2

L2
−

4

LC
, s1 = −

R

2L
−

1

2

√

R2

L2
−

4

LC
,
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and note that s0, s1 may be real, equal or complex depending on the sign of R
2

L
2 −

4

LC
,

but in every case they are in the left 1/2 plane. We rewrite

V2

V1

=
1

LC(s − s0)(s − s1)

and so

V2 =
V1

LC(s − s0)(s − s1)
.

We now pass to case (a): v1 = sin wt and V1 = w/(s2 + w2). In this case

V2 =
w

LC(s − s0)(s − s1)(s + jw)(s − jw)
.

Suppose s0 6= s1. Then there are four simple poles: s0, s1, ±jw and the residues of

V2e
st are:

at s0:
w

LC

es0t

√

R
2

L
2 −

4

LC
(s2

0
+ w2)

at s1:
w

LC

es1t

(−
√

R
2

L
2 −

4

LC
)(s2

1
+ w2)

at jw:
w

LC

ejwt

((jw)2 + (jw)R

L
+ 1

LC
)(2jw)

at −jw:
w

LC

e−jwt

((−jw)2 + (−jw)R

L
+ 1

LC
)(−2jw)

.

So

v2(t) =
w

LC

[

es0t

√

R
2

L
2 −

4

LC
(s2

0
+ w2)

+
es1t

−

√

R
2

L
2 −

4

LC
(s2

1
+ w2)

+
ejwt

(−w2 + jw R

L
+ 1

LC
)(2jw)

+
e−jwt

(−w2 − jw R

L
+ 1

LC
)(−2jw)

]

.
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Next, suppose s0 = s1 = −R/(2L). Then

V2 =
w

LC(s − s0)2(s + jw)(s − jw)
.

There are now three poles: ±jw and s0, with the latter of order two. The residue

at s0 of V2e
st is thus

d

ds

[

west

LC(s2 + 1)

]
∣

∣

∣

∣

s=s0

while the calculation of the residues at ±jw is unchanged. We observe that it may

appear that v2(t) ends up being complex, due to the terms jwR/L and even more

so if (R2/L2) − 4/(LC) < 0, so that

√

R2

L2
−

4

LC
= j

√

4

LC
−

R2

L2
.

This is not the case, and can be used as a check to see if mistakes have been made.

To see how the “j”’s must cancel, consider the two terms:

ejwt

[( 1

LC
− w2) + jw R

L
](2jw)

+
e−jwt

[( 1

LC
− w2) − jw R

L
](−2jw)

.

Taking to a common denominator gives:

ejwt[( 1

LC
− w2) − jwR

L
] − e−jwt[( 1

LC
− w2) + jw R

L
]

(2jw)[( 1

LC
− w2)2 + w2 R

2

L
2 ]

=
1

[( 1

LC
− w2)2 + w2 R

2

L
2 ]w

{(

1

LC
− w2

) (

ejwt
− e−jwt

2j

)

−
wR

L

(

ejwt + e−jwt

2

) }

=
1

w[( 1

LC
− w2)2 + w2 R

2

L
2 ]

{(

1

LC
− w2

)

sin wt −
wR

L
cos wt

}

.

The other two terms combine accordingly. We now pass to case (b), where

v1(t) =

{

0, t < 1

1, 1 ≤ t < ∞
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so v1(t) = u(t − 1) (where u is the Heaviside function) and V1 = e−s/s, leading to

V2 =
e−s

LC(s − s0)(s − s1)s

and thus

V2e
st =

este−s

LC(s − s0)(s − s1)s
=

es(t−1)

LC(s − s0)(s − s1)s
.

Note that there are 3 poles: 0, s0, s1 but there is a problem now: if t < 1 then

t − 1 < 0 and so Re [s(t − 1)] > 0 for Re s < 0. On the other hand if t > 1 then

Re [s(t − 1)] < 0 for Re s < 0. In the second case (t > 1), we can use the previous

result. If t > 1,

v2(t) =
e0

LC(−s0)(−s1)
+

es0(t−1)

LC(s0 − s1)s0

+
es1(t−1)

LC(s1 − s0)s1

where we have assumed s0 6= s1. If s0 = s1 we need to find the residue by taking

derivatives. So, in this case, the answer is obtained just like before. But what do

we do if t < 1!

Remember the key formula:

h(t) = −
1

2πj

∫

C
∗
1

f(z)ezt dz

with C1∗ the straight line from σ0 + j∞ to σ0 − j∞.

0

σ0

σ

*
s

s

+ j

- j
1

0
C1
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Here

−
1

2πj

∫

C
∗
1

f(z)eztdz = −
1

2πj

∫

C
∗
1

ez(t−1)

LC(z − z0)(z − z1)z
dz

where we have gone back in notation from s to z. Since t−1 < 0, we do the obvious;

instead of a semicircle to the left of C∗
1
, we construct one to the right since then

|ez(t−1)
| → 0 as R → ∞!

0

σ0

σ

2

- jR

+ jR

C
Cs1

s0

1

Then

h(t) = −
1

2πj

∫

C
∗
1

f(z)ezt dz = −
1

2πj
lim

R→∞

∫

C1

f(z)ezt dz

= −
1

2πj
lim

R→∞

∫

C1

f(z)ezt dz −
1

2πj
lim

R→∞

∫

C2

f(z)ezt dz

= −
1

2πj
lim

R→∞

	

∫

C1+C2

f(z)ezt dz.

But f(z)ezt is differentiable inside and on C1 + C2, so

	

∫

C1+C2

f(z)ezt dz = 0 !

In summary, we have found

v1(t) = 0, if t < 1

v2(t) =
1

LC

[

1

s0s1

+
es0(t−1)

(s0 − s1)s0

+
es1(t−1)

(s1 − s0)s1

]

if t > 1
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where we have assumed s0 6= s1. Note that this is as it should be, since v1(t) = 0 if

t < 1 and there are not initial voltages/currents. Thus v2(t) should be zero if t < 1

and this is what we have found.
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Further Exercises:

Evaluate the following integrals.

Exercise 1.

∫

2π

0

dθ

(3 cos θ + 5)2
.

Answer. To evaluate
∫

2π

0
dθ/(3 cos θ + 5)2 put







z = ejθ, cos θ =
1

2

[

z +
1

z

]

,

dz = jz dθ, C = unit circle.

Then

∫

2π

0

dθ

(3 cos θ + 5)2
=	

∫

C

1

[ 3
2
(z + 1

z
) + 5]2

dz

jz
=

1

j
	

∫

C

z dz

[ 3
2
(z2 + 1) + 5z]2

=
4

9j
	

∫

C

z dz

[z2 + 1 + 10

3
z]2

.

Next, note that

z2 +
10

3
z + 1 = 0 iff z =

−
10

3
±

√

100

9
− 4

2
,

i.e.,

z = −
5

3
±

√

25

9
− 1 = −

5

3
±

4

3
= −3, −

1

3
.

So

[

z2 + 1 +
10z

3

]2

=

[

(z + 3)

(

z +
1

3

)]2

and

4

9j
	

∫

C

z dz

[z2 + 1 + 10

3
z]2

=
4

9j
	

∫

C

z dz

(z + 3)2(z + 1

3
)2

.

The only pole inside C is at z = −1/3. It is a pole of order 2, thus

Residue of
z

(z + 3)2(z + 1

3
)2

at z = −
1

3
is

d

dz

[

z

(z + 3)2

]

z=−
1

3

=
(z + 3)2 − z(2)(z + 3)

(z + 3)4

∣

∣

∣

∣

z=−
1

3

=
3 − z

(z + 3)2

∣

∣

∣

∣

z=−
1

3

=
3 + 1

3

(3 −
1

3
)3

=
10

8
·

9

82
.
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We conclude

∫

2π

0

= 2πj

[

4

9j
·
10

8
·

9

82

]

=
5π

32
.

Exercise 2.

∫

2π

0

dθ

1 + sin2 θ
.

Answer. The transformation to the z-plane is the same as the previous problem,

except sin θ = (1/(2j))[z − 1/z]. So

∫

2π

0

dθ

1 + sin2 θ
=	

∫

C

1

1 + 1

(2j)2
(z −

1

z
)2

dz

jz
=

1

j
	

∫

C

z

z2 −
1

4
(z2 − 1)2

dz.

(The idea is to multiply top and bottom by z in order to remove the “1/z” term.)

Note next that

z2
−

1

4
(z2

− 1)2 = z2
−

1

4
(z4

− 2z2 + 1) = −
1

4
(z4

− 6z2 + 1).

Put w = z2. Then z4
− 6z2 + 1 = w2

− 6w + 1 and w2
− 6w + 1 = 0 iff w =

1

2
(6 ±

√
36 − 4) = 3 ±

√
8, i.e., w2

− 6w + 1 = (w − 3 +
√

8)(w − 3 −
√

8). We thus

have

z4
− 6z2 + 1 = (z2

− 3 +
√

8)(z2
− 3 −

√

8)

= (z + (3 −

√

8)
1

2 )(z − (3 −

√

8)
1

2 )(z + (3 +
√

8)
1

2 )(z − (3 +
√

8)
1

2 ).

To save writing, put s0 = (3 −
√

8)
1

2 , s1 = (3 +
√

8)
1

2 . Thus

1

j
	

∫

C

z

z2 −
1

4
(z2 − 1)2

dz = −
1

4−1j
	

∫

C

z dz

(z − s0)(z + s0)(z − s1)(z + s1)
.

Note that ±s1 are outside C, and that the (simple) poles at ±s0 are inside C. Thus

1

j
	

∫

C

z

z2 −
1

4
(z2 − 1)2

dz = −
2πj

4−1j

[

s0

2s0(s2

0
− s2

1
)
−

s0

−2s0(s2

0
− s2

1
)

]

= −16π

[

s0

2s0(s2

0
− s2

1
)

]
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= 16 ·
π

2

[

1

(3 +
√

8) − (3 −
√

8)

]

=
π

2
(16)

1

2
√

8
=

4π
√

8
.

Exercise 3.

∫ ∞

−∞

x4

(x2 + 1)3
dx.

Answer. Observe that the order of the bottom is 6, the order of the top is 4, thus

∫ ∞

−∞

x4

(x2 + 1)3
dx = 2πj(sum of residues of

z4

(z2 + 1)3
in the upper 1/2 plane).

Now z4/(z2 + 1)3 = z4/[(z + j)3(z − j)3]. Consequently there is only the pole (of

order 3) z = j in the upper 1/2 plane and the residue is

1

2

d2

dz2

[

z4

(z + j)3

]
∣

∣

∣

∣

z=j

.

Now

d

dz

[

z4

(z + j)3

]

=
4z3(z + j)3 − z43(z + j)2

(z + j)6
=

4z3(z + j) − 3z4

(z + j)4
=

z4 + 4jz3

(z + j)4
.

and thus

d2

dz2

[

z4

(z + j)3

]

=
(4z3 + 12jz2)(z + j)4 − (z4 + 4jz3)4(z + j)3

(z + j)8

=
(4z3 + 12jz2)(z + j) − (z4 + 4jz3)4

(z + j)5
,

and as z = j this becomes

(−4j − 12j)(2j)− (1 + 4)4

25j
=

32 − 20

25j
.

In conclusion,

∫ ∞

−∞

x4

(x2 + 1)3
dx = 2πj

[

12

32j

]

=
3π

4
.

Exercise 4.

∫ ∞

0

dx

x2 + 1
.
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Answer. We have
∫ ∞

0
(dx)/(x2 + 1), and observe that 1/(x2 + 1) is even. We

conclude that

∫ ∞

0

dx

x2 + 1
=

1

2

∫ ∞

−∞

dx

x2 + 1
=

1

2
(2πj)(sum of residues of

1

z2 + 1
in the upper

1

2
plane).

We note 1/(z2 + 1) = 1/[(z + j)(z − j)], and thus

∫ ∞

0

dx

1 + x2
=

1

2
· 2πj

(

1

2j

)

=
π

2
.

Exercise 5.

∫

2π

0

dθ

sin2 θ + 4 cos2 θ
.

Answer. We need to evaluate
∫

2π

0
(dθ)/(sin2 θ + 4 cos2 θ) and the process is the

same as the earlier questions. Note first that sin2 θ + 4 cos2 θ = 1 + 3 cos2 θ and so

∫

2π

0

dθ

sin2 θ + 4 cos2 θ
=

∫

2π

0

dθ

1 + 3 cos2 θ
=	

∫

C

1

1 + 3

4
(z + 1

z
)2

dz

jz
=

4

j
	

∫

C

z

4z2 + 3(z2 + 1)2
dz.

But 4z2 + 3(z2 + 1)2 = 3z4 + 10z2 + 3 and we have

z2 =
−10 ±

√

100 − 4(3)(3)

6
=

−10 ± 8

6
= −3, −

1

3
.

Thus z = ±
√

3 j, ±(1/
√

3)j. Again put s0 =
√

3j, s1 = (1/
√

3)j. Then

4

j
	

∫

C

z dz

4z2 + 3(z2 + 1)2
=

4

3j
	

∫

C

z

(z − s0)(z + s0)(z − s1)(z + s1)
dz.

Since ±s0 is outside C, we find

4

j
	

∫

C

z dz

4z2 + 3(z2 + 1)2
=

4

3j
· 2πj

[

s1

(s2

1
− s2

0
)(2s1)

−
s1

(s2

1
− s2

0
)(−2s1)

]

=
8π

3
·

1

s2

1
− s2

0

=
8π

3
·

1

(− 1

3
) − (−3)

=
8π

3
·

1

3 −
1

3

=
8π

8
= π.
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IV. Fourier Series

IV.a Basic Ideas

Fourier Series furnish a means of writing arbitrary functions, found in practice, in

terms of an infinite sum of “nice” functions (in the simplest case: sines and cosines).

Thus a wide variety of inputs to a system can be handled if the response to sine

and cosine inputs is known.

Not only that, but there exist other families of functions that work besides

sines and cosines (see below) and some even work for problems in higher dimen-

sions, i.e., for distributed parameter questions. To begin, we note the following

relationships. Suppose n 6= m, but both are positive integers, then

∫

π

−π

sin nt sinmt dt =

∫

π

−π

(ejnt
− e−jnt)(ejmt

− e−jmt)

−4
dt

=

∫

π

−π

ej(n+m)t
− ej(m−n)t

− e−j(m−n)t + e−j(n+m)t

−4
dt

=

∫

π

−π

− cos(n + m)t + cos(m − n)t

2
dt

=
1

2

[

− sin(n + m)t

n + m
+

sin(m − n)t

m − n

]

π

−π

= 0.

Exactly the same type of calculation shows:

∫

π

−π

sin nt cos mt dt = 0 (even if n = m)

∫

π

−π

cos nt cos mt dt = 0 (if m 6= n).

On the other hand, if m = n then

∫

π

−π

cos nt cosmt dt =

∫

π

−π

cos2 nt dt =

∫

π

−π

1 + cos 2nt

2
dt =

1

2
· 2π = π,
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and

∫

π

−π

sin nt sinmt dt =

∫

π

−π

sin2 nt dt =

∫

π

−π

1 − cos 2nt

2
dt = π.

Exactly the same results hold if we integrate
∫

d+2π

d
instead of

∫

π

−π
. In practice,

d = 0 or d = −π (what we chose).

Given an arbitrary function f (such that |f(t)| can be integrated—this is a

condition almost always satisfied in practice) we represent f as

f(t) =
a0

2
+

∞
∑

n=1

an cos nt + bn sin nt (1)

where

an =
1

π

∫

π

−π

f(t) cosnt dt,

a0 =
1

π

∫

π

−π

f(t) dt,

bn =
1

π

∫

π

−π

f(t) sinnt dt.

Note that a0, an, bn are constants. To see how the coefficients are arrived at, note

the following: Choose a value of n, say n0. Then multiply both sides of (1) by

sin n0t and integrate from −π to π. We have

∫

π

−π

f(t) sinn0t dt =
a0

2

∫

π

−π

sin n0t dt +
∞
∑

n=1

an

∫

π

−π

cos nt sin n0t dt

+

∞
∑

n=1

bn

∫

π

−π

sin nt sinn0t dt.

Now
∫

π

−π
cos nt sinn0t dt = 0 for any n = 1, 2, . . . , while

∫

π

−π
sin nt sinn0t dt will also

be zero except when n = n0. Then we get π, and so

∫

π

−π

f(t) sinn0t dt = bn0
π
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or

bn0
=

1

π

∫

π

−π

f(t) sinn0t dt.

In the same way, if we multiply by cos n0t on both sides of (1) and then integrate

from −π to π we get the formula for an0
. If you multiply by 1 and integrate, we get

∫

π

−π

f(t) dt =
a0

2
· 2π.

So a0 = 1

π

∫

π

−π
f(t) dt as given. Note that this requires that the series start with

“a0/2”, not “a0”.

The sum of the series on the right hand side of (1) only represents f in the

interval −π < t < π (except where f(t) has a jump) unless f is periodic of period

2π (i.e., f(t + 2π) = f(t) for every t) in which case the sum of the series represents

f for every t (except where f(t) has a jump). If f is not periodic then the sum

of the series still represents a periodic function since it is the sum of functions of

period 2π (namely sin nt and cos nt). See the following examples for clarification

of the above satements. The theoretical situation is summarized by the following

theorem.

Dirichlet’s Theorem. For −π ≤ t < π suppose f(t) is bounded, has a finite

number of maximums and minimums and only a finite number of discontinuities

(conditions satisfied in practice!). Let f(t) be defined for other values of t by f(t) =

f(t + 2π). Then the sum of the Fourier series for f(t) converges to:

1

2
[f(t+) + f(t−)] (2)

at every t where

f(t0+) = lim
t→t0

f(t) as t → t0 from the right side only,
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f(t0−) = lim
t→t0

f(t) as t → t0 from the left side only.

The conditions on f of Dirichlet’s Theorem are almost always satisfied in practice.

Equation (2) means that if f has a jump at t then the Fourier series converges to the

middle of the jump; if the function is smooth at t, then the Fourier series converges

to f(t).

Example 1. Write a Fourier series for f(t) if

f(t) =

{

0, t < 0

1, t ≥ 0

and sketch its sum.

Answer.

1

f (t)

t
− π π

We first calculate the coefficients:

a0 =
1

π

∫

π

−π

f(t) dt =
1

π

∫

π

0

dt = 1,

an =
1

π

∫

π

−π

f(t) cosnt dt =
1

π

∫

π

0

cos nt dt =
sin nt

nπ

∣

∣

∣

∣

π

0

= 0,

bn =
1

π

∫

π

0

sin nt dt =
1

π

[

−
cos nt

n

]

π

0

=
1

nπ
[1 − cos nπ].
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Therefore,

b1 =
1

π
[1 − cos π] =

2

π
,

b2 =
1

2π
[1 − cos 2π] = 0,

b3 =
1

3π
[1 − cos 3π] =

2

3π
.

Therefore,

bn =

{ 2

nπ
, n odd

0, n even.

Therefore the Fourier series for f is

1

2
+

∑

n odd

2

nπ
sin nt,

i.e.,

f(t) =
1

2
+

2

π
sin t +

2

3π
sin 3t +

2

5π
sin 5t + · · · .

The following trick is very useful for writing the sum. Let n = 2m − 1. Then

when m = 1 =⇒ n = 1

when m = 2 =⇒ n = 3

when m = 3 =⇒ n = 5,

that is, as m runs over all the integers > 0, n runs over all the odd ones > 0.

Therefore,

∑

n odd

2

nπ
sin nt =

∞
∑

m=1

2

(2m − 1)π
sin(2m − 1)t (let n = 2m − 1)
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and we finally write

f(t) =
1

2
+

∞
∑

n=1

2

(2n − 1)π
sin(2n − 1)t.

(Other substitutions are also useful.) Passing to the graph of the sum, by the

Dirichlet’s Theorem,

π- π

The graph of the sum of the series for −3π < t < 3π is because of periodicity:

- π 32- π π π2 π

Note that the series repeats outside −π < t < π what it did inside the interval.

Outside −π < t < π the series therefore does not represent f .

Example 2. Find the Fourier series for f(t) =

{

0, −π < t < 0

sin t, 0 ≤ t < π
.

Answer.

a0 =
1

π

∫

π

0

sin t dt =
2

π

an =
1

π

∫

π

0

sin t cosnt dt.
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To evaluate an it is again useful to recall

sin t =
ejt

− e−jt

2j
, cos t =

ejt + e−jt

2
.

We find

an =
1

π

∫

π

0

(

ejt
− e−jt

2j

) (

ejnt + e−jnt

2

)

dt

=
1

4πj

∫

π

0

[

ej(n+1)t + ej(1−n)t
− e−j(1−n)t

− e−j(n+1)t

]

dt

=
1

4πj

∫

π

0

[2j sin(n + 1)t + 2j sin(1 − n)t] dt

=
1

2π

∫

π

0

[sin(n + 1)t − sin(n − 1)t] dt

=
1

2π

[

− cos(n + 1)t

n + 1
+

cos(n − 1)t

n − 1

]

π

0

=
1

2π

[

(cos(n − 1)π) − 1

n − 1
−

(cos(n + 1)π)− 1

n + 1

]

=
1

2π
[(cos(n − 1)π) − 1]

2

n2 − 1
=

1

π(n2 − 1)
[(cos(n − 1)π)− 1].

Hence

an =











0, n odd

−2

π(n2 − 1)
, n even.

Note that if n = 1, this formula will not work and a1 needs to be calculated

separately. Similarly,

bn =
1

π

∫

π

0

sin t sinnt dt =
1

π

∫

π

0

(

ejt
− e−jt

2j

) (

ejnt
− e−jnt

2j

)

dt

= −
1

4π

∫

π

0

[

ej(n+1)t
− e−j(n−1)t

− ej(n−1)t + ej(n+1)t

]

dt

= −
1

4π

∫

π

0

2 [cos(n + 1)t − cos(n − 1)t] dt

181



= −
1

2π

[

sin(n + 1)t

n + 1
−

sin(n − 1)t

n − 1

]

π

0

= −
1

2π

[

sin(n + 1)π

n + 1
−

sin(n − 1)π

n − 1

]

= 0.

But if n = 1, this does not work, since we divide by n−1! We thus need to calculate

b1 separately:

b1 =
1

π

∫

π

0

sin t sin t dt =
1

π

∫

π

0

1 − cos 2t

2
dt

=
1

2π

[

t −
sin 2t

2

]

π

0

=
1

2
.

and a1 = 1/(2π)
∫

π

0
sin 2t dt = 0. Therefore,

f(t) =
1

π
+

1

π

∑

n even

(

−2

π

)

1

n2 − 1
cos nt +

1

2
sin t.

In this example, it is useful to introduce the change n = 2m. Then

f(t) =
1

π
+

∞
∑

m=1

−2

m

cos 2mt

4m2 − 1
+

1

2
sin t.

Comparing the various graphs:

π− π − π

f (t) sum of the series

π

Note that since there are no jumps in f(t), the Fourier series agrees with f(t) inside

the interval −π < t < π.

Example 3. Let

f(t) =

{

−t, for − π < t < 0

0, for 0 < t < π
.

Find the Fourier series for f(t) and sketch a graph of the sum for −2π < t < 2π.
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Answer.

a0 =
1

π

∫

0

−π

−t dt =
1

π
·
π2

2
=

π

2
,

an =
1

π

∫

π

−π

f(t) cosnt dt =
1

π

∫

0

−π

−t cos nt dt

=
1

π

[

−t sin nt

n

∣

∣

∣

∣

0

−π

+

∫

0

−π

sinnt

n
dt

]

(integration by parts)

=
1

n2π
[(cosnπ) − 1].

Therefore,

a1 =
−2

π
, a2 = 0, a3 =

−2

9π
, . . . .

Or

an =

{

0, n even
−2

n2π
, n odd,

bn =
1

π

∫

0

−π

−t sin nt dt =
1

π

[

t cos nt

n

]0

−π

−
1

π

∫

0

−π

cos nt

n
dt

=
cos nπ

n
=

(−1)n

n
.

Therefore,

f(t) =
π

4
+

∑

n odd

(

−2

πn2
cos nt

)

+
∞
∑

n=1

1

n
(−1)n sin nt

=
π

4
−

2

π

∞
∑

n=1

1

(2n − 1)2
cos(2n − 1)t +

∞
∑

n=1

1

n
(−1)n sin nt.

Graph of the series:
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Graph of the series

−π π 2π 3π

Note that at t = π, the sum of the Fourier series is π/2!
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IV.b Even and Odd Functions

The concepts of even and odd functions are important for two reasons. The first is

the rapid calculation of Fourier series. The second reason will be mentioned below.

We call a function f(t) even if f(t) = f(−t).

Example 1. f(t) = t2, f(t) = cos t, f(t) = cos nt are even functions.

A function f(t) is odd if f(t) = −f(−t).

Example 2. f(t) = t, f(t) = sin t, f(t) = sin nt are odd functions.

We note that the product of two even or of two odd functions is an even

function whereas the product of an even and an odd function is odd. That is,

(even)(even)=even; (odd)(odd)=even; (even)(odd)=odd.

We also note the following properties of these functions:

(i) Let f(t) be an odd function. Then
∫

π

−π
f(t) dt = 0.

To see this, note that

∫

π

−π

f(t) dt =

∫

0

−π

f(t) dt +

∫

π

0

f(t) dt

=

∫

0

π

f(−y)(−dy) +

∫

π

0

f(t) dt

=

∫

0

π

f(y) dy +

∫

π

0

f(t) dt

= −

∫

π

0

f(t) dt +

∫

π

0

f(t) dt = 0

when, in the second step, we made the substitution y = −t.

(ii) Let f(t) be an even function. Then
∫

π

−π
f(t) dt = 2

∫

π

0
f(t) dt.
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Since

∫

π

−π

f(t) dt =

∫

0

−π

f(t) dt +

∫

π

0

f(t) dt

=

∫

0

π

f(−y)(−dy) +

∫

π

0

f(t) dt

= −

∫

0

π

f(y) dy +

∫

π

0

f(t) dt

=

∫

π

0

f(y) dy +

∫

π

0

f(t) dt = 2

∫

π

0

f(t) dt.

Using the above remarks, we can then state the following: If f is an even function on

−π < t < π, then the Fourier series for f has cosine terms only and the coefficients

are given by:

an =
2

π

∫

π

0

f(t) cosnt dt, n = 1, 2, . . . ,

a0 =
2

π

∫

π

0

f(t) dt.

If f is an odd function on −π < t < π, then the Fourier series for f has sine terms

only (since an = 0) and the coefficients are given by:

bn =
2

π

∫

π

0

f(t) sinnt dt.

If f is even, then f(t) sinnt is odd ((even)(odd)) and therefore, by (i), bn = 0.

Identically, f(t) cosnt is even and therefore, by (ii),

an =
1

π

∫

π

−π

f(t) cosnt dt =
2

π

∫

π

0

f(t) cosnt dt.

Example 3. f(t) = t for all t. Then f is odd and we immediately conclude that
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an = 0, and

bn =
2

π

∫

π

0

t sin nt dt
parts

=
2

π

{ [

−t cos nt

n

]

π

0

+

∫

π

0

cos nt

n
dt

}

= −
2

n
cos nπ =

2

n
(−1)n+1.

Therefore,

f(t) =

∞
∑

n=1

2

n
(−1)n+1 sin nt.

The graph of the sum is:

π −π

Example 4. f(t) = |t|. Then f(t) is even and we conclude bn = 0 and

an =
2

π

∫

π

0

|t| cosnt dt =
2

π

∫

π

0

t cos nt dt =
2

πn2
[cos nπ − 1]

=

{

0, n even,

−
4

πn2
, n odd,

a0 =
2

π

∫

π

0

t dt = π.

Therefore,

f(t) =
π

2
−

4

π

∞
∑

n=1

1

(2n − 1)2
cos(2n − 1)t.

Note that we can also obtain useful identities. For example,

f(0) = 0 =
π

2
−

4

π

∞
∑

n=1

1

(2n − 1)2
, so

π

2
=

4

π

∞
∑

n=1

1

(2n − 1)2
.
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If you are in doubt whether a given function is even or odd (or neither) you

may be able to decide by looking at its graph. In any case, if still not sure, you can

calculate the Fourier series the long way by calculating both the an and bn without

using the short cut.

There is another way in which even and odd functions enter in the discussion.

Often we are interested in representing a function f(t) not for −π < t < π but

rather for only 0 < t < π. This is the case if, for example, f(t) is only defined in

the interval 0 < t < π. We can then extend backwards the function f(t) so that it

becomes defined for −π < t < π as either an even or an odd function. (That is,

we disregard what f is really doing for −π < t < 0 and define it for convenience.)

We can then write the Fourier series for the extended function (which we can do

quickly since the extended function is even or odd) but such a series will, in general,

represent the original function only for 0 < t < π. If we extend f as an odd function

we obtain a Fourier series for f in terms of sines only, i.e., a Fourier sine series.

Analogously if f is extended as an even function we obtain a Fourier series for f in

terms of cosines only, i.e., a Fourier cosine series. Both series will represent f for

0 < t < π.

Example 5. Let f(t) = t for 0 < t < π. Obtain a Fourier sine series and a Fourier

cosine series for f and sketch their sum.

Answer. A Fourier cosine series is obtained by extending f as an even function.

For this extension we obtain the Fourier series as follows:

bn = 0 (by definition)
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while

an =
2

π

∫

π

0

t cosnt dt =
2

π

[

t sinnt

n

∣

∣

∣

∣

π

0

−

∫

π

0

sin nt

n
dt

]

=
2

π

[

π sin nπ

n
+

cos nt

n2

∣

∣

∣

∣

π

0

]

=
2

πn2
[1 − cos nπ] =







0, n even

2(2)

πn2
, n odd,

a0 =
2

π

∫

π

0

t dt =
2

π
·
π2

2
= π,

so that

f(t) =
π

2
+

∞
∑

n=1

4

π(2n − 1)2
cos(2n − 1)t.

extension

−π π

f (t)

Not surprisingly, this is the same as Example 4.

To obtain a Fourier sine series we extend f as an odd function. For this

extension we obtain the series by finding

an = 0 (by definition)

bn =
2

π

∫

π

0

t sin nt dt =
2

π

[

−t cos nt

n

∣

∣

∣

∣

π

0

+

∫

π

0

cos nt

n
dt

]

=
2

π

[

−t cos nt

n

∣

∣

∣

∣

π

0

+
sin nt

n2

∣

∣

∣

∣

π

0

]

=
2

π

[

−π cos nπ

n

]

= −
2

n

{

1, n even

−1, n odd
= −

2

n
(−1)n =

2(−1)n+1

n
.
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Thus,

f = 2
∞
∑

n=1

(−1)n+1

n
sin nt.

π

f (t)

extension
−π

Both the above series represent f in the interval 0 < t < π although their behavior

outside this interval is very different. The graphs of the functions involved are as

follows:

Fourier Sine Series

π

2π−π−2π π

f (t)

t

2π−π−2π π

in this region both series represent  f

Fourier Cosine Series 
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Example 6. f(t) =

{

π, 0 < t < π/2

0, π/2 < t < π
.

The Fourier sine series for f is found by using

an = 0,

bn = 2

∫

π/2

0

sin nt dt =
2

n

(

1 − cos
n

2

)

.

Therefore

bn =



















2

n
, n odd

0, n a multiple of 4
4

n
, n even, not a multiple of 4,

and we obtain the series

∞
∑

n=1

2

2n − 1
sin(2n − 1)t +

∞
∑

n=1

4

2(2n − 1)
sin 2(2n − 1)t.

Such a series represents in −π < t < π the function which is the odd extension of

f .

The Fourier cosine series for f is found by using

bn = 0, a0 =
2

π

∫

π/2

0

π dt = π,

an = 2

∫

π/2

0

cos nt dt =
2

n
sin

nπ

2
=

{

0, n even
2

n
(−1)

n−1

2 , n odd

and we obtain the series

π

2
+

∞
∑

n=1

2(−1)n−1

2n − 1
cos(2n − 1)t.

This represents the function which is the even extension of f . Both series represent

f in the interval 0 < t < π (only!).
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IV.c Extension of the Interval

So far, the Fourier series we have obtained are representatives for f(t) for −π < t <

π. We now consider the problem of representing f in the interval −T < t < T where

T denotes an arbitrary positive number. Let f(t) be a given function in the interval

−T < t < T . Set g(w) = f(Tw/π) where w ranges over the interval −π < w < π.

We can write a Fourier series for g as follows:

f

(

Tw

π

)

= g(w) =
a0

2
+

∞
∑

n=1

an cos nw + bn sin nw

where

a0 =
1

π

∫

π

−π

g(w) dw

an =
1

π

∫

π

−π

g(w) cosnw dw,

bn =
1

π

∫

π

−π

g(w) sinnw dw.

Let t = Tw/π (note that as w ranges over −π < w < π, t ranges over −T < t < T ).

The above expression becomes:

f(t) =
a0

2
+

∞
∑

n=1

an cos
nπt

T
+ bn sin

nπt

T

where

a0 =
1

π

∫

π

−π

g(w) dw =
1

T

∫

T

−T

f(t) dt

an =
1

π

∫

π

−π

g(w) cosnw dw =
1

T

∫

T

−T

f(t) cos
nπt

T
dt

bn =
1

π

∫

π

−π

g(w) sinnw dw =
1

T

∫

T

−T

f(t) sin
nπt

T
dt.

The series we have obtained represents f in the interval −T < t < T . Outside this
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interval this series repeats and hence it will not represent f unless f is periodic with

period 2T .

Important Remark. The period is 2T , not T .

Example 1. f(t) =

{

1, 2n < t < 2n + 1, n = 0,±1,±2,±3, . . .

0, otherwise
. Find the

Fourier series for f .

t
-1 1 2 3 4 5

f (t)

Answer. Note that f(t) has period 2. If we expand f in terms of sin nt, cos nt,

then we obtain a representation for f valid only between −π and π. We instead

expand f in terms of sin nπt and cos nπt (T = 1 in this case) to get a representation

for f good “almost” everywhere (i.e., except at the jumps!). The coefficients are as

follows:

a0 =
1

1

∫

T

−T

f(t) dt =

∫

1

0

1 dt = 1,

an =
1

1

∫

1

0

cos nπt dt =
sin nπt

nπ

∣

∣

∣

∣

1

0

= 0,

bn =
1

1

∫

1

0

sin nπt dt = −
cos nπt

nπ

∣

∣

∣

∣

1

0

=
1

nπ
[1 − (−1)n] =

{

0, n even
2

nπ
, n odd,

and thus,

f(t) =
1

2
+

2

π

∞
∑

n=1

1

2n − 1
sin(2n − 1)πt.

The graph of the sum of the Fourier series is:
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40 1 2 3

Remark. If f(t) is odd in the interval −T < t < T , then the Fourier series has

sine terms only, i.e.,

f(t) =
∞
∑

n=1

bn sin
nπt

T

where

bn =
2

T

∫

T

0

f(t) sin
nπt

T
dt.

Analogously if f(t) is even, the Fourier series has cosine terms only, i.e.,

f(t) =
a0

2
+

∞
∑

n=1

an cos
nπt

T

where

a0 =
2

T

∫

T

0

f(t) dt, an =
2

T

∫

T

0

f(t) cos
nπt

T
dt.

If f(t) is defined only on 0 < t < T or if we are interested in representing f

only on this interval, we can extend f to the whole of −T < t < T either as an even

function (and obtain a cosine series for f) or as an odd function (and obtain a sine

series for f).

Example 2. Find the cosine series for f(t) =

{

1, 0 < t < π

0, π < t < 2π
.

Answer. We extend f as an even function, and we note that T = 2π and bn = 0.
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2π

f (t)

t
−π π

a0 =
1

π

∫

π

0

1 dt = 1

an =
1

π

∫

π

0

cos
nt

2
dt =

1 · 2

nπ
sin

nt

2

∣

∣

∣

∣

π

0

=
2

nπ
sin

nπ

2

=



















0, n even
2

nπ
, n = 1, 5, 9, 13

−2

nπ
, n = 3, 7, 11

=

{

0, n even
2

nπ
(−1)

n−1

2 , n odd.

Thus,

f(t) =
1

2
+

∞
∑

n=1

2

(2n − 1)π
(−1)n−1 cos

(2n − 1)t

2
.

Note that this function represents f in the interval 0 < t < 2π only.

Example 3. Let f(t) = 1 − t for 0 < t < 1. Find both a sine series and a cosine

series for f .

Answer. To find the sine series, we extend f as an odd function. Then,

an = 0,

bn =
2

1

∫

1

0

(1 − t) sinnπt dt

= −2(1 − t)
cos nπt

nπ

∣

∣

∣

∣

1

0

+ 2

∫

1

0

cos nπt

nπ
(−1) dt =

2

nπ
.
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Thus we have the series

∞
∑

n=1

2

nπ
sin nπt.

To find the cosine series we extend f as an even function. Then

bn = 0,

a0 =
2

1

∫

1

0

(1 − t) dt = 1,

an =
2

1

∫

1

0

(1 − t) cos nπt dt =
2

nπ

∫

1

0

sin nπt dt

=
2

nπ

[

− cos nπt

nπ

]1

0

=
2

(nπ)2
[1 − (−1)n] .

We have the series:

1

2
+

∞
∑

n=1

4

[(2n − 1)π]2
cos(2n − 1)πt.

Sine series

-2 -1 210

Cosine series

-2 -1 0 1 2
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Further Exercises:

Find the Fourier series for the following function. Sketch the sum of the series you

obtain.

Exercise 1. f(t) =

{

0, −∞ < t < 0

t, 0 ≤ t < ∞
.

Answer. We calculate the coefficients:

bn =
1

π

∫

π

−π

f(t) sinnt dt =
1

π

∫

π

0

t sin nt dt

=
1

π

[

−t cos nt

n

∣

∣

∣

∣

π

0

+

∫

π

0

cos nt

n
dt

]

=
1

π

[

−π cos nπ

n

]

= −
cos nπ

n
=

(−1)n+1

n
,

an =
1

π

∫

π

−π

f(t) cosnt dt =
1

π

∫

π

0

t cos nt dt

=
1

π

[

t sin nt

n

∣

∣

∣

∣

π

0

−

∫

π

0

sin nt

n
dt

]

=
1

π

cos nt

n2

∣

∣

∣

∣

π

0

=
1

πn2
(cos nπ − 1) =

1

πn2
·

{

0, n even

−2, n odd
,

a0 =
1

π

∫

π

0

t dt =
π

2
.

We conclude that for −π ≤ t ≤ π,

f(t) =
π

4
+

∞
∑

n=1

(−1)n+1

n
sin nt +

∞
∑

n=1

(−2)

π(2n − 1)2
cos(2n − 1)t.

The graphs are as follows:
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t
−π −π−2π 2π 3πππ

f(t)
Fourier Series

Note that outside of −π ≤ t ≤ π, the series is very different from f(t).

Exercise 2. f(t) =

{

0, −π < t < 0

t, 0 ≤ t < π
, f(t) periodic outside the interval

−π < t < π.

Answer. In this case, f is periodic outside −π ≤ t ≤ π and the same as the

previous f inside −π ≤ t ≤ π. The Fourier series is thus identical in this case to

what it was for Exercise 1. The only difference is that now outside of −π ≤ t ≤ π,

the series still agrees with f (except at the jumps).

Exercise 3. f(t) =

{

1, −π < t < 0

−1, 0 < t < π
, f(t) periodic outside the interval

−π < t < π.

Answer. Since f(t) =

{

1, −π < t < 0

−1, 0 < t < π
, we note that it is odd. This saves

having to calculate an, since all an = 0. If you do not notice this, you should still

obtain all an = 0 by actual calculation.

Furthermore,

bn =
2

π

∫

π

0

f(t) sinnt dt =
2

π

∫

π

0

(−1) sin nt dt

=
2

π

[

cos nt

n

]

π

0

=
2

nπ
(cos nπ − 1) =

2

nπ
·

{

0, n even

−2, n odd
.
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Thus

f(t) =

∞
∑

n=1

−4

(2n − 1)π
sin[(2n − 1)t]

and the sum of the series has a graph:

−1
−π π 2π 3π

1

Exercise 4. f(t) =











0, −π < t < −π/2

−1, −π/2 ≤ t ≤ π/2

0, π/2 < t < π

, f(t) periodic outside −π < t < π.

Answer. In this case, f(t) is even. Now all bn = 0 (as can also be seen by direct

calculation) and

an =
2

π

∫

π

0

f(t) cosnt dt = −
2

π

∫ π

2

0

cos nt dt

= −
2

π

[

sin nt

n

]
π

2

0

= −
2

nπ
sin

(nπ

2

)

Now

sin(nπ/2) 1 0 −1 0 1 0 −1

n 1 2 3 4 5 6 7

Thus

sin
(nπ

2

)

=

{

0, n even,

−(−1)
n+1

2 , n odd,

and

a0 =
−2

π

∫ π

2

0

1 dt = −1.
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Thus

f(t) = −
1

2
+

∞
∑

n=1

2(−1)n

(2n − 1)π
cos[(2n − 1)t]

and the sum of the series has a graph given by

3ππ−π 2π

Exercise 5. Find the Fourier sine series and the Fourier cosine series for f if

f(t) = 1 − t, 0 ≤ t ≤ π. Sketch the sum of the two series.

Answer. We first find the Fourier sine series. Now, in this case an = 0,

bn =
2

π

∫

π

0

f(t) sinnt dt =
2

π

∫

π

0

(1 − t) sin nt dt

=
2

π

[

−(1 − t) cos nt

n

∣

∣

∣

∣

π

0

+

∫

π

0

(−1)
cos nt

n
dt

]

=
2

πn
(1 − (1 − π) cosnπ) =

2

nπ
[1 + (π − 1)(−1)n] .

So the series is

∞
∑

n=1

2

nπ
[1 + (π − 1)(−1)n] sin nt.

Next for the Fourier cosine series: now bn = 0 and

an =
2

π

∫

π

0

(1 − t) cosnt dt =
2

π

[

(1 − t) sinnt

n

∣

∣

∣

∣

π

0

−

∫

π

0

(−1)
sinnt

n
dt

]

=
2

nπ

∫

π

0

sin nt dt =
2

nπ

[

−
cos nt

n

]

π

0

=
2

n2π
[1 − cos nπ] ,

a0 =
2

π

∫

π

0

(1 − t) dt =
2

π

(

π −
π2

2

)

= 2
(

1 −
π

2

)

,
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and the series is:

(

1 −
π

2

)

+
∞
∑

n=1

4

π(2n − 1)2
cos[(2n − 1)t].

Graphs:

Cosine Series

1

1−π

−π π 2π π−π

1

−1
1−π

π−1

2π3π

Sine Series

Exercise 6. Find a Fourier series valid for the rectified cosine function:

f(t) =











0, −
π

ω
< t ≤ −

π

2ω

cos(ωt), −
π

2ω
< t < π

2ω

0, π

2ω
≤ t < π

ω

, for arbitrary frequency ω > 0.

Answer. We observe two things: first f is even and, secondly, the period is 2π/ω

so that T = π/ω and we write a Fourier series in the form

a0

2
+

∞
∑

n=1

an cos

(

nπt

π/ω

)

=
a0

2
+

∞
∑

n=1

an cos(nωt)

−π/ω −π/2ω π/2ω π/ω
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and

an =
2
π

ω

∫ π

ω

0

f(t) cos(nωt) dt =
2ω

π

∫ π

2ω

0

cos(ωt) cos(nωt) dt

=
2ω

π

∫ π

2ω

0

1

2
[cos(ωt + nωt) + cos(nωt − ωt)] dt

=
2ω

π

∫ π

2ω

0

[cos((n + 1)ωt) + cos((n − 1)ωt)] dt

=
ω

π

[

sin((n + 1)ωt)

(n + 1)ω
+

sin((n − 1)ωt)

(n − 1)ω

]
π

2ω

0

(note that a1 will need to be calculated separately!)

=
ω

π

[

sin((n + 1)π

2

(n + 1)ω
+

sin((n − 1)π

2

(n − 1)ω

]

.

Note

sin
(

(n − 1)
π

2
+ π

)

= − sin
(

(n − 1)
π

2

)

= sin
(

(n + 1)
π

2

)

.

And so

an =
1

π

[

− sin((n − 1)π

2
)

n + 1
+

sin((n − 1)π

2
)

n − 1

]

=
1

π

2

(n2 − 1)
sin

(

(n − 1)
π

2

)

.

But

sin((n − 1)π/2) 1 0 −1 0 1

n 2 3 4 5 6

So

sin
(

(n − 1)
π

2

)

=

{

0, n odd

(−1)
n+2

2 , n even

and thus

an =
2

π

1

(n2 − 1)
·

{

0, n odd,

(−1)
n+2

2 , n even
.
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Finally,

a0 =
2ω

π

∫ π

2ω

0

cos ωt dt =
2ω

π

[

sin ωt

ω

]
π

2ω

0

=
2

π
sin

(π

2

)

=
2

π
,

a1 =
2ω

π

∫ π

2ω

0

cos2 ωt dt =
2ω

π

∫ π

2ω

0

1 − cos(2ωt)

2
dt =

2ω

π
·
1

2
·

π

2ω
=

1

2
.

Thus,

f =
1

π
+

1

2
cos ωt +

∞
∑

n=1

2(−1)n+1

π(4n2 − 1)
cos(2nωt).
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IV.d Complex Fourier Series and Fourier Transform

The introduction of complex numbers allows a different formulation of the Fourier

series. From the earlier sections we know that in the interval −π < t < π, we have

the representation

f(t) =
a0

2
+

∞
∑

n=1

(an cos nt + bn sin nt)

with

an =
1

π

∫

π

−π

f(x) cosnx dx,

bn =
1

π

∫

π

−π

f(x) sinnx dx.

We have changed the variable from t to x in the integrals for convenience. Recalling

once again the identities:

cos nt =
ejnt + e−jnt

2
, sin nt =

ejnt
− e−jnt

2j
,

we can write

an cos nt + bn sin nt =
1

π

∫

π

−π

f(x)

[(

ejnx + e−jnx

2

) (

ejnt + e−jnt

2

)

+

(

ejnx
− e−jnx

2j

) (

ejnt
− e−jnt

2j

) ]

dx

=
1

π

∫

π

−π

f(x)

4

[

2ejn(x−t) + 2e−jn(x−t)

]

dx

=

(

1

π

∫

π

−π

f(x)

2
ejnx dx

)

ej(−nt) +

(

1

π

∫

π

−π

f(x)

2
e−jnx dx

)

ejnt.

Therefore,

f(t) =
a0

2
+

∞
∑

n=1

(an cos nt + bn sin nt)
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=
a0

2
+

1

2π

∞
∑

n=1

(
∫

π

−π

f(x)e−jnx dx

)

ejnt +
1

2π

−1
∑

n=−∞

(
∫

π

−π

f(x)e−jnx dx

)

ejnt.

Writing a0 in terms of the integral of f we are lead to the complex Fourier series

for f :

f(t) =
∞
∑

−∞

cnejnt where cn =
1

2π

∫

π

−π

f(t)e−jnt dt.

This series represents f in the interval −π < t < π. If we had started with the

Fourier series for f which is valid for −T < t < T we would have obtained the

complex series:

f(t) =

∞
∑

−∞

cne
jnπt

T where cn =
1

2T

∫

T

−T

f(t)e
−jnπt

T dt.

This latter series, of course, furnishes a representation for f valid in the interval

−T < t < T . We can rewrite this series in the form:

f(t) =

∞
∑

−∞

(

1

2T

∫

T

−T

f(x)e
−jnπx

T dx

)

e
jnπt

T

since the dummy variable of integration can be changed from t to x for convenience.

Remark. Note that cn is complex in general! It looks like we have to calculate

cn for all the positive n’s and then for all the negative n’s. But, if f(t) is real (the

usual situation) then

c−n =
1

2T

∫

T

−T

f(t)e
jnπt

T dt.

So

c−n =
1

2π

∫

T

−T

f(t)e
jnπt

T dt (complex conjugate)

=
1

2π

∫

T

−T

f(t)e
jnπt

T dt =
1

2π

∫

T

−T

f(t)e
−jnπt

T dt = cn
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and we conclude

c−n = cn.

From this remark, we obtain Parseval’s Theorem. Let f(t), g(t) be two func-

tions given on −T < t < T . Suppose

f(t) =

∞
∑

−∞

cne
jnπt

T , g(t) =

∞
∑

−∞

dne
jnπt

T .

We wish to calculate

∫

T

−T

f(t)g(t) dt =

∫

T

−T

( ∞
∑

−∞

cne
jnπt

T

)

g(t) dt

=

∞
∑

−∞

cn

∫

T

−T

e
jnπt

T g(t) dt

= 2T

∞
∑

n=−∞

cnd−n = 2T

∞
∑

n=−∞

cndn.

So (this is the Theorem):

1

2T

∫

T

−T

f(t)g(t) dt =
∞
∑

n=−∞

cndn

and, as a consequence,

1

2T

∫

T

−T

f2(t) dt =

∞
∑

n=−∞

|cn|
2.

In particular, the RMS (Root Mean Square) value of f is

fRMS =

√

1

2T

∫

T

−T

f2(t) dt =

√

√

√

√

∞
∑

n=−∞

|cn|
2.

There is an analogue of this result valid for the ordinary Fourier series. Suppose

f(t) =
a0

2
+

∞
∑

n=1

[

an cos
nπt

T
+ bn sin

nπt

T

]

,
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g(t) =
α0

2
+

∞
∑

n=1

[

αn cos
nπt

T
+ βn sin

nπt

T

]

.

Then

∫

T

−T

f(t)g(t) dt =

∫

T

−T

[

a0

2
+

∞
∑

n=1

{

an cos
nπt

T
+ bn sin

nπt

T

}]

g(t) dt

=
a0

2

∫

T

−T

g(t)dt +

∞
∑

n=1

{

an

[
∫

T

−T

cos
nπt

T
g(t) dt

]

+ bn

[
∫

T

−T

sin
nπt

T
g(t) dt

]}

= T

[

α0α0

2
+

∞
∑

n=1

[anαn + bnβn]

]

or

1

2T

∫

T

−T

f(t)g(t) dt =
a0α0

4
+

1

2

∞
∑

n=1

{anαn + bnβn}

and

1

2T

∫

T

−T

f2(t) dt =
a2

0

4
+

1

2

∞
∑

n=1

{a2

n
+ b2

n
}.

As stated above, this series represents f only in the interval −T < t < T

(unless f is periodic). In an attempt to obtain a representation for f which is valid

for all t even if f is not periodic, we let T → ∞ (as follows). Recall first of all that

while
∫

b

0
g(w)dw—for some function g—is evaluated by means of antiderivatives,

the definition of
∫

b

0
g(w)dw (and thus its physical significance) is given by: divide

the interval 0 < w < b into N steps of equal size ∆w, so that ∆w = b/N , and put

wn = nb/N = n∆w for n = 1, 2, . . . , N .

b∆w
0
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From the sum
∑

N

i=1
g(wn)∆w and recall

∫

b

0

g(w) dw = lim
N→∞

( N
∑

n=1

g(wn)∆w

)

= lim
∆w→0

( N
∑

n=1

g(n∆w)∆w

)

.

Finally,

∫

b

−b

g(w) dw =

∫

0

−b

g(w) dw +

∫

b

0

g(w) dw = lim
∆w→0

(

N
∑

−N

g(n∆w)∆w

)

.

Set π/T = ∆w, and note that from the above series we obtain

f(t) =

∞
∑

−∞

1

2T

∫

T

−T

f(x)e
jnπ

T
(t−x) dx =

∞
∑

−∞

∆w

2π

∫

T

−T

f(x)ejn∆w(t−x) dx

=

∞
∑

−∞

[
∫

T

−T

f(x)ejn∆w(x−t) dx

]

∆w

2π
.

Note that limT→∞(∆w) = 0. If we put

g(w) =
1

2π

∫

T

−T

f(x)ejw(x−t) dx,

then

f(t) =

∞
∑

−∞

g(n∆w)∆w

and the last expression we have obtained is, by definition, “close” to

∫ ∞

−∞

1

2π

[
∫ ∞

−∞

f(x)ejw(t−x) dx

]

dw

for T sufficiently large. (Here we have replaced n∆w by w and T by ∞.) We thus

are lead to the representation

f(t) =

∫ ∞

−∞

1

2π

[
∫ ∞

−∞

f(x)ejw(t−x) dx

]

dw
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valid for all t. That is, we write:

f(t) =
1

√
2π

∫ ∞

−∞

g(w)ejwt dw

where

g(w) =
1

√

2π

∫ ∞

−∞

e−jwxf(x) dx.

This is indeed a valid representation for the f(t) usually found in practice. The

function g is called the Fourier transform of f .

Remarks. (1) We have split 2π as the product of
√

2π ·
√

2π. This is not always

done so that sometimes g(w) =
∫ ∞

−∞
e−jwxf(x) dx, and then f(t) = 1

2π

∫ ∞

−∞
g(w)ejwt dt.

(2) One of the important feature of a transform is that a derivative becomes

a product!

(3) Remember that for Laplace transforms, we need f(t) = 0 if t < 0. This is

not the case for Fourier transforms.

We now pass to examples.

Example 1. Find the complex Fourier series for f if f(t) = et for −π < t < π.

Answer.

cn =
1

2π

∫

π

−π

f(t)e−jnt dt =
1

2π

∫

π

−π

ete−jnt dt =
1

2π

∫

π

−π

e(1−jn)t dt

=
e(1−jn)t

2π(1 − jn)

∣

∣

∣

∣

π

−π

=
eπe−jnπ

2π(1 − jn)
−

e−πejnπ

2π(1 − jn)
.

But

e±jnπ = cos(±nπ) + j sin(±nπ) = cos(±nπ) = (−1)n.
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Therefore,

cn =
(eπ

− e−π)(−1)n

2π(1 − jn)

and

f(t) =

∞
∑

−∞

(

eπ
− e−π

2π

)

(−1)n

(1 − nj)
ejnt.

Example 2. Find the Fourier transform for f if

f(t) =

{

1, for 0 < t < 1

0, elsewhere.

Answer.

g(w) =
1

√

2π

∫ ∞

−∞

e−jwtf(t) dt =
1

√

2π

∫

1

0

e−jwt

· 1 dt

=
1

√

2π

e−jwt

−jw

∣

∣

∣

∣

1

0

=
1

j
√

2π w

[

1 − e−jw

]

,

if w 6= 0. If w = 0,

g(0) =
1

√
2π

∫

1

0

1 dt =
1

√
2π

.

Example 3. Let f(t) = t, g(t) = |t| on −π < t < π. Use the Fourier series to

calculate 1

2π

∫

π

−π
f(t)g(t)dt.

Answer.

1

2π

∫

π

−π

f(t)g(t) dt =
a0

2
·
α0

2
+

1

2

∞
∑

n=1

{anαn + bnβn}

where

f =
a0

2
+

∞
∑

n=1

{an cos nx + bn sin nx}
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g =
α0

2
+

∞
∑

n=1

{αn cos nx + βn sin nx}.

So we only need to calculate the Fourier series. Now t is odd, so an = 0,

bn =
2

π

∫

π

0

t sin nt dt =
2

π

[

−t cos nt

n

∣

∣

∣

∣

π

0

+
1

n

∫

π

0

cos nt dt

]

=
2(−π)(−1)n

πn
=

2

n
(−1)n+1,

i.e.,

t =
∞
∑

n=1

2

n
(−1)n+1 sin nt.

While |t| is even and we have bn = 0,

an =
2

π

∫

π

0

|t| cosnt dt =
2

π

∫

π

0

t cosnt dt

=
2

π

[

t sinnt

n

∣

∣

∣

∣

π

0

−

∫

π

0

sin nt

n
dt

]

=
2

π

cos nt

n2

∣

∣

∣

∣

π

0

=
2

πn2
[(−1)n

− 1] =
2

πn2
·

{

0, n even

−2, n odd,

a0 =
2

π

∫

π

0

|t| dt =
2

π

∫

π

0

t dt =
2

π
·
π2

2
= π.

So

|t| =
π

2
+

∞
∑

n=1

2

πn2
[(−1)n

− 1] cosnt

and thus

1

2π

∫

π

−π

f(t)g(t) dt =
1

4
0

︸︷︷︸

a0

·
π

2
︸︷︷︸

α0

+
1

2

∞
∑

n=1

(

0
︸︷︷︸

an

·
2

πn2
[(−1)n

− 1]
︸ ︷︷ ︸

αn

+
2

n
(−1)n+1

︸ ︷︷ ︸

bn

· 0
︸︷︷︸

βn

)

= 0.

But we know this is obvious: t is odd, |t| is even, so t| t | is odd and
∫

π

−π
t |t| dt = 0.
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IV.e Differentiation and Integration of Fourier Series

Suppose

f(t) =
a0

2
+

∞
∑

n=1

{

an cos
nπt

T
+ bn sin

nπt

T

}

with a0, an, bn as given earlier, for −T < t < T , where f is a periodic function of

period 2T . For functions encountered in practice, we can integrate this expression

term by term,

∫

t1

t0

f(t) dt =
a0

2
(t1 − t0) +

∞
∑

n=1

{

an sin nπt

T

nπ

T

− bn

cos nπt

T

nπ

T

}
∣

∣

∣

∣

t1

t=t0

.

The situation, as far as differentiation is concerned, is somewhat more complicated.

We can always differentiate the series term by term, but remember that we can write

Fourier series even for functions with jumps (i.e., which do not have a derivative

everywhere). So term by term differentiation gives f ′(t) only if (1) f(t) is continuous

(i.e., no jumps anywhere, even at t = ±T !) and (2) f ′(t) also has a Fourier series.

Condition (2) is no problem in practice, but condition (1) can be, even away from

the jumps (if any)! To see this, consider a standard example:

Example 1. f(t) = t for −π < t < π, f(t) is periodic with period 2π. The

graph of f(t) is as shown, so that f(t) is not continuous: there are jumps at t =

±π,±3π,±5π, . . . .

t
−π 0 π 2π 3π

f (t)
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Now the Fourier series for f is

f(t) = 2

∞
∑

n=1

(−1)n+1
sin nt

n
.

In particular for any t between −π and π we have

t = 2

∞
∑

n=1

(−1)n+1
sin nt

n
.

If we differentiate term by term and this was indeed the derivative of t, then we

would obtain

1 = 2

∞
∑

n=1

(−1)n+1 cos nt

by differentiating both sides. This would be true in particular at t = 0, but cos 0 = 1

so

1 = 2

∞
∑

n=1

(−1)n+1 !

But this is impossible, since

2

( ∞
∑

n=1

(−1)n+1

)

= 2(1 − 1 + 1 − 1 + 1 − · · · )

oscillates and does not converge to 1 or anything else! Observe that here f ′(t) = 1

for −π < t < π, but f ′ does not exist at ±π. Condition (1) is thus important and

if (1) and (2) are satisfied, then

f ′(t) =
∞
∑

n=1

{

an

nπ

T

(

− sin
nπt

T

)

+ bn

nπ

T
cos

nπt

T

}

.

Example 2. Let f be as in Example 1. Find
∫

t

α
f(s) ds, for −π < α < t < π.
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Answer.

f(t) = t = 2

∞
∑

n=1

(−1)n+1
sin nt

n
.

So

∫

t

α

f(s) ds =

∞
∑

n=1

∫

t

α

2(−1)n+1
sin ns

n
ds

=

∞
∑

n=1

2(−1)n+1

[

−
cos ns

n2

]

t

α

=
∞
∑

n=1

2(−1)n+1

n2
[cos nα − cos nt] .

On the other hand,

∫

t

α

f(s) ds =

∫

t

α

s ds =
t2 − α2

2
.

So we conclude

t2 − α2

2
=

∞
∑

n=1

2(−1)n+1

n2
[cos nα − cos nt].

We can rewrite this expression as:

t2

2
=

α2

2
+

∞
∑

n=1

2(−1)n+1

n2
cos nα −

∞
∑

n=1

2(−1)n+1

n2
cos nt

or

t2

2
= C −

∞
∑

n=1

2(−1)n+1

n2
cos nt

where

C =
α2

2
+

∞
∑

n=1

2(−1)n+1

n2
cos nα.

We can look at the right hand side as the Fourier series of t2/2 over −π < t < π. So

if we wish we can find C as the “a0/2” of the expansion for the function g(t) = t2/2,
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i.e.,

C =
1

2π

∫

π

−π

t2

2
dt.

Example 3. Find the Fourier series for the derivative of the rectified cosine func-

tion:

f(t) = cos t, for −
π

2
< t <

π

2
; f(t) = f(t + π),

by differentiating term by term.

Answer. Observe that f(t) has no jumps.

2
π

2
π

2
- π3

We may therefore obtain the Fourier series for f(t) and differentiate term by term

to get the series for f ′(t). Now f(t) is even, so bn = 0 and

an =
1
π

2

∫ π

2

−
π

2

cos t cos 2nt dt

=
2

π

∫ π

2

−π2

[

ejt + e−jt

2

][

ej2nt + e−j2nt

2

]

dt

=
1

2π

∫ π

2

−
π

2

[

ej(2n+1)t + e−j(2n−1)t + ej(2n−1)t + e−j(2n+1)t

]

dt

=
1

π

∫ π

2

−
π

2

[cos(2n + 1)t + cos(2n − 1)t] dt

=
1

π

[

sin(2n + 1)t

2n + 1
+

sin(2n − 1)t

2n − 1

]
π

2

−
π

2
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=
2

π

[

sin(2n + 1)π

2

2n + 1
+

sin(2n − 1)π

2

2n − 1

]

.

Observe that

n 1 2 3 4 5

sin(2n + 1)π

2
−1 1 −1 1 · · ·

sin(2n − 1)π

2
1 −1 1 −1 · · ·

So

an =
2

π

[

1

2n + 1
−

1

2n − 1

]

(−1)n =
2(−1)n

π

(−2)

(4n2 − 1)
.

I.e.,

an =
4(−1)n+1

π(4n2 − 1)
.

Also

a0 =
2

π

∫ π

2

−
π

2

cos t dt =
2

π
sin t

∣

∣

∣

∣

π

2

−
π

2

=
4

π

and

f =
2

π
+

∞
∑

n=1

4(−1)n+1

π(4n2 − 1)
cos 2nt.

Thus

f ′(t) =

∞
∑

n=1

4(−1)n2n

π(4n2 − 1)
sin 2nt.

To practice, we can check this. After all, f ′ = − sin t for −π/2 < t < π/2, so is

sin t = −

∞
∑

n=1

8(−1)nn

π(4n2 − 1)
sin 2nt ?
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Now sin t is odd, and so an = 0, but

bn =
2

π

∫ π

2

−
π

2

sin t sin 2nt dt

=
2

π

∫ π

2

−
π

2

[

ejt
− e−jt

2j

] [

e2njt
− e−2njt

2j

]

dt

=
2

π

∫ π

2

−
π

2

e(2nt+t)j
− e−(2nt−t)j

− e(2nt−t)j + e−j(2nt+t)

4j2
dt

= −
1

2π

∫ π

2

−
π

2

[2 cos(2nt + t) − 2 cos(2nt − t)]dt

= −
1

π

∫ π

2

−
π

2

[cos(2n + 1)t − cos(2n − 1)t]dt

= −
1

π

[

sin(2n + 1)t

2n + 1
−

sin(2n − 1)t

2n − 1

]
π

2

−
π

2

.

We calculated sin(2n + 1)t and sin(2n − 1)t before. So

bn = −
2

π

[

1

2n + 1
+

1

2n − 1

]

(−1)n =
(−1)n+1

4π
· 2 · 4 ·

4n

(4n2 − 1)
=

8n(−1)n+1

π(4n2 − 1)
.

That is,

sin t =
∞
∑

n=1

(−1)n+18n

π(4n2 − 1)
sin 2nt

as expected.
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IV.f Orthogonal Systems and Generalized Fourier Series

So far we have obtained representations for −T < t < T for “arbitrary” func-

tions f(t) in terms of the trigonometric functions sin nπt

T
and cos nπt

T
, n = 1, 2, . . . .

It is often convenient to represent f in terms of other functions, particularly for

distributed parameter problems, and we now indicate how this can be done. We

begin with some theoretical considerations. Let gm(t), gn(t) be two functions on

the interval a < t < b. We define:

(gm, gn) =

∫

b

a

gm(t)gn(t) dt.

Example 1. Let gm(t) = t, gn(t) = t2, a = 0, b = 1. Then

(gm, gn) =

∫

b

a

gm gn dt =

∫

1

0

(t)(t2) dt =
1

4
.

Example 2. Let gm(t) = sin t, gn(t) = cos t, a = −π, b = π. Then

(gm, gn) =

∫

π

−π

sin t cos t dt =
sin2 t

2

∣

∣

∣

∣

π

−π

= 0.

The properties of the operation ( , ) which we have introduced are analogous

to those of the inner (or dot) product of 3-dimensional vectors. You may recall

that two vectors are perpendicular (or orthogonal) iff their dot product is zero.

Analogously we say that a collection of functions g1, g2, g3, . . . is orthogonal in the

interval a < t < b iff (gm, gn) = 0 for any two different functions gm, gn. This is

simply terminology by analogy. It does not mean that functions are “arrows,” just

like vectors!

Example 3. g1 = sin t, g2 = cos t, g3 = 1, form an orthogonal set on −π < t < π
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since

(g1, g2) = 0 (as shown above),

(g1, g3) =

∫

π

−π

(sin t)(1) dt = − cos t

∣

∣

∣

π

−π

= 0,

(g2, g3) =

∫

π

−π

(cos t)(1) dt = sin t

∣

∣

∣

π

−π

= 0.

Example 4. Let g1, g2, g3 be as before. These do not form an orthogonal set in

the interval 0 < t < π/2 since

(g1, g3) =

∫ π

2

0

sin t dt 6= 0.

These two examples indicate that a set of functions may be orthogonal in one

interval and not in another.

Given a 3-d vector a it is known that the length (or magnitude or norm) of a

is given by
√

a · a. Analogously we define the norm or magnitude of the function

gn by its RMS value (except we neglect the length of the interval):

‖gn‖ =
√

(gn, gn) =

√

∫

b

a

g2
n
(t) dt .

Example 5. Let g1 = 1, g2 = t, g3 = t2, a = 0, b = 1. Then

‖g1‖ =

√

∫

1

0

12 dt = 1,

‖g2‖ =

√

∫

1

0

t2 dt =

√

1

3
,

‖g3‖ =

√

∫

1

0

(t2)2 dt =

√

1

5
.

Given a set of functions g1, g2, g3, . . . , we say that it is orthonormal iff (1) the
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functions are orthogonal (i.e., (gn, gm) = 0 for n 6= m), and (2) the norm of each

function is 1 (i.e., (gn, gn) = 1).

Example 6. Consider the functions g1 = 1, g2 = sin t, g3 = cos t in the interval

−π < t < π. As noted above, this is an orthogonal set, since (gn, gm) = 0, (n 6= m).

It is not an orthonormal set since

‖g1‖ =
√

(g1, g1) =

√

∫

π

−π

1 dt =
√

2π 6= 1,

‖g2‖ =
√

(g2, g2) =

√

∫

π

−π

sin2 t dt =
√

π 6= 1,

‖g3‖ =
√

(g3, g3) =

√

∫

π

−π

cos2 t dt =
√

π 6= 1.

However, we can obtain an orthonormal set from g1, g2, g3 by dividing each function

by its norm, just like we got unit vectors from vectors. In fact let

h1 =
g1

‖g1‖
=

1
√

2π
,

h2 =
g2

‖g2‖
=

sin t
√

π
,

h3 =
g3

‖g3‖
=

cos t
√

π
.

Then (hi, hj) = 0 (check this!) and

‖h1‖ =
√

(h1, h1) =

√

∫

π

−π

1

2π
dt = 1,

‖h2‖ =
√

(h2, h2) =

√

∫

π

−π

sin2 t

π
dt = 1,

‖h3‖ =
√

(h3, h3) =

√

∫

π

−π

cos2 t

π
dt = 1.
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Given an orthogonal set g1, g2, . . . , we may attempt to represent a function f(t) in

terms of linear combinations of g1, g2, . . . . That is, we attempt to write

f(t) =
∞
∑

n=1

cngn(t)

with the constants c1, c2, . . . suitably chosen. To see how the cn should be chosen,

proceed as follows: Multiply by gm on both sides and integrate:

(f, gm) =

∫

b

a

fgm dt =

∫

b

a

∑

cngngm dt =
∑

cn

∫

b

a

gngm dt =
∑

cn(gn, gm),

but

(gn, gm) =

{

0, n 6= m,

‖gm‖
2, n = m

.

Thus,

(f, gm) = cm‖gm‖
2 and cm =

(f, gm)

‖gm‖2
.

This tells us how the ci must be chosen.

There is another difficulty. Since we started with any orthogonal system

g1, g2, . . . , there may not be enough functions in the system to represent f (even

though the cn are chosen by the above rule). For example consider the system

made up of only the three functions g1 = 1, g2 = cos t, g3 = sin t which we know

is orthogonal for −π < t < π. Even if we choose c1, c2, c3 by the above rule,

we cannot represent the function f(t) = t in terms of c1g1 + c2g2 + c3g3, since

t 6= c1 + c2 cos t + c3 sin t for all t in −π < t < π. To see this just choose several

values of t and note that no constants c1, c2, c3 can work for all the t’s. Other

functions g4, g5, . . . must be included in the system. Hence if we are given an

orthogonal system we must somehow ensure that there are “enough” functions in it

so that we can represent all the functions in which we are interested. Such systems
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are called complete.

We know one such system. It is: 1, sin nt, cos nt for n = 1, 2, . . . and

−π < t < π. It is this system which was used to construct the Fourier series

above and the coefficients were given precisely by the above formula for the cm

(although written differently).

Given a complete orthogonal system g1, gm, . . . we can write the representa-

tion

f =

∞
∑

m=1

cmgm with cm =
(f, gm)

‖gm‖2
.

This is called the generalized Fourier series for f . The problem of deciding when we

have a complete system of orthogonal functions is beyond the scope of the course.

In practice most of them arise as the collection of all eigenfunctions of a boundary

value problem.

We also encounter systems of functions g1, g2, . . . which are not orthogonal,

but such that there is a fixed positive function p(t) such that

∫

b

a

p(t)gm(t)gn(t) dt = 0, m 6= n.

We then say that the system g1, g2, . . . is orthogonal with respect to the weight

function p(t).

Given a system g1, g2, . . . , which is orthogonal with respect to p(t) and is also

complete, we attempt the representation

f(t) =

∞
∑

n=1

cngn(t).

To see how the cn should now be chosen we proceed as follows: Multiply both sides
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by pgm and integrate

∫

b

a

p(t)f(t)gm(t) dt =

∞
∑

n=1

cn

(
∫

b

a

p(t)gn(t)gm(t) dt

)

but
∫

b

a
p(t)gn(t)gm(t) dt = 0 for n 6= m, and therefore

∫

b

a

p(t)f(t)gm(t) dt = cm

∫

b

a

p(t)g2

m
(t) dt

and

cm =

∫

b

a
p(t)f(t)gm(t) dt

∫

b

a
p(t)g2

m
(t) dt

.
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IV.g An Application: Resonance Effects and Harmonics (Optional)

We conclude with an application of how some of the Fourier series results can be

used. Specifically we investigate the effects of harmonics when a circuit is driven

by non-sinusoidal wave forms. To be specific consider the simple series LRC circuit

shown:

C
v(t)

i(t) L R

with small resistance R and for which we can disregard transients.

We assume the circuit is driven by a square wave:

v(t) = V ·

{

1, 0 < t < T

−1, −T < t < 0

extended by periodicity so that v(t) is as shown

t
-T-2T T 2T 3T

V

-V

v(t)

Our purpose is to study i(t) as T varies. We could attempt to do this by Laplace

transform methods but this does not seem a good way for our purposes. Observe

first that we can expand v(t) as a Fourier sine series, since v is odd. Specifically:

an = 0, and

bn =
2

T

∫

T

0

sin
nπt

T
dt =

2

nπ

[

− cos
nπt

T

]

T

t=0

224



=
2

nπ
[1 − (−1)n] =

{ 4

nπ
, n odd

0, n even
.

So

v(t) = V

∞
∑

n=1

4

(2n − 1)π
sin

(2n − 1)πt

T
,

and we can view v(t) as a sum of series. We are thus led to calculating the response

of the circuit to a sine input, say v1(t) = V sin ωt. To practice, let us do this by

differential equations. We have

L
di

dt
+ Ri +

1

C

∫

t

0

i(r) dr = V sin ωt.

Differentiating gives

L
d2i

dt2
+ R

di

dt
+

1

C
i = ωV cos ωt.

Since we disregard transients, we attempt a solution i(t) = A sinωt+B cos ωt, with

A, B to be found. Substitution into the equation gives

(

1

C
− ω2L

)

[A sinωt + B cos ωt] + Rω[A cosωt − B sin ωt] = ωV cos ωt

or (equating sin ωt, cos ωt coefficients on both sides)

A

[

1

C
− Lω2

]

− RωB = 0

RωA + B

[

1

C
− Lω2

]

= ωV.

That is,

B(ω) =
ωV [ 1

C
− Lω2]

[ 1

C
− Lω2]2 + R2ω2

A(ω) =
Rω2V

[ 1

C
− Lω2]2 + R2ω2
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where we have written A(ω), B(ω) to indicate that A, B depend on ω. We recall and

these formulas indicate, that the resonance frequency is given by ω = 1/
√

LC when

the circuit is driven by sin ωt! We return to our case. Observe that the frequency

of the driving square wave voltage is ω0 = π/T , so

v(t) =

∞
∑

n=1

4

(2n − 1)π
sin[(2n − 1)ω0t],

i.e., v(t) is the (infinite) sum of sines and thus

i(t) =
∞
∑

n=1

4

(2n − 1)π
{A((2n − 1)ω0) sin[(2n − 1)ω0t]

+ B((2n − 1)ω0) cos[(2n − 1)ω0t]}.

We can calculate the RMS value of i in terms of the coefficients:

1

2T

∫

T

−T

i2(t) dt =
∞
∑

n=1

42

(2n − 1)2π2
{A2((2n − 1)ω0) + B2((2n − 1)ω0)}

=

∞
∑

n=1

42

(2n − 1)2π2

[(2n − 1)ω0V ]2

[ 1

C
− L(2n − 1)2ω2

0
] + R2ω2

0
(2n − 1)2

=
∞
∑

n=1

16

π2
·

ω2

0
V 2

[ 1

C
− L(2n − 1)2ω2

0
] + R2ω2

0
(2n − 1)2

.

Recall that ω0 = π/T . Suppose that for some small n0, we have (2n0 − 1)ω0 =

1/
√

LC. That is, one of the harmonics of ω0 (but not ω0 itself) is the resonant

frequency. Then since every term in the sum is positive, we have

1

2T

∫

T

−T

i2(t) dt ≥
16

π2
·

ω2

0
V 2

R2ω2

0
(2n0 − 1)2

=
16V 2

π2R2(2n0 − 1)2
.

If R is small, the RMS value of i(t) is very large even though the frequency ω0 of the

driving voltage is a fraction of the resonant frequency one would expect, specifically,

ω0 = 1
√

LC

·
1

(2n0−1)
. The key is that the square wave is a sum of sines, and while
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ω0 is not 1/
√

LC, one of the sines composing v(t) is indeed of this frequency. It is

this component that causes the resonance.

The same phenomenon is observed when a circuit is driven by other non-

sinusoidal inputs: triangular, saw tooth, etc.

227


	309sec1a
	309sec1b
	309sec1c
	309sec1d
	309sec1e
	309sec2a
	309sec2b
	309sec2c
	309sec2d
	309sec2e
	309sec3a
	309sec3b
	309sec3c
	309sec3d
	309sec3e
	309sec3f
	309sec3g
	309sec3h
	309sec4a
	309sec4b
	309sec4c
	309sec4d
	309sec4e
	309sec4f
	309sec4g

