MATH 309 NOTES

SPRING - SUMMER 2018

by

Walter Allegretto

Rendered in electronic form by Elizabeth K. Leonard

TABLE OF CONTENTS

I. Introduction 4
I.a Fundamental Properties of Complex Numbers 4
I.b Polar Form, Magnitude, Argument, Euler's Formula 7
I.c Exponential, Logarithm, Trigonometric Functions, Hyperbolic Functions, Roots and Powers 13
I.d An Application: Electrical Circuits 29
I.e Graphs, Linear and Bilinear Maps 35
II. Limits and Derivatives 60
II.a Limits 60
II.b Derivatives 63
II.c Cauchy-Riemann Equations and Consequences 64
II.d Harmonic Functions, Harmonic Conjugates, Singular Points 74
II.e Angular Properties: Conformal Maps, Orthogonal Families 77
III. Integrals 89
III.a Introduction 89
III.b Path Integrals in the Complex Plane 92
III.c Cauchy's Theorem, Cauchy's Integral Formula and Consequences. 98
III.d Taylor Series and Laurent Series 111
III.d. 1 Power Series 112
III.d. 2 Taylor and Laurent Series (Mathematics) 115
III.d. 3 Taylor and Laurent Series (Engineering) 121
III.e Calculations of the Laurent Series; Poles and Residues 123
III.f Summary and the Residue Theorem 137
III.g An Application: Evaluation of Improper Real Integrals 149
III.h Inverting the Laplace Transform and Applications 155
IV. Fourier Series 175
IV.a Basic Ideas 176
IV.b Even and Odd Functions 185
IV.c Extension of the Interval 192
IV.d Complex Fourier Series and Fourier Transform 204
IV.e Differentiation and Integration of Fourier Series 212
IV.f Orthogonal Systems and Generalized Fourier Series 218
IV.g An Application: Resonance Effects and Harmonics 224

I. Introduction

I.a Fundamental Properties of Complex Numbers

It was found convenient, for a variety of theoretical and practical questions, to introduce a new "number" j (often also denoted in some books by i) such that $j^{2}=-1$. This gives rise to "complex numbers" $z=a+j b$ with a, b real (i.e., ordinary) numbers.

Given a real number $z=a+j b$, we term a the Real Part of z (denoted by $a=\operatorname{Re}(z))$ and b the Imaginary Part of $z($ denoted by $b=\operatorname{Im}(z)) . \operatorname{If} \operatorname{Im}(z)=0$, we say z is a real number. If $\operatorname{Re}(z)=0, z$ is termed (purely) imaginary.

The next question is how elementary arithmetical operations (equality, addition, subtraction, division) should be defined for complex numbers. For the first three operations, we are governed by the same rules as for $2-\mathrm{d}$ vectors. Specifically: Let $z_{1}=a_{1}+j b_{1}$ and $z_{2}=a_{2}+j b_{2}$. Then
(1) $z_{1}=z_{2}$ if and only if $a_{1}=a_{2}$ and $b_{1}=b_{2}$,
(2) $z_{1}+z_{2}=\left(a_{1}+a_{2}\right)+j\left(b_{1}+b_{2}\right)$,
(3) $z_{1}-z_{2}=\left(a_{1}-a_{2}\right)+j\left(b_{1}-b_{2}\right)$.

The operations of multiplication and division have no clear counterpart in vector operations. We multiply using distribution, i.e.,
(4) $z_{1} \cdot z_{2}=\left(a_{1}+j b_{1}\right)\left(a_{2}+j b_{2}\right)=a_{1} a_{2}+j a_{1} b_{2}+j b_{1} a_{2}+j^{2} b_{1} b_{2}$ $=\left(a_{1} a_{2}-b_{1} b_{2}\right)+j\left(a_{1} b_{2}+b_{1} a_{2}\right)$
where $j^{2}=-1$ was used. We define division by noting that we can divide by real numbers, so division is turned into a multiplication of complex numbers followed by division by a real number. To best see this, it's useful to introduce \bar{z} (also denoted in some books by z^{*}), which is the complex conjugate of z : If $z=a+j b$, then $\bar{z}=a-j b$. We observe some key properties that connect z and \bar{z} :
(a) $\overline{\bar{z}}=z$,
(b) $z \bar{z}=(a+j b)(a-j b)=a^{2}-j a b+j a b-j^{2} b^{2}=a^{2}+b^{2}$,
(so $z \bar{z}$ is real. This is a key property!)
(c) $\overline{z_{1} \pm z_{2}}=\bar{z}_{1} \pm \bar{z}_{2}$,
(d) $\overline{z_{1} z_{2}}=\bar{z}_{1} \cdot \bar{z}_{2}$.

So, using \bar{z} we can divide:
(5) $\frac{z_{1}}{z_{2}}=\frac{z_{1} \cdot \bar{z}_{2}}{z_{2} \cdot \bar{z}_{2}}=\frac{\left(a_{1}+j b_{1}\right)\left(a_{2}-j b_{2}\right)}{a_{2}^{2}+b_{2}^{2}}=\frac{\left(a_{1} a_{2}+b_{1} b_{2}\right)}{a_{2}^{2}+b_{2}^{2}}+j \frac{\left(b_{1} a_{2}-b_{2} a_{1}\right)}{a_{2}^{2}+b_{2}^{2}}$.

We consider some examples:
(a) $(1+j)+(2-3 j)=(1+2)+(1-3) j=3-2 j$.
(b) $(17+j)(1+2 j)=17+34 j+j-2=15+35 j$.
(c) $\overline{(1-j)}=1+j$.
(d) $\frac{1+2 j}{1-j}=\frac{(1+2 j)(1+j)}{(1-j)(1+j)}=\frac{(1-2)+j(2+1)}{1^{2}+1^{2}}=\left(-\frac{1}{2}\right)+j\left(\frac{3}{2}\right)$.

We remark that $\overline{\left(\frac{z_{1}}{z_{2}}\right)}=\frac{\bar{z}_{1}}{\bar{z}_{2}}$ and if z is real, then $\bar{z}=z$ and the above operations are just the usual ones (for real numbers). Note that division by 0 is still forbidden.

We can now add, subtract, multiply and divide and our next task is to visualize what these operations mean. To do this we introduce the complex plane. A plane is clearly needed to plot z (and the operations on z) since z has two parts (a and $b)$ which are not related to each other. So: given a $z=a+j b$ we associate with it the point (a, b) of the (complex) plane.

Note that the x-axis is the "real (number) axis" and the y-axis is the "imaginary (number) axis."

Addition and subtraction, being identical to the same operations for vectors, can then be visualized via the parallelogram law with which we are already familiar.

The next question is: how do we visualize multiplication, division and taking the complex conjugate. To do this we use another form of expressing complex numbers: polar form.

I.b Polar Form, Magnitude, Argument, Euler's Formula

Consider once again $z=a+j b$. Motivated by vectors, we set

$$
|z|=\text { magnitude of } z=\sqrt{a^{2}+b^{2}} .
$$

The magnitude of z (a real number) has the same properties as the magnitude of a vector (notice in particular $\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|$, and $\left|z_{1}-z_{2}\right|=$ distance from z_{1} to z_{2}), but it also has a very special connection with multiplication and division as we shall see below. So if $z=a+j b$, then we can write z in polar form by dividing and multiplying by $|z|$, i.e.,

$$
z=a+j b=|z|\left(\frac{a}{|z|}+j \frac{b}{|z|}\right)=|z|(\cos \theta+j \sin \theta)
$$

where θ is shown in the diagram.
We remark right away that θ may be replaced by $\theta \pm 2 k \pi, k=0,1,2, \ldots$. That is,

$$
z=|z|(\cos (\theta \pm 2 k \pi)+j \sin (\theta \pm 2 k \pi))
$$

This is due to the periodicity of \sin and cos. So there are ∞ many angles for z. We choose the one between $-\pi$ and π and call it the Principal Argument of z, denoted by $\operatorname{Arg}(z)$. Specifically, $\operatorname{Arg}(z)$ is the θ with $-\pi<\theta \leq \pi$. We denote the collection of all possible θ by $\arg (z)$. Thus we have:

$$
\arg (z)=\operatorname{Arg}(z) \pm 2 k \pi, \quad k=0,1, \ldots
$$

Note that $\operatorname{Arg}(0)$ and $\arg (0)$ are not defined. Some examples:

Example 1. Let $z=1+j$. Write z in polar form, find $|z|, \operatorname{Arg}(z), \arg (z)$.

Answer. $|z|=\sqrt{1^{2}+1^{2}}=\sqrt{2}$,

so

$$
\begin{aligned}
z & =\sqrt{2}\left(\frac{1}{\sqrt{2}}+j \frac{1}{\sqrt{2}}\right)=\sqrt{2}\left(\cos \frac{\pi}{4}+j \sin \frac{\pi}{4}\right) \\
& =\sqrt{2}\left(\cos \left(\frac{\pi}{4} \pm 2 k \pi\right)+j \sin \left(\frac{\pi}{4} \pm 2 k \pi\right)\right), \quad k=0,1,2, \ldots
\end{aligned}
$$

So $|z|=\sqrt{2}, \operatorname{Arg}(z)=\pi / 4, \arg (z)=\pi / 4 \pm 2 k \pi, k=0,1,2, \ldots$.

We now return to the visualization of $z_{1} z_{2}$. Suppose $z_{1}=a_{1}+j b_{1}$, $z_{2}=a_{2}+j b_{2}$. To visualize $z_{1} z_{2}$ we write z_{1}, z_{2} in polar form:

$$
z_{1}=\left|z_{1}\right|\left(\cos \theta_{1}+j \sin \theta_{1}\right), \quad z_{2}=\left|z_{2}\right|\left(\cos \theta_{2}+j \sin \theta_{2}\right)
$$

and so

$$
z_{1} z_{2}=\left|z_{1}\right|\left|z_{2}\right|\left(\left[\cos \theta_{1} \cos \theta_{2}-\sin \theta_{1} \sin \theta_{2}\right]+j\left[\sin \theta_{1} \cos \theta_{2}+\sin \theta_{2} \cos \theta_{1}\right]\right)
$$

Recalling the trigonometric identities (which we shall not need in the future - see below) gives

$$
z_{1} z_{2}=\left|z_{1}\right|\left|z_{2}\right|\left[\cos \left(\theta_{1}+\theta_{2}\right)+j \sin \left(\theta_{1}+\theta_{2}\right)\right] .
$$

So the product $z_{1} z_{2}$ is the number obtained by

1. multiplying the magnitudes,
2. adding the arguments.

We could do the visualization of division z_{1} / z_{2} in the same way. It looks like we shall need lots of trigonometric identities, but one key formula eliminates this need and is very useful for many other results. This is Euler's Formula. Let θ be a real number. Then

$$
e^{j \theta}=\cos \theta+j \sin \theta \text {. }
$$

This formula is shown precisely in Math courses, but from an Engineering point of view it can be justified from the Taylor expansion of both sides:

$$
\begin{aligned}
e^{j \theta} & =\sum_{n=0}^{\infty} \frac{(j \theta)^{n}}{n!}=1+j \theta+\frac{j^{2} \theta^{2}}{2!}+\frac{j^{3} \theta^{3}}{3!}+\cdots \\
\sin \theta & =\sum_{n=0}^{\infty} \frac{(-1)^{n} \theta^{2 n+1}}{(2 n+1)!}=\theta-\frac{\theta^{3}}{3!}+\frac{\theta^{5}}{5!}-\cdots \\
\cos \theta & =\sum_{n=0}^{\infty} \frac{(-1)^{n} \theta^{2 n}}{(2 n)!}=1-\frac{\theta^{2}}{2!}+\frac{\theta^{4}}{4!}-\cdots
\end{aligned}
$$

Using $j^{2}=-1$ gives the result. An Engineering indication that such a result must be true also comes from the differential equation for an LRC circuit. If we solve the equation by setting $i(t)=e^{\alpha t}$ (or $v(t)=e^{\alpha t}$), we find that for some values of L, 9
R, C the resulting α 's are complex. In such cases, direct experimental observations show that $i(t)$ (or $v(t))$ are oscillatory.

Since $\cos \theta, \sin \theta$ are periodic, this formula shows that the exponential of a complex number is very different from that of a real number. Note that if a, b are different real numbers, then $e^{a} \neq e^{b}$, but here $e^{j \theta}=e^{j(\theta \pm 2 k \pi)}$! Since we know $e^{j \theta}$ we can define $e^{z}=e^{x+j y}$ by letting y play the role θ, i.e.,

$$
e^{z}=e^{x+j y}=e^{x}[\cos y+j \sin y] .
$$

This exponential function preserves standard formulas of the "real" exponential: $e^{z_{1}+z_{2}}=e^{z_{1}} \cdot e^{z_{2}}, e^{z_{1}-z_{2}}=e^{z_{1}} / e^{z_{2}}$, and yet the function e^{z} is very different in some ways from e^{x} as we have noted. We shall consider e^{z} more later but now we consider some examples to familiarize ourselves with $e^{j \theta}$.

Example 1. Note that $\left|e^{j \theta}\right|=1$ for any $\theta, e^{2 \pi j}=1$.

Example 2. Plot $e^{j \pi / 4}, e^{-j \pi / 2}, e^{j 9 \pi / 4}, 7 e^{j \pi / 4}$.

Answer.

$$
\begin{aligned}
e^{j \frac{\pi}{4}} & =\cos \left(\frac{\pi}{4}\right)+j \sin \left(\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}+j \frac{\sqrt{2}}{2}, \\
e^{-j \frac{\pi}{2}} & =\cos \left(-\frac{\pi}{2}\right)+j \sin \left(-\frac{\pi}{2}\right)=-j, \\
e^{j \frac{9 \pi}{4}} & =\cos \frac{9 \pi}{4}+j \sin \frac{9 \pi}{4}=\frac{\sqrt{2}}{2}+j \frac{\sqrt{2}}{2},
\end{aligned}
$$

alternatively,

$$
\begin{gathered}
e^{j \frac{9 \pi}{4}}=e^{j\left(2 \pi+\frac{\pi}{4}\right)}=e^{2 \pi j} \cdot e^{\frac{\pi}{4} j}=1 \cdot e^{j \frac{\pi}{4}} \\
7 e^{j \frac{\pi}{4}}=7\left(\cos \frac{\pi}{4}+j \sin \frac{\pi}{4}\right)=7\left(\frac{\sqrt{2}}{2}+j \frac{\sqrt{2}}{2}\right) . \\
10
\end{gathered}
$$

Observe that now we can write:

$$
\begin{aligned}
& z_{1}=a_{1}+j b_{1}=\left|z_{1}\right|\left(\cos \theta_{1}+j \sin \theta_{1}\right)=\left|z_{1}\right| e^{j \theta_{1}} \\
& z_{2}=a_{2}+j b_{2}=\left|z_{2}\right|\left(\cos \theta_{2}+j \sin \theta_{2}\right)=\left|z_{2}\right| e^{j \theta_{2}}
\end{aligned}
$$

and so

$$
\begin{aligned}
z_{1} \cdot z_{2} & =\left|z_{1}\right|\left|z_{2}\right| e^{j \theta_{1}} e^{j \theta_{2}}=\left|z_{1}\right|\left|z_{2}\right| e^{j\left(\theta_{1}+\theta_{2}\right)} \\
& =\left|z_{1}\right|\left|z_{2}\right|\left(\cos \left(\theta_{1}+\theta_{2}\right)+j \sin \left(\theta_{1}+\theta_{2}\right)\right)
\end{aligned}
$$

exactly the same as before! In the same way

$$
\frac{z_{1}}{z_{2}}=\frac{\left|z_{1}\right| e^{j \theta_{1}}}{\left|z_{2}\right| e^{j \theta_{2}}}=\frac{\left|z_{1}\right|}{\left|z_{2}\right|} e^{j\left(\theta_{1}-\theta_{2}\right)}=\frac{\left|z_{1}\right|}{\left|z_{2}\right|}\left(\cos \left(\theta_{1}-\theta_{2}\right)+j \sin \left(\theta_{1}-\theta_{2}\right) .\right.
$$

So we divide the magnitudes and subtract the angles.

Remark. Note that $z_{1} / z_{2}, z_{1} \cdot z_{2}$ can also still be calculated as we did at the beginning, particularly if z_{1}, z_{2} are given in the form $a+j b$ rather than $r e^{j \theta}$. We can now appreciate what those operations mean, rather than just carrying them out.

We remark, finally, that we have found the following connection between magnitude and the operations of multiplication/division:
(a) $\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right|$,
(b) $\left|z_{1} / z_{2}\right|=\left|z_{1}\right| /\left|z_{2}\right|$.

Furthermore, since $\left|z_{1}-z_{2}\right|=$ distance from z_{1}, then $\left|z_{1}\right| \leq\left|z_{1}-z_{2}\right|+\left|z_{2}\right|$ as a consequence of the fact that the shortest distance from the origin to z_{1} is along a straight line.

For the same reason,

$$
\left|z_{2}\right| \leq\left|z_{1}-z_{2}\right|+\left|z_{1}\right|
$$

and so

$$
\begin{aligned}
& \left|z_{1}\right|-\left|z_{2}\right| \leq\left|z_{1}-z_{2}\right| \\
& \left|z_{2}\right|-\left|z_{1}\right| \leq\left|z_{1}-z_{2}\right| .
\end{aligned}
$$

Since one of $\left|z_{1}\right|-\left|z_{2}\right|,\left|z_{2}\right|-\left|z_{1}\right|$ must be $\left|\left|z_{1}\right|-\left|z_{2}\right|\right|$, we conclude

$$
\left|\left|z_{1}\right|-\left|z_{2}\right|\right| \leq\left|z_{1}-z_{2}\right|
$$

I.c Exponential, Logarithm, Trigonometric Functions, Hyperbolic Functions, Roots and Powers

We introduced the exponential in the last section: Let $z=x+j y$. Then

$$
e^{z}=e^{x+j y}=e^{x} \cdot e^{j y}=e^{x}(\cos y+j \sin y) .
$$

We also noted that

$$
\begin{aligned}
& e^{z_{1}+z_{2}}=e^{z_{1}} \cdot e^{z_{2}} \\
& e^{z_{1}-z_{2}}=\frac{e^{z_{1}}}{e^{z_{2}}}
\end{aligned}
$$

However, we emphasize that unlike the real case, different z 's may have the same e^{z}. For example: if we set $z_{k}=x+j(y \pm 2 k \pi)$ for $k=0,1, \ldots$, then

$$
e^{z_{k}}=e^{x} \cdot e^{j(y \pm 2 k \pi)}=e^{x+j y}=e^{z_{0}}
$$

i.e., $e^{z_{k}}$ is always the same for any k ! So if we know e^{z}, we can't find z exactly. Note that for a given z, there is exactly one e^{z}.

Motivated by the exponential function, we define $w=\log z$ to be all the w's such that $e^{w}=z$. So let $z=|z| e^{j \theta}$ (note that it's easier to work with the polar form of z than with $z=x+j y!)$. We seek all w such that

$$
e^{w}=|z| e^{j \theta}
$$

Put $w=u+j v$ (notice: we use this form for w, but the polar form for z), then

$$
e^{u+j v}=|z| e^{j \theta} .
$$

Take magnitude of both sides:

$$
\begin{aligned}
& \left|e^{u+j v}\right|=\left|e^{u}\right|\left|e^{j v}\right|=\left|e^{u}\right|=e^{u}, \\
& \left||z| e^{j \theta}\right|=|z| .
\end{aligned}
$$

And so: $|z|=e^{u}$, but u and $|z|$ are real and thus $u=\log |z|$ (understood as the Log of a real number). Then we must have

$$
e^{j v}=e^{j \theta}
$$

So we seek all v which satisfy this relationship and get

$$
v=\theta \pm 2 k \pi, \quad k=0,1,2, \ldots
$$

In conclusion,

$$
w=\log z=\log |z|+(\theta \pm 2 k \pi) j, \quad k=0,1,2, \ldots
$$

Before we pass to examples we note: Suppose $\theta=\operatorname{Arg}(z)$, i.e., $-\pi<\theta \leq \pi$. Then $\log |z|+\theta j$ is called the principal value of $\log z$ and is denoted by $\log (z)$. Observe that there are ∞ many values to $\log z$, but there is only one $\log z$!

Example 1. Evaluate $e^{\frac{\pi}{2}+\frac{\pi}{4} j}$.

Answer.

$$
e^{\frac{\pi}{2}+\frac{\pi}{4} j}=e^{\frac{\pi}{2}} \cdot e^{\frac{\pi}{4} j}=e^{\frac{\pi}{2}}\left(\cos \frac{\pi}{4}+j \sin \frac{\pi}{4}\right)=e^{\frac{\pi}{2}}\left(\frac{\sqrt{2}}{2}+j \frac{\sqrt{2}}{2}\right) .
$$

Example 2. Find all z such that $e^{z}=-1$, i.e., find $\log (-1)$.

Remark. Note that if x is any real number, $e^{x}>0$, and yet there are z such that
$e^{z}=-1$!

Answer. Put $z=x+j y$. Then we seek z such that $e^{x+j y}=-1$. We write -1 in polar form, i.e., $-1=|-1| e^{j \pi}=1 \cdot e^{j \pi}$. Thus

$$
e^{x} \cdot e^{j y}=1 \cdot e^{j \pi}
$$

Taking magnitudes gives $e^{x}=1$ or $x=0$ (remember: x is real). To finish, we need to find all y for which

$$
e^{j y}=e^{j \pi},
$$

and so

$$
y=\pi \pm 2 k \pi, \quad k=0,1,2, \ldots
$$

Finally,

$$
z=0+(\pi \pm 2 k \pi) j, \quad k=0,1,2, \ldots
$$

To define the trigonometric functions, we observe that, for θ real

$$
e^{j \theta}=\cos \theta+j \sin \theta, \quad e^{-j \theta}=\cos \theta-j \sin \theta
$$

So, adding and subtracting give:

$$
\cos \theta=\frac{e^{j \theta}+e^{-j \theta}}{2}, \quad \sin \theta=\frac{e^{j \theta}-e^{-j \theta}}{2 j} .
$$

We wish to define $\cos z, \sin z$, so that when z is real these are the same as $\cos x$,
$\sin x$. Based on these observations, we define, for $z=x+j y$:

$$
\cos z=\frac{e^{j z}+e^{-j z}}{2}, \quad \sin z=\frac{e^{j z}-e^{-j z}}{2 j}
$$

The other trigonometric functions then follow:

$$
\tan z=\frac{\sin z}{\cos z}, \quad \cot z=\frac{\cos z}{\sin z}, \quad \sec z=\frac{1}{\cos z}, \text { etc. }
$$

Once again the key formulas are preserved. For example, we have the following.

Example 3. Show $\cos ^{2} z+\sin ^{2} z=1$.

Answer.

$$
\begin{aligned}
\cos ^{2} z+\sin ^{2} z & =\frac{\left(e^{j z}+e^{-j z}\right)^{2}}{4}+\frac{\left(e^{j z}-e^{-j z}\right)^{2}}{-4} \\
& =\frac{\left(e^{2 j z}+2+e^{-2 j z}\right)-\left(e^{2 j z}-2+e^{-2 j z}\right)}{4}=\frac{4}{4}=1
\end{aligned}
$$

Yet there are differences between $\cos z, \sin z$ and $\cos x, \sin x$. To illustrate this remark and keeping in mind that $-1 \leq \cos x, \sin x \leq 1$, we shall show later that there are z such that $\sin z=2$!

Next we recall that

$$
\cosh x=\frac{e^{x}+e^{-x}}{2}, \quad \sinh x=\frac{e^{x}-e^{-x}}{2}
$$

and then define:

$$
\cosh z=\frac{e^{z}+e^{-z}}{2}, \quad \sinh z=\frac{e^{z}-e^{-z}}{2}
$$

We can clearly connect $\cosh z$ and $\sinh z$ to the exponential and trigonometric functions, and obtain other useful trigonometric formulas using Euler's formula.

For example,

$$
\begin{aligned}
\cosh (j x) & =\cos x, \quad \sinh (j x)=j \sin x \\
\cos z & =\cos x \cosh y-j \sin x \sinh y
\end{aligned}
$$

etc. Also, since $\cos \theta=\left(e^{j \theta}+e^{-j \theta}\right) / 2$,

$$
\cos ^{n} \theta=\left(\frac{e^{j \theta}+e^{-j \theta}}{2}\right)^{n}
$$

So formulas for $\cos ^{n} \theta$ can be obtained by expanding the right hand side. A similar approach works for $\sin \theta=\left(e^{j \theta}-e^{-j \theta}\right) /(2 j)$.

In an analogous way,

$$
\left(e^{j \theta}\right)^{n}=e^{j n \theta} .
$$

That is,

$$
(\cos \theta+j \sin \theta)^{n}=(\cos (n \theta)+j \sin (n \theta))
$$

And we can get formulas for $\cos (n \theta), \sin (n \theta)$ by expanding the left hand side.
We now pass to the definitions of powers and roots. Suppose first m is a positive integer. We then set $z=|z| e^{j \theta}$,

$$
z^{m}=\underbrace{z \cdots z}_{m \text { times }}=|z|^{m} e^{j m \theta}
$$

and

$$
z^{-m}=\frac{1}{z^{m}}=|z|^{-m} e^{-m j \theta}
$$

These are as is expected. Next we look at $z^{1 / m}$. It is reasonable to put $z^{1 / m}$ to be all the complex numbers w such that w^{m} is the given z. We already know from the real number case that there may be more than one $w\left(1^{1 / 2}\right.$ is both +1 and -1$)$.

We shall find that for $z \neq 0$ there are always exactly m th roots in the complex plane. To see this, let $z=|z| e^{j \theta}, w=|w| e^{j \phi}$ and $w^{m}=z$. I.e.,

$$
|w|^{m} e^{j m \phi}=|z| e^{j \theta} .
$$

We then get $|w|^{m}=|z|$ or $|w|=|z|^{1 / m}$. Since $|w| \geq 0$ and $|z|,|w|$ are real numbers, this relationship specifies $|w|$ exactly as $|z|^{1 / m}$.

Next, we need $e^{j m \phi}=e^{j \theta}$ and so it seems we should choose $\phi=\theta / m$. This is indeed a correct value, but remember we wish to find all w such that $w^{m}=z$, and keep in mind that $z=|z| e^{j \theta}=|z| e^{j(\theta \pm 2 k \pi)}, k=0,1, \ldots$ So, for w^{m} to be z it suffices that $m \phi=\theta \pm 2 k \pi$ for some k, i.e.,

$$
\phi=\frac{\theta \pm 2 k \pi}{m}, \quad k=0,1,2, \ldots
$$

We get ∞ many ϕ, and it looks like we should get ∞ many w as well, but note that

$$
w=|z|^{\frac{1}{m}} e^{j\left(\frac{\theta \pm 2 k \pi}{m}\right)}, \quad k=0,1,2, \ldots
$$

So we get putting $k=0,1,2, \ldots$ in turn:
$(*) \quad w=|z|^{\frac{1}{m}} e^{j \frac{\theta}{m}} ; \quad|z|^{\frac{1}{m}} e^{j\left(\frac{\theta+\pi}{m}\right)} ; \quad|z|^{\frac{1}{m}} e^{j\left(\frac{\theta+2 \pi}{m}\right)} ; \ldots ; \quad|z|^{\frac{1}{m}} e^{j\left(\frac{\theta+(m-1) 2 \pi}{m}\right)}$.

The next w would be $|z|^{\frac{1}{m}} e^{j\left(\frac{\theta+2 \pi m}{m}\right)}=|z|^{\frac{1}{m}} e^{\frac{j \theta}{m}}$ and we get again the first root we found. As k increases we simply repeat the roots given in $(*)$, and the same is true for k negative. In summary, the $m m$ th roots of z are

$$
|z|^{\frac{1}{m}} e^{j\left(\frac{\theta+2 k \pi}{m}\right)} \quad \text { for } \quad k=0,1, \ldots, m-1
$$

Before doing examples, some remarks.

Remark 1 There are clearly two square roots of $z \neq 0$. Note that if you find
one of them, call it w_{1}, then the other w_{2} must be $-w_{1}$. After all, $z=w_{1}^{2}=\left(-w_{1}\right)^{2}$!

Remark 2 Let m, n be positive integers. Then we set $z^{m / n}=\left(z^{1 / n}\right)^{m}$ and $z^{-(m / n)}=1 / z^{m / n}$.

Remark 3 For any other number c, not of type m / n (for example, for $\sqrt{2}$, $\pi, e, 1+j$) we define z^{c} to be $e^{c \log z}$.

Example 4. Find $(1)^{1 / 3}$.

Answer. We know there will be three roots, and we already know one of these is 1. What are the other two? To find them, put $w=|w| e^{j \theta}$, then

$$
|w|^{3} e^{3 j \theta}=1=e^{(2 \pi k) j}, \quad k=0,1,2, \ldots .
$$

And so $|w|=1,3 \theta=2 \pi k$, and as we noted above, we need only use $k=0,1,2$. So

$$
w_{1}=e^{0 j}=1, \quad w_{2}=e^{j \frac{2 \pi}{3}}, \quad w_{3}=e^{j \frac{4 \pi}{3}} .
$$

In pictures:

Note that w_{1}, w_{2}, w_{3} form a symmetric picture on the complex plane: between w_{1} and w_{2}, w_{2} and w_{3}, w_{3} and w_{1} there is an angle of $2 \pi / 3$! This symmetry is always found.

Example 5. Find $(1+j)^{\frac{1}{5}}$.

Answer. We expect 5 roots. Again set $w=|w| e^{j \theta}$ and note $1+j=\sqrt{2} e^{j \frac{\pi}{4}}$. Then

$$
|w|^{5} e^{j 5 \theta}=\sqrt{2} e^{j \frac{\pi}{4}}
$$

and so

$$
w=2^{\frac{1}{10}} e^{j\left(\frac{\pi}{4}+2 k \pi\right.} 5 \quad \text { for } \quad k=0,1,2,3,4 .
$$

The other values of k give repetitions of these roots.

Example 6. Find $(j)^{-\frac{1}{2}}$.

Answer. Note $j^{-1 / 2}=1 / j^{1 / 2}$. Since $j^{1 / 2}$ has 2 roots, there will be 2 values for $j^{-1 / 2}$.

$$
\begin{gathered}
\text { Now } j=e^{j \frac{\pi}{2}} \text { and so } j^{\frac{1}{2}}=e^{j \frac{\pi}{4}}, e^{j\left(\frac{\pi}{4}+\pi\right)}=-e^{j \frac{\pi}{4}} \text {. Consequently, } \\
j^{-\frac{1}{2}}=e^{-j \frac{\pi}{4}}, \quad-e^{-j \frac{\pi}{4}} .
\end{gathered}
$$

Example 7. Show that the quadratic formula holds, i.e., if

$$
a z^{2}+b z+c=0
$$

with a, b, c complex and $a \neq 0$, then

$$
z=-\frac{b}{2 a}+\left(\frac{b^{2}-4 a c}{4 a^{2}}\right)^{1 / 2}
$$

(Keep in mind $\left(\frac{b^{2}-4 a c}{4 a^{2}}\right)^{\frac{1}{2}}$ has 2 values.)

Answer. $a z^{2}+b z+c=0$ is the same as $z^{2}+\frac{b}{a} z+\frac{c}{a}=0$ or

$$
\left(z+\frac{b}{2 a}\right)^{2}=\frac{b^{2}}{4 a^{2}}-\frac{c}{a}=\frac{b^{2}-4 a c}{4 a^{2}}
$$

So z must be such that

$$
\left(z+\frac{b}{2 a}\right)=\left(\frac{b^{2}-4 a c}{4 a^{2}}\right)^{1 / 2}
$$

We conclude

$$
z=-\frac{b}{2 a}+\left(\frac{b^{2}-4 a c}{4 a^{2}}\right)^{1 / 2}
$$

Example 8. Find $(j+1)^{j}$.

Answer. Since j is not of type m / n, we have

$$
(j+1)^{j}=e^{j \log (j+1)} .
$$

So we need to calculate $\log (j+1)$ first. Now $w=\log (j+1)$ iff $e^{w}=j+1$. Putting $w=u+j v, 1+j=\sqrt{2} e^{j \pi / 4}$,

$$
e^{u+j v}=\sqrt{2} e^{j \frac{\pi}{4}}
$$

and $e^{u}=\sqrt{2}$ or $u=\log (\sqrt{2})=\frac{1}{2} \log 2$. Next v must be such that

$$
e^{j v}=e^{j \frac{\pi}{4}}
$$

and so

$$
v=\frac{\pi}{4} \pm 2 k \pi, \quad k=0,1,2, \ldots
$$

We have

$$
\log (j+1)=\frac{1}{2} \log 2+\left(\frac{\pi}{4} \pm 2 k \pi\right) j
$$

and

$$
(j+1)^{j}=e^{j\left(\frac{\log 2}{2}+\left(\frac{\pi}{4} \pm 2 k \pi\right) j\right)}=e^{-\left(\frac{\pi}{4} \pm 2 k \pi\right)}\left[\cos \left(\frac{\log 2}{2}\right)+j \sin \left(\frac{\log 2}{2}\right)\right] .
$$

The next example shows a difference between trigonometric functions of complex numbers and those of real numbers.

Example 9. Find all z such that $\sin z=2$.

Answer. Note that for any real $x,-1 \leq \sin x \leq 1$! Now

$$
\sin z=\frac{e^{j z}-e^{-j z}}{2 j}=2
$$

and so

$$
e^{j z}-e^{-j z}-4 j=0
$$

Multiply by $e^{j z}$:

$$
\left(e^{j z}\right)^{2}-4 j\left(e^{j z}\right)-1=0
$$

By the quadratic formula (earlier example),

$$
e^{j z}=4 j+\left((4 j)^{2}-4(-1)\right)^{\frac{1}{2}}=4 j+(-16+4)^{\frac{1}{2}}=4 j+(-12)^{\frac{1}{2}} .
$$

Now $-12=12 e^{\pi j}$ and so

$$
(-12)^{\frac{1}{2}}= \pm(12)^{\frac{1}{2}} e^{j \frac{\pi}{2}}= \pm(12)^{\frac{1}{2}} j
$$

Here $(12)^{\frac{1}{2}}$ is the unique real number root of 12 ! So

$$
e^{j z}=\left(4 \pm(12)^{\frac{1}{2}}\right) j=\left|4 \pm(12)^{\frac{1}{2}}\right| e^{j \frac{\pi}{2}}
$$

Important Remark. Suppose " 12 " had been replaced by " 25 " then we would have had:

$$
\left(4 \pm(25)^{\frac{1}{2}}\right) j=(4 \pm 5) j=9 j,-j .
$$

You would then split the problem since $9 j=9 e^{j \frac{\pi}{2}}$, while $-j=e^{-j \frac{\pi}{2}}$! In our case, if $z=x+j y$, then

$$
e^{j(x+j y)}=\left|4 \pm(12)^{\frac{1}{2}}\right| e^{j \frac{\pi}{2}}
$$

and so

$$
-y=\log \left|4 \pm(12)^{\frac{1}{2}}\right|, \quad x=\frac{\pi}{2} \pm 2 k \pi, \quad k=0,1,2, \ldots,
$$

i.e.,

$$
z=-j \log \left|4 \pm(12)^{\frac{1}{2}}\right|+\left(\frac{\pi}{2} \pm 2 k \pi\right)
$$

Example 10. Find all z such that $\cos z=1$.

Answer. We know $\cos x=1$ iff $x= \pm 2 k \pi$ for $k=0,1,2, \ldots$. So we expect to find these values of z (i.e., $z=(\pm k \pi)$ and $0 j)$ and maybe more! Now $\cos z=1$ means

$$
e^{j z}+e^{-j z}=2
$$

or

$$
\left(e^{j z}\right)^{2}-2 e^{j z}+1=0
$$

So

$$
\left(e^{j z}-1\right)^{2}=0
$$

This means

$$
e^{j z}=1=e^{0 j}
$$

and so if $z=x+j y$, then

$$
e^{-y}=1, \quad e^{x}=e^{0 j}=e^{ \pm 2 k \pi} \quad \text { for } \quad k=0,1,2, \ldots
$$

I.e., $y=0$ and $x= \pm 2 k \pi$, which yield

$$
z= \pm 2 k \pi+0 j
$$

So there are no other values except for the "real" ones!

Further Exercises:

Exercise 1. Let $z_{1}=1-j, z_{2}=1+j, z_{3}=j$. Find:
(a) $z_{1}+z_{2}$;
(b) $z_{1}-z_{2}$;
(c) z_{1} / z_{2};
(d) $z_{1} z_{2}$;
(e) $z_{1} \bar{z}_{3} /\left(z_{1}+z_{2}\right)$.

Answer.
(a) $z_{1}+z_{2}=(1-j)+(1+j)=(1+1)+j(-1+1)=2$.
(b) $z_{1}-z_{2}=(1-j)-(1+j)=-2 j$.
(c) $\frac{z_{1}}{z_{2}}=\frac{1-j}{1+j}=\frac{(1-j)(1-j)}{(1+j)(1-j)}=\frac{1-2 j+j^{2}}{1^{2}+1^{2}}=\frac{-2 j}{2}=-j$.
(d) $z_{1} z_{2}=(1-j)(1+j)=1-j+j-j^{2}=1+1=2$.
(e) $\frac{z_{1} \bar{z}_{3}}{z_{1}+z_{2}}=\frac{(1-j)(-j)}{2}=\frac{-j+j^{2}}{2}=\frac{-1-j}{2}$.

Exercise 2. Use polar form to find: (a) $(1-j)^{10}$;
(b) $\left[\frac{1+j}{1-j}\right]^{100}$.

Answer.
(a) $1-j=\sqrt{2} e^{-\frac{\pi}{4} j}$, so $(1-j)^{10}=(\sqrt{2})^{10} e^{-\frac{10 \pi}{4} j}=2^{5} e^{-\frac{10 \pi}{4} j}$. Note that $\sqrt{2}$ here means the "real" positive root of 2 !
(b) $\left[\frac{1+j}{1-j}\right]^{100}=\left[\frac{\sqrt{2} e^{\frac{\pi}{4} j}}{\sqrt{2} e^{-\frac{\pi}{4} j}}\right]^{100}=\left[e^{\frac{\pi}{2} j}\right]^{100}=e^{50 \pi j}=e^{25 \cdot 2 \pi j}=1^{25}=1$.
(Equivalently, $e^{\frac{\pi}{2} j}=j$, so $j^{100}=\left(j^{2}\right)^{50}=(-1)^{50}=1$)
Exercise 3. Find $(-1)^{1 / 6}$.
Answer. $\quad(-1)=e^{\pi j}=e^{(\pi+2 k \pi) j}$. so $(-1)^{1 / 6}=e^{\frac{(\pi+2 k \pi)}{6} j}$ for $k=0,1, \ldots, 5$, i.e.,

$$
(-1)^{\frac{1}{6}}=e^{\frac{\pi}{6} j}, e^{\frac{3 \pi}{6} j}, e^{\frac{5 \pi}{6} j}, e^{\frac{7 \pi}{6} j}, e^{\frac{9 \pi}{6} j}, e^{\frac{11 \pi}{6} j}
$$

Note that these roots have magnitude 1 and difference in argument from the preceding one by $2 \pi / 6$.

Exercise 4. Find $\log (j)$ and $\log (j)$.

Answer. $\quad j=e^{\frac{\pi}{2} j}=e^{\left(\frac{\pi}{2} \pm 2 k \pi\right) j}, k=0,1,2, \ldots$ So

$$
\log (j)=\left(\frac{\pi}{2} \pm 2 k \pi\right) j, \quad k=0,1,2, \ldots .
$$

Now $\log (j)$ is the logarithm corresponding to the principal value of the argument of j, i.e., to $\operatorname{Arg}(j)$, which is $\pi / 2$. So

$$
\log (j)=\frac{\pi}{2} j .
$$

Exercise 5. Find all z such that $\cos z=2$.

Answer. $\cos z=\frac{e^{j z}+e^{-j z}}{2}$ and so $\cos z=2$ iff $\frac{e^{j z}+e^{-j z}}{2}=2$. Multiply by $e^{j z}$ to get: $\left(e^{j z}\right)^{2}+1=4 e^{j z}$, i.e., $\left(e^{j z}\right)^{2}-4 e^{j z}+1=0$. Thus

$$
e^{j z}=\frac{4 \pm \sqrt{(-4)^{2}-4}}{2}=2 \pm \sqrt{3} .
$$

We recall that by $\sqrt{3}$ we mean the real, positive root of 3 . Now

$$
2 \pm \sqrt{3}=(2 \pm \sqrt{3}) e^{0 j}=(2 \pm \sqrt{3}) e^{ \pm 2 k \pi j}, \quad k=0,1,2, \ldots,
$$

and if $z=x+j y$, then

$$
e^{j x-y}=(2 \pm \sqrt{3}) e^{ \pm 2 k \pi j}
$$

So $x= \pm 2 k \pi$ and $e^{-y}=2 \pm \sqrt{3}$, i.e,

$$
-y=\log (2 \pm \sqrt{3}) \quad \text { or } \quad y=-\log (2 \pm \sqrt{3}) .
$$

In conclusion, $z= \pm 2 k \pi-\log (2 \pm \sqrt{3}) j, k=0,1,2, \ldots$.

Remark. Note that Log here means the "real" Log of $2 \pm \sqrt{3}$. This can be done
because $\sqrt{3}<2$. Otherwise, we would have to split the problem. See the earlier notes.

Exercise 6. Find $(1-j)^{1+j}$.

Answer. Since $(1-j)^{1+j}=e^{(\log (1-j))(1+j)}$, we start by finding $\log (1-j)$. Now

$$
1-j=\sqrt{2} e^{\left[-\frac{\pi}{4} \pm 2 k \pi\right] j}, \quad k=0,1, \ldots
$$

and so

$$
\log (1-j)=\log (\sqrt{2})+\left[-\frac{\pi}{4} \pm 2 k \pi\right] j
$$

Thus

$$
(1-j)^{1+j}=e^{(1+j)\left\{\log \sqrt{2}+\left[-\frac{\pi}{4} \pm 2 k \pi\right] j\right\}}
$$

and

$$
\begin{aligned}
(1+j)\{\log (\sqrt{2})+(- & \left.\left.\frac{\pi}{4} \pm 2 k \pi\right) j\right\} \\
& =\left[\log (\sqrt{2})+\left(\frac{\pi}{4} \mp 2 k \pi\right)\right]+j\left[-\frac{\pi}{4} \pm 2 k \pi+\log (\sqrt{2})\right]
\end{aligned}
$$

and finally,

$$
(1-j)^{1+j}=e^{\left[\log (\sqrt{2})+\frac{\pi}{4} \mp 2 k \pi\right]+j\left[-\frac{\pi}{4} \pm 2 k \pi+\log (\sqrt{2})\right]}
$$

This can be rewritten in various equivalent ways, for example,

$$
\begin{aligned}
(1-j)^{1+j}=\sqrt{2} e^{\frac{\pi}{4} \mp 2 k \pi}\left[\operatorname { c o s } \left(-\frac{\pi}{4} \pm 2 k \pi\right.\right. & +\log (\sqrt{2})) \\
& \left.+j\left[\sin \left(-\frac{\pi}{4} \pm 2 k \pi+\log (\sqrt{2})\right)\right]\right]
\end{aligned}
$$

The term $\pm 2 k \pi$ in cos and sin functions can also be clearly omitted.

Exercise 7. Solve for z if $z^{2}+j z=1$.

Answer. We can use the quadratic formula:

$$
z=\frac{-j \pm \sqrt{j^{2}+4}}{2}=\frac{-j \pm \sqrt{3}}{2} .
$$

We have found

$$
z_{1}=\frac{\sqrt{3}-j}{2}, \quad z_{2}=\frac{-\sqrt{3}-j}{2}
$$

Note that in this problem it is easy to check the answer, if at all in doubt. In fact,

$$
z_{1}^{2}+j z_{1}=\left(\frac{\sqrt{3}-j}{2}\right)^{2}+j\left(\frac{\sqrt{3}-j}{2}\right)=\frac{2-2 j \sqrt{3}}{4}+j\left(\frac{\sqrt{3}-j}{2}\right)=1
$$

as expected.

I.d An Application: Electrical Circuits

The three fundamental electrical circuit components are: the resistor (of resistance R), the inductor (of inductance L) and the capacitor (of capacitance C). Let t denote time. The voltage drop $v(t)$ across one of these components can be related by observation to the current $i(t)$ flowing through the component according to the formulas:
(a) for a resistor: $\quad v(t)=\operatorname{Ri}(t)$

(b) for an inductor: $\quad v(t)=L \frac{d i}{d t}$

(c) for a capacitor

$$
Q(t)=C v(t) \text { (where } Q=\text { charge) } \quad \text { or } \quad i(t)=C \frac{d v}{d t} .
$$

These are the general relationships, and technically speaking could be usedtogether with Kirchoff's Laws - to derive all that follows by solving differential equations. However, if we deal with sinusoidal current/voltage situations and ignore transients (e.g., charge on capacitor at $t=0$), then complex number techniques can be used to great advantage since they replace finding a derivative by multiplication and finding an integral by division!

We remark that by using Fourier Series technique, many inputs (square, triangular, rectified sine/cosine, sawtooth, ...) can be expressed as an infinite series of sines/cosines so that sinusoidal inputs are more important than what may be conjectured at first. Specifically, suppose now $v=\operatorname{Im}\left(\widehat{V} e^{j w t}\right)$ with \widehat{V} complex. This corresponds to $v=\operatorname{Im}\left(|\widehat{V}| e^{j(w t+\phi)}\right)$ where $\widehat{V}=|\widehat{V}| e^{j \phi}$, i.e., $v=|\widehat{V}| \sin (w t+\phi)$. Then,
(a) for a resistor:

$$
R i(t)=v(t), \quad \text { or } \quad i=\operatorname{Im}\left(\frac{\widehat{V}}{R} e^{j w t}\right)
$$

So, if we write $i=\operatorname{Im}\left(\widehat{I} e^{j w t}\right)$, then $\widehat{I}=\widehat{V} / R$. Note that this calculation can be reversed, i.e., if we know $i=\operatorname{Im}\left(\widehat{I} e^{j w t}\right)$ through the resistor, then $v=\operatorname{Im}\left(\widehat{V} e^{j w t}\right)$ with $\widehat{I} R=\widehat{V}$. We conclude: $\widehat{I} R=\widehat{V}$ for a resistor.
(b) for an inductor:

$$
L \frac{d i}{d t}=v(t)=|\widehat{V}| \sin (w t+\phi)
$$

and so (since we neglect transients):

$$
\begin{aligned}
i & =-\frac{|\widehat{V}|}{L w} \cos (w t+\phi)=\frac{|\widehat{V}|}{L w} \sin \left(w t+\phi-\frac{\pi}{2}\right) \\
& =\frac{|\widehat{V}|}{L w} \operatorname{Im}\left(e^{j\left(w t+\phi-\frac{\pi}{2}\right)}\right)=\frac{|\widehat{V}|}{L w} \operatorname{Im}\left(\frac{e^{j(w t+\phi)}}{j}\right)=\operatorname{Im}\left(\frac{\widehat{V} e^{j w t}}{j L w}\right) .
\end{aligned}
$$

If we write $i=\operatorname{Im}\left(\widehat{I} e^{j w t}\right)$, then $\widehat{I}=\widehat{V} / j w L$. Again we can reverse this. If we know $i=\operatorname{Im}\left(\widehat{I} e^{j w t}\right)$, then $v=\operatorname{Im}\left(\widehat{V} e^{j w t}\right)$ with $\widehat{V}=\widehat{I}(j w L)$. In summary, $\widehat{V}=\widehat{I} j w L$ for an inductor!
(c) for a capacitor: we repeat the same process as we followed for an inductor and conclude $\widehat{I}=\widehat{V}(j w C)$.

These ideas can be combined to deal with more complicated circuits. As a
first example we have the following.

Example 1. (Series Resonance). Consider the series circuit shown, and suppose $v=\operatorname{Im}\left(\widehat{V} e^{j w t}\right)$. We seek the current $i(t)=\operatorname{Im}\left(\widehat{I} e^{j w t}\right)$.

By Kirchoff's Law, $v(t)$ is the sum of the voltage drops across R, L, C. Now across R we have $i=\operatorname{Im}\left(\widehat{I} e^{j w t}\right)$ and $v_{R}=\operatorname{Im}\left(R \widehat{I} e^{j w t}\right)$, across L we have $v_{L}=\operatorname{Im}\left(j w L \widehat{I} e^{j w t}\right)$ and across C we have $v_{C}=\operatorname{Im}\left((\widehat{I} / j w L) e^{j w t}\right)$ since i is the same. Thus

$$
v=v_{R}+v_{C}+v_{L}
$$

gives

$$
\operatorname{Im}\left(\widehat{V} e^{j w t}\right)=\operatorname{Im}\left(\widehat{I} R e^{j w t}\right)+\operatorname{Im}\left(j w t \widehat{I} e^{j w t}\right)+\operatorname{Im}\left(\frac{\widehat{I}}{j w C} e^{j w t}\right)
$$

That is,

$$
\widehat{V}=\widehat{I}\left(R+j w L+\frac{1}{j w C}\right) .
$$

We define $Z=$ impedance $=R+j w L+\frac{1}{j w C}=R+j\left(w L-\frac{1}{w C}\right)$, and obtain

$$
\begin{gathered}
\widehat{I}=\frac{\widehat{V}}{Z} \\
i=\operatorname{Im}\left(\frac{\widehat{V}}{Z} e^{j w t}\right)=\operatorname{Im}\left(\frac{\widehat{V}}{|Z|} e^{j(w t-\phi)}\right)
\end{gathered}
$$

where $Z=|Z| e^{j \phi}$. Now suppose $v=V \sin (w t)$ (with V real note) or, equivalently,
$v=\operatorname{Im}\left(V e^{j w t}\right)$, then

$$
\begin{aligned}
i=\frac{V}{|Z|} \sin (w t-\phi) \quad \text { with } \quad|Z| & =\sqrt{R^{2}+\left(w L-\frac{1}{w C}\right)^{2}} \\
\tan \phi & =\frac{(w L-1 /(w C))}{R}
\end{aligned}
$$

Observe that $|Z|$ has a minimum at $w L=1 /(w C)$ (i.e., $w=1 / \sqrt{L C}$) This w is the series circuit resonance frequency. For this w, i is maximal and equals $i=$ $(V / R) \sin w t$. It is just as if L and C were not present in the circuit!

Example 2. (Parallel Resonance). Consider the parallel circuit shown.

Once again $v=\operatorname{Im}\left(\widehat{V} e^{j w t}\right)$ and we seek $i=\operatorname{Im}\left(\widehat{I} e^{j w t}\right)$. Clearly the same voltage drop occurs across R, L and C and i is the sum of the three currents: through R, through L, through C. Now

$$
\widehat{I}_{R}=\frac{\widehat{V}}{R}, \quad \widehat{I}_{L}=\frac{\widehat{V}}{j w L}, \quad \widehat{I}_{C}=\widehat{V} j w C
$$

and thus

$$
\widehat{I}=\widehat{V}\left(\frac{1}{R}+\frac{1}{j w L}+j w C\right) .
$$

If we write $\widehat{V}=\widehat{I} Z$ or

$$
\frac{1}{Z}=\frac{1}{R}+\frac{1}{j w L}+j w C=\frac{1}{R}+j\left(w C-\frac{1}{w L}\right),
$$

then

$$
\left\{\begin{array}{l}
\left|\frac{1}{Z}\right|=\sqrt{\frac{1}{R^{2}}+\left(w C-\frac{1}{w L}\right)^{2}} \\
\operatorname{Arg}\left(\frac{1}{Z}\right)=\tan ^{-1}\left(\frac{w C-1 /(w L)}{1 / R}\right)=\phi,
\end{array} \quad \text { and so } \widehat{I}=\widehat{V} \cdot \frac{1}{Z}\right.
$$

Again if $v(t)=V \sin (w t)=\operatorname{Im}\left(V e^{j w t}\right)$, then

$$
i(t)=V \cdot \frac{1}{|Z|} \sin (w t+\phi)=V \sqrt{\frac{1}{R^{2}}+\left(w C-\frac{1}{w L}\right)^{2}} \sin (w t+\phi)
$$

and again if $w=1 / \sqrt{L C}$ (the parallel resonance frequency), then $i=(V / R) \sin w t$. Except, unlike for the series circuit case, this frequency gives a minimum for i, not a maximum.

We conclude by remarking that one of the main advantages of using complex numbers for circuit analysis is that this method allows the simple decomposition of complicated circuits into a collection of more elementary circuits. As an example we have

Example 3. Consider the circuit shown. If $v(t)=\operatorname{Im}\left(\widehat{V} e^{j w t}\right)$ find $i(t)$.

Answer. We split the problem into sub-problems and find the Z for each.

Now $v(t)=v_{1}(t)+v_{2}(t)+v_{3}(t)$. Suppose $i=\operatorname{Im}\left(\widehat{I} e^{j w t}\right)$. Then

$$
\begin{aligned}
& v_{1}(t)=\operatorname{Im}\left(\widehat{I} Z_{1} e^{j w t}\right) \quad \text { with } \quad \frac{1}{Z_{1}}=\frac{1}{j w L_{1}}+j w C, \\
& v_{2}(t)=\operatorname{Im}\left(\widehat{I} Z_{2} e^{j w t}\right) \quad \text { with } \quad Z_{2}=R_{1}, \\
& v_{3}(t)=\operatorname{Im}\left(\widehat{I} Z_{3} e^{j w t}\right) \quad \text { with } \quad \frac{1}{Z_{3}}=\frac{1}{R_{2}}+\frac{1}{j w L_{2}} .
\end{aligned}
$$

So

$$
\operatorname{Im}\left(\widehat{V} e^{j w t}\right)=\operatorname{Im}\left(\widehat{I}\left(Z_{1}+Z_{2}+Z_{3}\right) e^{j w t}\right)
$$

and so

$$
i(t)=\operatorname{Im}\left(\frac{\widehat{V}}{Z} e^{j w t}\right)
$$

with

$$
Z=Z_{1}+Z_{2}+Z_{3}=\frac{1}{j\left(w C-\frac{1}{w L_{1}}\right)}+R_{1}+\frac{R_{2} j w L_{2}}{R_{2}+j w L_{2}}
$$

I.e Graphs, Linear and Bilinear Maps

We recall that the graph of $y=f(x)$ was of considerable importance in analyzing the properties of f. Graphs are also of significance for complex functions but the situation is more complicated. As we shall see, to really "graph" a complex function we would need four dimensions.

We begin with a simpler problem, that is: find all those z (if any) on the complex plane which satisfy some given relationship. This can also be tough to do, and there are no general rules as to how one should go about it. We present several examples to show how this problem is to be approached.

Example 1. Find all those z such that $|z-1|=2$.

Answer. The "honest" way-and the more general way-is as follows: put $z=$ $x+j y$ then $z-1=(x-1)+j y$ and $|z-1|^{2}=(x-1)^{2}+y^{2}=4$. So we get a circle, centered at $x=1, y=0$ of radius 2 . The best way to do this specific problem is to note that $|z-1|=$ distance from z to 1 . So we find all those points z that are 2 units distant from 1. Again a circle of radius 2 centered at 1.

Example 2. Find all z such that

$$
\frac{|z-j|}{|z+j|}=4
$$

Answer. Except for complex variable experts, one should put $z=x+j y$. Then

$$
\frac{|z-j|}{|z+j|}=\frac{|x+j(y-1)|}{|x+j(y+1)|}=4 .
$$

We square both sides and get

$$
x^{2}+(y-1)^{2}=4\left(x^{2}+(y+1)^{2}\right)
$$

or

$$
x^{2}+y^{2}-2 y+1=4 x^{2}+4 y^{2}+8 y+4 .
$$

I.e.,

$$
3 x^{2}+3 y^{2}+10 y+3=0
$$

or

$$
x^{2}+\left(y+\frac{5}{3}\right)^{2}=-1+\frac{25}{9}=\frac{16}{9}
$$

again a circle, centered at $0-\frac{5}{3} j$ of radius $4 / 3$.

You should not think that the above problem always has circles for solutions. To see this note:

Example 3. Find all z such that

$$
\frac{|z-j|}{|z+j|}=1 .
$$

Answer. Now we have $x^{2}+(y-1)^{2}=x^{2}+(y+1)^{2}$. I.e., $4 y=0$ or $y=0$. We have no restrictions on x. So $z=x+0 j$, i.e., the x-axis. This makes sense since we are asking for those z which are equidistant from j and $-j$!

Example 4. Find all z such that

$$
|z-j|+|z+j|=4
$$

Answer. We want all those z such that the sum of the distances from z to j and from z to $-j$ gives 4 . We expect therefore to get an ellipse. Now we have

$$
\sqrt{x^{2}+(y-1)^{2}}+\sqrt{x^{2}+(y+1)^{2}}=4
$$

or

$$
x^{2}+(y-1)^{2}+x^{2}+(y+1)^{2}+2 \sqrt{x^{2}+(y-1)^{2}} \sqrt{x^{2}+(y+1)^{2}}=16 .
$$

That is,

$$
x^{2}+y^{2}+1+\sqrt{x^{2}+(y-1)^{2}} \sqrt{x^{2}+(y+1)^{2}}=8
$$

or

$$
\sqrt{x^{2}+(y-1)^{2}} \sqrt{x^{2}+(y+1)^{2}}=7-x^{2}-y^{2} .
$$

Squaring again gives

$$
16 x^{2}+12 y^{2}=48
$$

which is an ellipse.

One needs again to be a little careful.

Example 5. Find all z such that

$$
|z-j|+|z+j|=1
$$

Answer. Since the distance from $-j$ to j is 2 , there are no z 's whose distance from z to j is plus the distance from z to $-j$ can be 1 (otherwise j itself would have to be closer than 2 units from $-j!$). Let us see what happens in the calculations now. We get, again

$$
x^{2}+(y-1)^{2}+x^{2}+(y+1)^{2}+2 \sqrt{x^{2}+(y-1)^{2}} \sqrt{x^{2}+(y+1)^{2}}=1,
$$

which gives

$$
x^{2}+y^{2}+1+\sqrt{x^{2}+(y-1)^{2}} \sqrt{x^{2}+(y+1)^{2}}=\frac{1}{2}
$$

or

$$
\sqrt{x^{2}+(y-1)^{2}} \sqrt{x^{2}+(y+1)^{2}}=-\frac{1}{2}-x^{2}-y^{2}
$$

Now this is impossible, since the left hand side is nonnegative, while the right hand side is negative for any (x, y) ! So no (x, y) work.

Now for some different examples.

Example 6. Find all z such that

$$
\operatorname{Im}(z-j)=-2
$$

Answer. Put $z=x+j y$. Then $z-j=x+j(y-1)$ and $\operatorname{Im}(z-j)=y-1$. We thus require $y-1=-2$ or $y=-1$. Note that x is not restricted. So $z=x-j$, that is, a straight line.

Example 7. Find all those z such that

$$
\operatorname{Arg}(z-1)=\frac{\pi}{4}
$$

Answer. Put $z=x+j y$. Then $z-1=(x-1)+j y$ and $\pi / 4=\operatorname{Arg}(z-1)=\phi$ where $\tan \phi=y /(x-1)$. We have $y /(x-1)=\tan \phi=\tan (\pi / 4)=1$ and so $y=x-1$. It appears that we got the entire straight line, but this is not right. The problem comes from the fact that $\tan (-\pi / 4)$ is also 1 , so that the line $y=x-1$ includes both z where $\operatorname{Arg}(z-1)=\pi / 4$ and those z where $\operatorname{Arg}(z-1)=-\pi / 4$.

We must remove the latter (we also must be careful at $x=1$, since we can't divide by 0)! To see how to do this, note that $\operatorname{Arg}(z-1)=\pi / 4$ also implies that $z-1$ must be on the first quadrant. So $z-1=x-1+j y$ must have: $x-1>0, y>0$. Of course we also have $y=x-1$ from before. So, in summary, we have found $y=x-1$ with $x>1$ is the $1 / 2$ line we seek.

Note that at $x=1, y=0$ we get $z-1=0$ and $\operatorname{Arg}(0)$ is not defined.

Not all graphs are curves.

Example 8. Find all z such that $|z-j| \leq 2$.

Answer. Clearly we seek all z whose distance from j is ≤ 2. We thus find a disc of radius 2 centered at j.

We now pass to the problem of "graphing" functions of z. That is, we suppose $w=f(z)$ and we try to get a "picture" of w. Note that if $z=x+j y$, then in general w will also be complex so we set $w=u+j v$. For example, if $w=z^{2}$, then
$(u+j v)=(x+j y)^{2}=\left(x^{2}-y^{2}\right)+2 x y j$. So $u=x^{2}+y^{2}, v=2 x y$. To really get a picture of this, we would need 4 axes (as mentioned above): one each for x, y, u, v. This is impossible, nevertheless we can get an idea of the "graph" of f by seeing how f maps certain curves in the (x, y) plane to (different) curves in the (u, v) plane.

We illustrate this process with the simplest functions: the linear maps. Consider the function $w=z+a$. That is: Let $a=\alpha+\beta j$. Then $u+j v=(x+j y)+(\alpha+\beta j)$ and so

$$
\left\{\begin{array}{l}
u=x+\alpha \\
v=y+\beta .
\end{array}\right.
$$

To see what this map does, observe that w takes any z to $z+a$. That is, w translates every point of the plane by a.

We conclude that any straight line in the (x, y) plane gets mapped by w to a straight line (usually not the same one) in the (u, v) plane, and the same is true for circles. As an example we have

Example 9. Find the image of the line $y=x$ and of the circle $(x-1)^{2}+(y-2)^{2}=4$ under the map $w=z+(1+2 j)$.

Answer. Put $z=x+j y, w=z+(1+2 j)$. So here $a=1+2 j$ and $u=x+1$, $v=y+2$. To find what happens to the line $y=x$ we replace y and x in this equation by u and v. I.e., $u-1=x=y=v-2$, and so $u-1=v-2$ or $v=u+1$.

In pictures:

Note that the point $0+j 0$ in the (x, y) plane gets mapped to $1+2 j$ in the (u, v) plane.

We next consider what happens to the circle $(x-1)^{2}+(y-2)^{2}=4$. Again we replace (x, y) by (u, v) and get

$$
((u-1)-1)^{2}+((v-2)-2)^{2}=4
$$

That is,

$$
(u-2)^{2}+(v-4)^{2}=4
$$

As might have been expected, the circle remains a circle with the same radius, but the center has been "translated" to $(2,4)$.

The next simplest map is a multiplication by a constant: $w=a z$ with $a=$ $\alpha+j \beta$. Now $u+j v=(\alpha+j \beta)(x+j y)$ or $u=\alpha x-\beta y, v=\alpha y+\beta x$. To see 42
what this map does, write $z=|z| e^{j \theta}, a=|a| e^{j \phi}$. Then $w=|a||z| e^{j(\theta+\phi)}$. So under w, the point z gets mapped to a point with magnitude $|a||z|$ (i.e., dilation or magnification by $|a|$) and $\operatorname{Argument} \theta+\phi$ (i.e., rotation by ϕ). So $w=a z$ is a dilation or magnification by $|a|$ and a rotation by $\operatorname{Arg}(a)$ of every z. What does this do to lines and circles? A line $y=m x+b$ is mapped to the (u, v) plane as

$$
\frac{\alpha v-\beta u}{\alpha^{2}+\beta^{2}}=m\left(\frac{\alpha u+\beta v}{\alpha^{2}+\beta^{2}}\right)+b
$$

or

$$
\alpha v-\beta u=m(\alpha u+\beta v)+b\left(\alpha^{2}+\beta^{2}\right) .
$$

Here we have used the fact that $x=(\alpha u+\beta v) /\left(\alpha^{2}+\beta^{2}\right), y=(\alpha v-\beta u) /\left(\alpha^{2}+\beta^{2}\right)$. So lines stay lines, but rotated and moved (by the magnification). Note that lines through the origin remain lines through the origin! Next suppose we have a circle $\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}=r^{2}$. We could replace (x, y) by (u, v) just like before, but it is easier to deal with circles by noticing $\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}=r^{2}$ is the same as $\left|z-z_{0}\right|=r$ where $z_{0}=x_{0}+j y_{0}$. Then

$$
|a| r=|a|\left|z-z_{0}\right|=\left|a z-a z_{0}\right|=\left|w-a z_{0}\right| .
$$

So the circle remains a circle with center $a z_{0}$ and radius $|a| r$.

Example 10. Find the image of the line $y=x+1$ and the circle $x^{2}+(y-1)^{2}=2$ under the map $w=(2-j) z$.

Answer. $\quad w=(2-j) z=(2-j)(x+j y)=(2 x+y)+j(2 y-x)$. So $u=2 x+y$, $v=2 y-x$, or equivalently,

$$
x=\frac{2 u-v}{5}, \quad y=\frac{u+2 v}{5} .
$$

The line $y=x+1$ becomes $\frac{u+2 v}{5}=\frac{2 u-v}{5}+1$ or $v=\frac{u+5}{3}$.

Now for the circle $x^{2}+(y-1)^{2}=2$, we rewrite this as $|z-j|=\sqrt{2}$ or $|a||z-j|=\sqrt{2}|a|$ where $a=2-j$ and $|a|=\sqrt{5}$. We conclude $|a z-a j|=\sqrt{10}$ or $|w-(1+2 j)|=\sqrt{10}$, and the original circle is mapped to a circle centered at $1+2 j$ of radius $\sqrt{10}$.

Let us check this by using direct calculations. We have: $x^{2}+(y-1)^{2}=2$ becomes

$$
\left(\frac{2 u-v}{5}\right)^{2}+\left(\frac{u+2 v}{5}-1\right)^{2}=2
$$

That is,

$$
\left(\frac{4 u^{2}-4 u v+v^{2}}{25}\right)+\left(\frac{u^{2}+4 u v+4 v^{2}-10 u-20 v+25}{25}\right)=2
$$

or

$$
u^{2}+v^{2}-2 u-4 v=5,
$$

i.e.,

$$
(u-1)^{2}+(v-2)^{2}=10
$$

Just like before!

Observe that a map $w=a z+b$ can then be seen as a composition of the earlier maps

$$
z \xrightarrow[\text { rotation }]{\text { magnification }} a z \xrightarrow{\text { translation }} a z+b .
$$

So w is a composition of a magnification, followed by a rotation followed by a translation. Note that the order is important. A translation (by b) followed by rotation and magnification would be the function

$$
w_{1}=a(z+b) .
$$

And w_{1} is different from w !
The next map we consider is the inversion $w=1 / z$. If we let, one more time, $w=u+j v, z=x+j y$, we get $u+j v=(x-j y) /\left(x^{2}+y^{2}\right)$ or

$$
u=\frac{x}{x^{2}+y^{2}}, \quad v=\frac{-y}{x^{2}+y^{2}} .
$$

We shall use this later. Observe first that $w=1 / z=(1 /|z|) e^{-j \theta}$ where $z=|z| e^{j \theta}$. So if $w=|w| e^{j \phi}$, then $|w|=1 /|z|$ and $\phi=-\theta$. The map $w=1 / z$ thus maps a circle of radius r centered at the origin (i.e., $|z|=r$) to a circle of radius $1 / r$ also centered at the origin, but the individual points of the circle get mapped to points with negative angles!

To see what happens in general, note that we can get any circle or straight line into the form

$$
a\left(x^{2}+y^{2}\right)+b x+c y+d=0
$$

with a, b, c, d real numbers. This expression represents:

$$
\text { if } a \neq 0 \longrightarrow \text { circle } \begin{cases}d=0 & \text { through the origin } \\ d \neq 0 & \text { not through the origin }\end{cases}
$$

$$
\text { if } a=0 \longrightarrow \text { straight line } \begin{cases}d=0 & \text { through the origin } \\ d \neq 0 & \text { not through the origin. }\end{cases}
$$

Now $u=x /\left(x^{2}+y^{2}\right), v=-y /\left(x^{2}+y^{2}\right)$ imply $x=u /\left(u^{2}+v^{2}\right), y=-v /\left(u^{2}+v^{2}\right)$. So the expression $a\left(x^{2}+y^{2}\right)+b x+c y+d$ gets mapped to

$$
a\left(\frac{1}{u^{2}+v^{2}}\right)+b\left(\frac{u}{u^{2}+v^{2}}\right)-c\left(\frac{v}{u^{2}+v^{2}}\right)+d=0
$$

or

$$
a+b u-c v+d\left(u^{2}+v^{2}\right)=0
$$

So circles not through the origin in (x, y) plane become circles not through the origin in (u, v) plane since a, d are not zero; circles through the origin in (x, y) plane become lines not through the origin in the (u, v) plane since $a \neq 0$ but $d=0$;
lines through the origin in (x, y) plane become lines through the origin in the (u, v) plane since $a=d=0$; and finally lines not through the origin become circles through the origin since $a=0, d \neq 0$.

Example 11. Find the image of $x^{2}+y^{2}+2 x+2 y=2$ under $w=1 / z$.

Answer. $x^{2}+y^{2}+2 x+2 y=2$ is the same as

$$
(x+1)^{2}+(y+1)^{2}=4
$$

that is, a circle not through the origin (since $x=0, y=0$ do not satisfy the equation). We expect the image to also be a circle not through the origin. We find $x^{2}+y^{2}+2 x+2 y=2$ becomes

$$
\frac{1}{u^{2}+v^{2}}+\frac{2 u}{u^{2}+v^{2}}-\frac{2 v}{u^{2}+v^{2}}=2
$$

Equivalently,

$$
1+2 u-2 v=2\left(u^{2}+v^{2}\right) \quad \text { or } \quad\left(u-\frac{1}{2}\right)^{2}+\left(v+\frac{1}{2}\right)^{2}=1
$$

In pictures:

The final example of this kind that we present is the bilinear map:

$$
w=\frac{a z+b}{c z+d}
$$

with a, b, c, d complex and c, d not both zero. We can decompose the bilinear map into a sequence of earlier maps as follows: First note

$$
w=\frac{\frac{a}{c}(c z+d)+b-\frac{a d}{c}}{c z+d}=\frac{a}{c}+\frac{\frac{c b-a d}{c}}{c z+d} .
$$

So we have

$$
\begin{gathered}
z \xrightarrow[\text { rotation }]{\text { magnification }} c z \quad \xrightarrow{\text { translation }} c z+d \quad \xrightarrow{\text { inversion }} \frac{1}{c z+d} \\
\xrightarrow[\text { rotation }]{\text { magnification }} \frac{c b-a d}{c z+d} \xrightarrow{\text { translation }} \frac{a}{c}+\frac{\frac{c b-a d}{c}}{c z+d}
\end{gathered}
$$

So this is quite a complicated map to visualize. There are some simple properties that we mention.
(1) Given any 3 different numbers z_{1}, z_{2}, z_{3} on the z plane and 3 different numbers w_{1}, w_{2}, w_{3} on the w plane we can find a bilinear map w such that

$$
w\left(z_{1}\right)=w_{1}, \quad w\left(z_{2}\right)=w_{2}, \quad w\left(z_{3}\right)=w_{3} .
$$

There are two ways to do this: one way is just to solve brutally for the a, b, c, d that will do the job. The sneaky way is this:

$$
\frac{\left(w-w_{1}\right)}{\left(w-w_{2}\right)} \frac{\left(w_{3}-w_{2}\right)}{\left(w_{3}-w_{1}\right)}=\frac{\left(z-z_{1}\right)}{\left(z-z_{2}\right)} \frac{\left(z_{3}-z_{2}\right)}{\left(z_{3}-z_{1}\right)}
$$

and then solve for w. The idea behind the sneaky way is this: when $z=z_{1}$, the right hand side is zero and so the left hand side is zero too, and this means $w=w_{1}$. When $z=z_{2}$, the left hand side is infinite, so is the right hand side and thus $w=w_{2}$. Finally when $z=z_{3}$ the right side is one, then the left hand side is one too and $w=w_{3}$.
(2) If $w=(a z+b) /(c z+d)$, then the inverse of w (i.e., the map which gives the original z for a given value of w) is also a bilinear transformation, usually denoted by w^{-1}. (Don't get mixed up between this and $1 / w!$) To find w^{-1}, 48
just invert z and w, i.e.,

$$
z=\frac{a w+b}{c w+d}
$$

or

$$
z(c w+d)=a w+b
$$

And so

$$
w=\frac{b-z d}{z c-a}
$$

We have $w^{-1}=(b-z d) /(z c-a)$. Equivalently, solve for z (in terms of w) in $w=(a z+b) /(c z+d)$, then $z=(b-w d) /(w c-a)$, the same thing.
(3) Fixed points of w are those values of z (if any) such that $w=z$, i.e., $z=$ $(a z+b) /(c z+d)$. Note that there may not be any fixed points (e.g., $w=z+j)$ or all points may be fixed points (e.g., $w=z$).

We illustrate these remarks with examples.

Example 12. Find a bilinear map which maps $1,0, j$ to $0, j,-j$, respectively.

Answer. Here

$$
\left\{\begin{array}{lll}
z_{1}=1, & z_{2}=0, & z_{3}=j \\
w_{1}=0, & w_{2}=j, & w_{3}=-j
\end{array}\right.
$$

and so

$$
\frac{(w-0)(-j-j)}{(w-j)(-j-0)}=\frac{(z-1)(j-0)}{(z-0)(j-1)}
$$

That is,

$$
\frac{-2 j w}{(w-j)(-j)}=\frac{(z-1) j}{z(j-1)}
$$

Simplifying gives

$$
w=\frac{w-j}{2} \frac{z-1}{z} \frac{j}{j-1} .
$$

We find

$$
w(j-1) 2 z=w(z-1) j+(z-1) .
$$

Finally,

$$
w=\frac{z-1}{z(j-2)+j} .
$$

We check:

$$
\begin{array}{rlrl}
\text { when } & z=1, & & w=0 \checkmark \\
z & =0, & w=\frac{-1}{j}=j \checkmark \\
z & =j, & w=\frac{j-1}{j(j-2)+j}=\frac{j-1}{-1-j} .
\end{array}
$$

The last w should equal $-j$. Does it? Note

$$
\frac{j-1}{-1-j}=\frac{1-j}{1+j}=\frac{(1-j)(1-j)}{(1+j)(1-j)}=\frac{1-2 j-1}{1+1}=-j \checkmark .
$$

Example 13. Find the inverse map to $w=\frac{z-j}{z+2 j}$.
Answer. This is the map that, given w, return the original z. The easiest way to find this map is to interchange z, w in the formula for w and then solve for w. Here we have

$$
z=\frac{w-j}{w+2 j} .
$$

Thus

$$
\begin{gathered}
z w+2 j z=w-j \\
50
\end{gathered}
$$

$$
w(z-1)=-2 j z-j .
$$

Finally

$$
w=\frac{-2 j z-j}{z-1} .
$$

Let us see if this works. Suppose we choose $z=0$ in the original w. Then the original map sends $z=0$ to $(-j) /(2 j)$, i.e., to $-1 / 2$. The inverse map sends $-1 / 2$ to $(-2 j(-1 / 2)-j) /(-1 / 2-1)=0$, which is the original z.

Example 14. Find the fixed points (if any) of

$$
w=\frac{j z+1}{(j+1) z+j} .
$$

Answer. We seek those z such that

$$
z=\frac{j z+1}{(j+1) z+j}
$$

or

$$
(j+1) z^{2}+j z=j z+1 .
$$

We have

$$
z^{2}=\frac{1}{j+1}=\frac{1}{\sqrt{2} e^{j \frac{\pi}{4}}} .
$$

This gives

$$
z= \pm \frac{1}{2^{\frac{1}{4}}} e^{-j\left(\frac{\pi}{8}\right)} .
$$

Example 15. Find the image of the circle $|z-j|=2$ under the map

$$
w=\frac{j z}{z+1} .
$$

Answer. We could try to find equations for x, y in terms of (u, v) and substitute these into $|z-j|=2$. In essence this is what we do, but in a slightly different way. Note that

$$
w=\frac{j[(z+1)-1]}{z+1}=j-\frac{j}{z+1} .
$$

So

$$
\frac{w-j}{j}=\frac{-1}{z+1} .
$$

We conclude

$$
z+1=\frac{j}{j-w} \quad \text { or } \quad z=\frac{j}{j-w}-1=\frac{w}{j-w} .
$$

(Note that we have found the inverse transformation.) Then $|z-j|=2$ becomes $|w /(j-w)-j|=2$. We simplify this to

$$
\left|\frac{(1+j) w+1}{j-w}\right|=2 \quad \text { or } \quad \frac{\left|w+\frac{1}{j+1}\right|}{|j-w|}=\frac{2}{|1+j|}=\sqrt{2} .
$$

That is,

$$
\frac{\left|w+\frac{1-j}{2}\right|}{|w-j|}=\sqrt{2} .
$$

Put $w=u+j v$ and square both sides to get

$$
\left(u+\frac{1}{2}\right)^{2}+\left(v-\frac{1}{2}\right)^{2}=2\left(u^{2}+(v-1)^{2}\right)
$$

or

$$
u^{2}+u+\frac{1}{4}+v^{2}-v+\frac{1}{4}=2\left(u^{2}+v^{2}-2 v+1\right) .
$$

We conclude

$$
\begin{aligned}
& u^{2}+v^{2}-3 v-u+\frac{3}{2}=0 \\
& \left(u-\frac{1}{2}\right)^{2}+\left(v-\frac{3}{2}\right)^{2}=\frac{1}{4}+\frac{9}{4}-\frac{3}{2}=1
\end{aligned}
$$

So we get a circle, centered at $z=\frac{1}{2}+\frac{3}{2} j$, radius $=1$.

Remark. There is another way to do this example, but it is very special to this type of function w, namely a bilinear transformation, and to this type of curve, namely a circle. Specifically, we use the fact that a bilinear transformation being a composition of translations, inversions, etc. maps circles and lines to either circles or lines. Now $|z-j|=2$ is a circle so its image under w is either a circle or a line. Note that the points $2+j,-j, 3 j$ are on the circle. The image of $2+j$ is $w_{1}=[j(2+j)] /(3+j)$, that of j is $w_{2}=j(j) /(j+1)$, that of $3 j$ is $w_{3}=j(3 j) /(3 j+1)$. We plot w_{1}, w_{2}, w_{3} and determine if these points lie on a circle or a straight line: there are no other possibilities. This still requires some work in this example, but in some cases this is the fastest way. Do not use this approach except for bilinear transformations mapping either circles or lines.

Further Exercises:

Exercise 1. Find all z such that $|z-j|=3$ and sketch.

Answer. $z=x+j y$ will satisfy this equation iff the distance from z to j is 3 . We thus have a circle, centered at j, of radius 3 .

This is the fastest way to do this. Alternatively and more generally, put $z=x+j y$ into $|z-j|=3$ and get

$$
|x+j(y-1)|=3 \text { or, by squaring, } x^{2}+(y-1)^{2}=9
$$

This is the same as before.

Exercise 2. Find all z such that $|z-j|=|z|$ and sketch.

Answer. We seek all points equidistant from j and 0 . This can be seen by noting $|z|=|z-0|$. So the answer is the straight line $z=j / 2$. This is the fast way. The slow way (again) is as follows: put $z=x+j y$, then

$$
|x+j(y-1)|=|x+j y| \quad \text { or } \quad|x+j(y-1)|^{2}=|x+j y|^{2} \quad \text { or } \quad x^{2}+(y-1)^{2}=x^{2}+y^{2} .
$$

Thus $x^{2}+y^{2}-2 y+1=x^{2}+y^{2}$ or $y=1 / 2$.

Exercise 3. Find all z such that $|z-1|+|z+1|=2$ and sketch.

Answer. We seek all points z whose sum of the distance to +1 and -1 is 2 . We expect an ellipse, but since +1 and -1 are 2 units apart, the only z which work are $z=x$ with $-1 \leq x \leq 1$. I.e., the ellipse is degenerate. To see this the slow way, we get

$$
\sqrt{(x-1)^{2}+y^{2}}+\sqrt{(x+1)^{2}+y^{2}}=2
$$

or

$$
\begin{aligned}
& (x-1)^{2}+y^{2}+(x+1)^{2}+y^{2}+2 \sqrt{(x-1)^{2}+y^{2}} \sqrt{(x+1)^{2}+y^{2}}=4 \\
\Longrightarrow & x^{2}-2 x+1+y^{2}+x^{2}+2 x+1+y^{2}+2 \sqrt{(x-1)^{2}+y^{2}} \sqrt{(x+1)^{2}+y^{2}}=4 \\
\Longrightarrow & x^{2}+y^{2}+\sqrt{(x-1)^{2}+y^{2}} \sqrt{(x+1)^{2}+y^{2}}=1 .
\end{aligned}
$$

That is,

$$
\left[(x-1)^{2}+y^{2}\right]\left[(x+1)^{2}+y^{2}\right]=\left(1-\left(x^{2}+y^{2}\right)\right)^{2}
$$

which becomes

$$
(x-1)^{2}(x+1)^{2}+y^{2}\left[(x-1)^{2}+(x+1)^{2}\right]+y^{4}=1-2\left(x^{2}+y^{2}\right)+\left(x^{2}+y^{2}\right)^{2} .
$$

We simplify

$$
x^{4}-2 x^{2}+1+y^{2}\left(x^{2}+1\right) 2+y^{4}=\underset{55}{=}-2\left(x^{2}+y^{2}\right)+x^{4}+2 x^{2} y^{2}+y^{4}
$$

or $4 y^{2}=0$. This gives us $y=0$. What about x ? It seems that x is free, but note that we have

$$
x^{2}+\sqrt{(x-1)^{2}} \sqrt{(x+1)^{2}}=1 \quad \text { or } \quad \sqrt{(x-1)^{2}} \sqrt{(x+1)^{2}}=1-x^{2} .
$$

But $\sqrt{(x-1)^{2}} \sqrt{(x+1)^{2}} \geq 0$, so $1-x^{2} \geq 0$, i.e., $x^{2} \leq 1$, and we get the same result.

Exercise 4. Find all z such that $|z-j|+|z+j|=4$.

Answer. There does not seem to be any very simple way to do this problem, so just put $z=x+j y$ and get

$$
\sqrt{x^{2}+(y-1)^{2}}+\sqrt{x^{2}+(y+1)^{2}}=4
$$

or

$$
x^{2}+(y-1)^{2}+x^{2}+(y+1)^{2}+2 \sqrt{x^{2}+(y-1)^{2}} \sqrt{x^{2}+(y+1)^{2}}=16
$$

This gives

$$
x^{2}+y^{2}+\sqrt{x^{2}+(y-1)^{2}} \sqrt{x^{2}+(y+1)^{2}}=7
$$

or

$$
\left(x^{2}+(y-1)^{2}\right)\left(x^{2}+(y+1)^{2}\right)=\left(7-\left(x^{2}+y^{2}\right)\right)^{2}
$$

which implies

$$
x^{4}+x^{2}\left[(y-1)^{2}+(y+1)^{2}\right]+(y-1)^{2}(y+1)^{2}=49-14\left(x^{2}+y^{2}\right)+x^{4}+2 x^{2} y^{2}+y^{4} .
$$

This gives

$$
x^{4}+x^{2}\left(y^{2}+1\right) 2+y^{4}-2 y^{2}+1=49-14\left(x^{2}+y^{2}\right)+x^{4}+2 x^{2} y^{2}+y^{4}
$$

or

$$
2 x^{2}-2 y^{2}+14 x^{2}+14 y^{2}=48
$$

Finally,

$$
4 x^{2}+3 y^{2}=12
$$

Exercise 5. Find the image of the circle $|z-2 j|=1$ under the map $w=1 / z$.

Answer. Again if $w=u+j v, z=x+j y$, then $x=u /\left(u^{2}+v^{2}\right), y=-v /\left(u^{2}+v^{2}\right)$.
So

$$
\sqrt{x^{2}+(y-2)^{2}}=1 \quad \text { or } \quad x^{2}+y^{2}-4 y+4=1
$$

We have

$$
x^{2}+y^{2}-4 y=-3 \quad \text { or } \quad \frac{1}{u^{2}+v^{2}}+\frac{4 v}{u^{2}+v^{2}}=-3
$$

which gives

$$
1+4 v+3 u^{2}+3 v^{2}=0 \quad \text { or } \quad u^{2}+v^{2}+\frac{4}{3} v+\frac{1}{3}=0
$$

which becomes

$$
u^{2}+\left(v+\frac{2}{3}\right)^{2}=\frac{4}{9}-\frac{3}{9}=\frac{1}{9}
$$

This is a circle centered at $u=0, v=-2 / 3$ of radius $1 / 3$.

Exercise 6. Find the image of the line $x=1$ under the map $w=\frac{z-j}{z+j}$.
Answer. We have $(z+j) w=z-j$, or $z(w-1)=-j-j w$. This gives $z=$ $-j(1+w) /(w-1)$. So if $z=x+j y$ and $w=u+j v$, we have

$$
x+j y=-j\left(\frac{(u+1)+j v}{(u-1)+j v}\right)
$$

This is the same as

$$
\begin{aligned}
x+j y & =\frac{v-j(1+u)}{(u-1)+j v}=\frac{[v-j(1+u)][(u-1)-j v]}{[(u-1)+j v][(u-1)-j v]} \\
& =\frac{[v(u-1)-v(1+u)]-j\left[(1+u)(u-1)+v^{2}\right]}{(u-1)^{2}+v^{2}} .
\end{aligned}
$$

So, since $x=1$, we get

$$
1=\frac{2 v(-1)}{(u-1)^{2}+v^{2}}
$$

(so can't have $u=1, v=0$ or get $0 / 0$) which gives

$$
(u-1)^{2}+v^{2}=-2 v .
$$

Finally, $(u-1)^{2}+(v+1)^{2}=1$, which is a circle of radius 1 , centered at $(1,-1)$, except for $u=1, v=0$. Note that $u=1, v=0$ does not work, since then $1=(z-j) /(z+j)$, which is impossible.

Exercise 7. Find the fixed points of the map $w=\frac{j z-j}{z+2 j}$.
Answer. We seek all z such that $z=(j z-j) /(z+2 j)$. Equivalently,

$$
z^{2}+2 j z=j z-j \quad \text { or } \quad z^{2}+j z+j=0 .
$$

From this we obtain $z=(-j+\sqrt{-1-4 j}) / 2 \quad$ (both values of $\sqrt{ }$ to be used). Now $\sqrt{-1-4 j}=j \sqrt{1+4 j}$, and $1+4 j=\underset{58}{\sqrt{17}} j^{j \theta_{0}}$ where $\tan \theta_{0}=4$. So $\sqrt{1+4 j}=$
$-(17)^{\frac{1}{4}} e^{\frac{j \theta_{0}}{2}}$ and

$$
z=\frac{-j \pm(17)^{\frac{1}{4}} e^{\frac{j \theta_{0}}{2}}}{2}=\frac{-j \pm(17)^{\frac{1}{4}}\left[\cos \left(\frac{\theta_{0}}{2}\right)+j \sin \left(\frac{\theta_{0}}{2}\right)\right]}{2}
$$

Note $\theta_{0} \approx 1.326, \cos \left(\frac{\theta_{0}}{2}\right) \approx .7882, \sin \left(\frac{\theta_{0}}{2}\right) \approx .6154$.

II. Limits and Derivatives

II.a Limits

We do this briefly. Let $w=f(z)$. If we set $w=u+j v, z=x+j y$, then $w=f(z)$ gives u and v as functions of (x, y). We term (the complex number) L to be the limit as $z \rightarrow z_{0}$ iff as $\left|z-z_{0}\right| \rightarrow 0$ (but $z \neq z_{0}!$) we have $|f(z)-L| \rightarrow 0$. Now put $L=\ell_{1}+j \ell_{2}$. Then $|f(z)-L| \rightarrow 0$ iff $\sqrt{\left(u(x, y)-\ell_{1}\right)^{2}+\left(v(x, y)-\ell_{2}\right)^{2}} \rightarrow 0$, i.e., both $\left|u(x, y)-\ell_{1}\right| \rightarrow 0$ and $\left|v(x, y)-\ell_{2}\right| \rightarrow 0$. In the same way, set $z_{0}=x_{0}+j y_{0}$. The $\left|z-z_{0}\right| \rightarrow 0$ iff both $x \rightarrow x_{0}$ and $y \rightarrow y_{0}$. So $\lim _{z \rightarrow z_{0}} f(z)=L$ is exactly the same as

$$
\left\{\begin{array}{l}
\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} u(x, y)=\ell_{1} \\
\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} v(x, y)=\ell_{2} .
\end{array}\right.
$$

As was done before, we say f is continuous at $z=z_{0}$ iff $\lim _{z \rightarrow z_{0}} f(z)=f\left(z_{0}\right)$. Equivalently, $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} u(x, y)=u\left(x_{0}, y_{0}\right)$ and $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} v(x, y)=v\left(x_{0}, y_{0}\right)$. So this is exactly the same as the situation encountered in advanced calculus courses! The problem you recall, is that (x, y) may approach $\left(x_{0}, y_{0}\right)$ in ∞ many ways (in complex lingo: $z \rightarrow z_{0}$ in ∞ many ways) so that using the definition directly to show there is a limit, is basically futile. We recall the following rules which are useful.

1. Polynomials in (x, y) are continuous.
2. Rational functions (i.e., poly/poly) are continuous (except where the bottom= $0)$.
3. Let $r=f(s)$ be a continuous function of one variable s (for this it more than suffices that f be differentiable) and $s=h(x, y)$ be a continuous function of (x, y). Then $r=f(s(x, y))$ is a continuous function of (x, y).
4. Sums, Differences, Products, Quotients (except where the bottom =0) of continuous functions are continuous.

Before doing examples, we recall that the definition of limit is directly useful in showing limits do not exist. If we choose two different paths on the complex plane passing through z_{0} and one of u, v has different limits along the two paths as $z \rightarrow z_{0}$, then $\lim _{z \rightarrow z_{0}} f(z)$ does not exist.

Example 1. Show $w=z^{2}$ is continuous at all z.

Answer. Put $w=u+j v, z=x+j y$. Then $w=z^{2}$ is the same as

$$
u=x^{2}+y^{2}, \quad v=2 x y
$$

Now let $z_{0}=x_{0}+j y_{0}$ be chosen at random. Then since both u and v are polynomials in x and y, we have by Rule 1

$$
\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} u=x_{0}^{2}+y_{0}^{2}, \quad \lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} v=2 x_{0} y_{0} .
$$

So

$$
\lim _{z \rightarrow z_{0}} w=\left(x_{0}^{2}+y_{0}^{2}\right)+2 x_{0} y_{0} j=w\left(x_{0}, y_{0}\right)
$$

and w is continuous.

Example 2. Show $w=e^{z}$ is continuous at all z.

Answer. Same procedure as before: $u=e^{x} \cos y, v=e^{x} \sin y$. Note that u and v are continuous (since e^{x} is differentiable and so are $\cos y$ and $\sin y$) by Rules 3 and
4. Then

$$
\begin{aligned}
\lim _{z \rightarrow z_{0}} w= & \lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} u+j \lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} v \\
= & e^{x_{0}} \cos y_{0}+j e^{x_{0}} \sin y_{0}=e^{z_{0}}=w\left(z_{0}\right) .
\end{aligned}
$$

Example 3. Show if $w=\frac{\operatorname{Re}(z)-\operatorname{Im}(z)}{\operatorname{Re}^{2}(z)+\operatorname{Im}^{2}(z)}+j \operatorname{Im}(z)$, then $\lim _{z \rightarrow 0} w$ does not exist. Answer. Observe that $z \rightarrow 0$ means $z \rightarrow 0+j 0$, i.e., $x \rightarrow 0$ and $y \rightarrow 0$. We now have $u=(x-y) /\left(x^{2}+y^{2}\right), v=y$. Note that $\lim _{(x, y) \rightarrow(0,0)} y=0$. So v is continuous. We check u. Note that if $(x, y) \rightarrow(0,0)$ along $x=y$ with $x>0$, we get $u \rightarrow 0$ while if $(x, y) \rightarrow(0,0)$ along $y=0$ with $x>0, u$ blows up. So $\lim _{(x, y) \rightarrow(0,0)} u(x, y)$ does not exist and thus neither does $\lim _{z \rightarrow z_{0}} f(z)$.

Remark. In practice, the complex functions encountered will usually either be continuous (and differentiable even) at the point in question or else blow up there. So the existence/nonexistence of limits will usually be obvious.

We now pass to the definition of the most important limit.

II.b Derivatives

In the last section, z sort of disappeared. We did everything in terms of x, y, u, v. Now z returns. We have: If $\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}$ exists, we call it the derivative of f with respect to z at $z=z_{0}$, and denote it by $\frac{d f}{d z}\left(z_{0}\right)$ or $f^{\prime}\left(z_{0}\right)$. There is no counterpart of this concept for vectors.

When it comes to calculating $f^{\prime}\left(z_{0}\right)$, there are 2 immediate difficulties with this definition.
(1) $\frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}$ is a fraction with the bottom $=0$ at $z=z_{0}$, so we can't use our Rules directly to help us find $f^{\prime}\left(z_{0}\right)$.
(2) We recall that z can approach z_{0} in ∞ many ways!

We don't even attempt to use the definition directly to find $f^{\prime}\left(z_{0}\right)$. You could actually use it for very simple cases, but there is a much better practical way. Before we see what this way is, we introduce some notation. If f is differentiable at z_{0} (i.e., $f^{\prime}\left(z_{0}\right)$ exists) and at all points near z_{0}, then f is analytic (also called holomorphic) at z_{0}. If f is analytic at all points of the plane, then f is entire (so an entire function is one which has a derivative everywhere). In practice, most functions are either analytic everywhere except at some points (where they blow up or have jumps), or entire.

We now see how to calculate $f^{\prime}(z)$.

II.c Cauchy-Riemann Equations and Consequences

Here we shall use partial derivatives to help us compute $f^{\prime}(z)$. Suppose first that we know (by some miracle) that $f^{\prime}\left(z_{0}\right)$ actually exists. So

$$
f^{\prime}\left(z_{0}\right)=\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}
$$

and z can approach z_{0} in any of the ∞ many possible ways. This means we can choose a specific way and since $f^{\prime}\left(z_{0}\right)$ is always the same, will actually get $f^{\prime}\left(z_{0}\right)$ as $z \rightarrow z_{0}$ along this special chosen way.

We now choose a way. We let z approach $z_{0}=x_{0}+j y_{0}$ by keeping y fixed (at $\left.y_{0}\right)$. So $z=x+j y_{0}$, and

$$
\begin{gathered}
\frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}=\frac{u\left(x, y_{0}\right)-u\left(x_{0}, y_{0}\right)}{x-x_{0}}+j\left(\frac{v\left(x, y_{0}\right)-v\left(x_{0}, y_{0}\right)}{x-x_{0}}\right) . \\
\xrightarrow{\mathrm{z}_{0}=\mathrm{x}_{0}+\mathrm{jy}}{ }_{0} \quad<\quad \mathrm{z}=\mathrm{x}+\mathrm{j} \mathrm{y}_{0}
\end{gathered}
$$

Let now $z \rightarrow z_{0}$ along this path. Then $x \rightarrow x_{0}$ and $y \rightarrow y_{0}$ (actually y is y_{0}). So

$$
\begin{aligned}
f^{\prime}\left(z_{0}\right) & =\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}} \\
& =\lim _{\left(x, y_{0}\right) \rightarrow\left(x_{0}, y_{0}\right)} \frac{u\left(x, y_{0}\right)-u\left(x_{0}, y_{0}\right)}{x-x_{0}}+j \lim _{\left(x, y_{0}\right) \rightarrow\left(x_{0}, y_{0}\right)} \frac{v\left(x, y_{0}\right)-v\left(x_{0}, y_{0}\right)}{x-x_{0}} .
\end{aligned}
$$

But we know the right hand side!!! It is $\partial u / \partial x+j(\partial v / \partial x)$! So if $f^{\prime}\left(z_{0}\right)$ exists, then

$$
f^{\prime}\left(z_{0}\right)=\frac{\partial u}{\partial x}\left(x_{0}, y_{0}\right)+j \frac{\partial v}{\partial x}\left(x_{0}, y_{0}\right) .
$$

This tells us how to calculate $f^{\prime}\left(z_{0}\right)$, if we know it exists. But when does $f^{\prime}\left(z_{0}\right)$ exist? After all z can approach z_{0} in ∞ many ways, and we have so far considered only one way. Maybe all is fine if z approaches z_{0} parallel to the x-axis (as we
actually did), but things can go wrong if z approaches z_{0} at an angle, say.
Let us, for the moment, have z approach z_{0} in another way: parallel to the y-axis. So now $z=x_{0}+j y$ and, once again, if $f^{\prime}\left(z_{0}\right)$ exists, then

$$
\begin{aligned}
\lim _{z \rightarrow z_{0}} & \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}} \\
& =\lim _{\left(x_{0}, y\right) \rightarrow\left(x_{0}, y_{0}\right)} \frac{u\left(x_{0}, y\right)-u\left(x_{0}, y_{0}\right)}{j y}+\lim _{\left(x_{0}, y\right) \rightarrow\left(x_{0}, y_{0}\right)} j \frac{v\left(x_{0}, y\right)-u\left(x_{0}, y_{0}\right)}{j y} .
\end{aligned}
$$

$$
\left\{\begin{array}{l}
z_{0}=x_{0}+j y_{0} \\
z=x_{0}+j y
\end{array}\right.
$$

But once again we know the right hand side! It is $\frac{\partial u}{\partial y} \frac{1}{j}+\frac{\partial v}{\partial y}$. So we get

$$
f^{\prime}\left(z_{0}\right)=\frac{\partial u}{\partial y} \frac{1}{j}+\frac{\partial v}{\partial y}=\frac{\partial v}{\partial y}-j \frac{\partial u}{\partial y}
$$

We had found earlier that

$$
f^{\prime}\left(z_{0}\right)=\frac{\partial u}{\partial x}+j \frac{\partial v}{\partial x}
$$

We must therefore have

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}
$$

at points where $f^{\prime}(z)$ exists. These are the Cauchy-Riemann Equations.
These equations enable us to find $f^{\prime}(z)$ when it exists, but more than that: It can be shown that for functions encountered in practice, if the Cauchy-Riemann equations hold in a region R of the plane, then f is differentiable there. The basic idea is similar to the calculation of a directional derivative for a "real" function of
two variables g in terms of $\partial g / \partial x$ and $\partial g / \partial y$.
In summary,
(1) For functions encountered in practice, $f(z)$ exists wherever the Cauchy-Riemann equations hold;
(2) If the Cauchy-Riemann equations hold, then

$$
f^{\prime}(z)=\frac{\partial u}{\partial x}+j \frac{\partial v}{\partial x}
$$

(or if you do not like this, $f^{\prime}(z)=\frac{\partial v}{\partial y}-j \frac{\partial u}{\partial x}!$)
(3) If f is differentiable at z_{0} and at all points near z_{0} we say f is analytic. If f is differentiable everywhere f is entire.

Now some examples.

Example 1. Show that e^{z} is differentiable everywhere (entire) and find its derivative.

Answer. Can you imagine doing this directly from the definition? Instead we put $u+j v=e^{x}(\cos y+j \sin y)$. So

$$
\begin{array}{ll}
\frac{\partial u}{\partial x}=e^{x} \cos y, & \frac{\partial u}{\partial y}=-e^{x} \sin y \\
\frac{\partial v}{\partial x}=e^{x} \sin y, & \frac{\partial v}{\partial y}=e^{x} \cos y
\end{array}
$$

So $\partial u / \partial x=\partial v / \partial y$ and $\partial u / \partial y=-\partial v / \partial x$ for every (x, y), i.e., for every z. Thus e^{z} is entire and, furthermore, its derivative is

$$
\frac{\partial u}{\partial x}+j \frac{\partial v}{\partial x}=e^{x}(\cos y+j \sin y)=e^{z}
$$

I.e.,

$$
\frac{d}{d z}\left(e^{z}\right)=e^{z}
$$

Remark. Note that $d\left(e^{z}\right) / d z$ is also

$$
\frac{\partial v}{\partial y}-j \frac{\partial u}{\partial y}=e^{x}(\cos y+j \sin y)
$$

Example 2. Find $\frac{d}{d z}\left(z^{2}\right)$.
Answer. $\quad u=x^{2}-y^{2}, v=2 x y$. So

$$
\begin{array}{ll}
\frac{\partial u}{\partial x}=2 x, & \frac{\partial u}{\partial y}=-2 y \\
\frac{\partial v}{\partial x}=2 y, & \frac{\partial v}{\partial y}=2 x
\end{array}
$$

Now

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}, \quad \frac{\partial v}{\partial x}=-\frac{\partial u}{\partial y}
$$

for all $z!$ So z^{2} is also entire, and

$$
\frac{d}{d z}\left(z^{2}\right)=2 x+j 2 y=2 z .
$$

Important Remark. From the Cauchy-Riemann Equations, it is easy to show that
(1) all the standard derivative rules (product, quotient, sum, etc.) hold;
(2) all the standard formulas hold:

$$
\frac{d z^{n}}{d z}=n z^{n-1}, \quad \frac{d}{d z}(\sin z)=\cos z, \quad \frac{d}{67}(\cos z)=-\sin z, \quad \frac{d}{d z}(\cosh z)=\sinh z,
$$

etc. This makes calculations often much faster and easier. There is a problem with $\log z$ however, because there are many values to $\log z$. If we restrict ourselves to $\log z$ (i.e., the principal value) then indeed, $d(\log z) / d z=1 / z$! The same comment applies to $z^{\frac{1}{n}}$. Note first that $z^{\frac{1}{n}}$ can be defined as $z^{\frac{1}{n}}=$ $e^{(\log z) \frac{1}{n}}$. By writing out what $\log z$ is, you can check that $z^{\frac{1}{n}}$ given this way is exactly the same as $z^{\frac{1}{n}}$ which we had earlier. Again, if we select, amongst all n values of $z^{\frac{1}{n}}$, the one given by $e^{(\log z) \frac{1}{n}}=|z|^{\frac{1}{n}} e^{\frac{j \theta}{n}}$ with $-\pi<\theta<\pi$, we indeed get the usual derivative formula

$$
\frac{d}{d z}\left(z^{\frac{1}{n}}\right)=\frac{1}{n} z^{\frac{1}{n}-1}
$$

where $z^{\frac{1}{n}}$ is defined in terms of $\log z!$

Example 3. Find $f^{\prime}(z)$ if $f(z)=e^{\left(z^{2}\right)} \sin z$.

Answer. We could do this via the Cauchy-Riemann equations, but this is much too long. Instead we use the rules from Remark 1 (namely product rule and chain rule) to get

$$
f^{\prime}(z)=e^{\left(z^{2}\right)}(2 z) \sin z+e^{\left(z^{2}\right)} \cos z .
$$

Of course, this requires knowing the derivatives of the exponential and the sine. After that, it's just like in the "real" case. Since $f^{\prime}(z)$ exists for all z, f is entire.

Example 4. Find $f^{\prime}(z)$ if $f(z)=(z+2+j)^{10}$.

Answer. Again by the chain rule: put $r=z+2+j$. Then $f=r^{10}$ and

$$
\frac{d f}{d z}=\frac{d f}{d r} \frac{d r}{d z}=10 r^{9} \frac{d r}{d z}
$$

Note that $2+j$ is a constant, so that $d r / d z=1$ and

$$
\frac{d f}{d z}=10(z+2+j)^{9} .
$$

Again, just like the "real" case, and again, f is entire.

Example 5. Find all points $z=x+j y$ where the function

$$
w=\frac{x}{x^{2}+y^{2}}-\frac{j y}{x^{2}+y^{2}}
$$

is differentiable (w.r.t. z).

Answer. Unless you happen to recognize what w is (in terms of z), it is best to use the Cauchy-Riemann equations. Here

$$
u=\frac{x}{x^{2}+y^{2}}, \quad v=\frac{-y}{x^{2}+y^{2}},
$$

so

$$
\begin{array}{ll}
\frac{\partial u}{\partial x}=\frac{1}{x^{2}+y^{2}}-\frac{2 x^{2}}{\left(x^{2}+y^{2}\right)^{2}}, & \frac{\partial u}{\partial y}=\frac{-x}{\left(x^{2}+y^{2}\right)^{2}} \cdot 2 y, \\
\frac{\partial v}{\partial x}=\frac{2 y x}{\left(x^{2}+y^{2}\right)^{2}}, & \frac{\partial v}{\partial y}=\frac{-1}{x^{2}+y^{2}}+\frac{2 y^{2}}{\left(x^{2}+y^{2}\right)^{2}} .
\end{array}
$$

Now

$$
\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}, \quad \frac{\partial u}{\partial x}=\frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}}=\frac{\partial v}{\partial y}
$$

so the equations are satisfied, except at $x=y=0$ (where the bottom is zero, and w is not defined). So $d w / d z$ exists for all z except $z=0$ and

$$
\frac{d w}{d z}=\frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}}+j \frac{2 x y}{\left(x^{2}+y^{2}\right)^{2}}
$$

You may also have noticed that $w=1 / z$. If you did notice, then right away you
would find $w^{\prime}=-1 / z^{2}$ by the quotient rule. Note that

$$
-\frac{1}{z^{2}}=-\frac{(\bar{z})^{2}}{(z \bar{z})^{2}}=-\frac{(x-j y)^{2}}{\left(x^{2}+y^{2}\right)^{2}}=\frac{\left(y^{2}-x^{2}\right)+2 j x y}{\left(x^{2}+y^{2}\right)^{2}}
$$

exactly the same as before, however note that we first found $d w / d z$ without knowing what w was in terms of z. Note that f is analytic at all points z except for $z=0$.

Example 6. Same as Example 5 with $w=x-j y^{2}$.

Answer. Here

$$
\frac{\partial u}{\partial x}=1, \quad \frac{\partial u}{\partial y}=0, \quad \frac{\partial v}{\partial x}=0, \quad \frac{\partial v}{\partial y}=-2 y .
$$

So the Cauchy-Riemann Equations hold for $y=-1 / 2$ and any x. Thus $d w / d z$ exists only on the line $y=-1 / 2$. Note that w is nowhere analytic since it's not differentiable at all points near any given point of the line.

Example 7. Let $w=|z|^{2}$. Find all points where $d w / d z$ exists.

Answer. Now $w=u+j v=x^{2}+y^{2}$, so $u=x^{2}+y^{2}, v=0$ and thus need to find those points where

$$
\frac{\partial u}{\partial x}=2 x=0 \quad \text { and } \quad \frac{\partial u}{\partial y}=2 y=0 .
$$

There is only one such point: $x=y=0$, i.e., $z=0$. We conclude $d w / d z$ exists at $z=0$ but nowhere else. Note that w is not analytic at $z=0$ (since only differentiable at $z=0$ and not near $z=0$).

Further Exercises:

Exercise 1. Find $\lim _{x \rightarrow(1+j)} \frac{z^{2}-2 j}{z-(1+j)}$ or show it does not exist.
Answer. Note that as $z \rightarrow 1+j$ we have $z^{2}-2 j \rightarrow(1+j)^{2}-2 j=2 j-2 j=0$.
So we are in the situation $0 / 0$ and can't use the rules. We try to divide:

$$
\begin{aligned}
& z+(1+j) \\
& z - (1 + j) \longdiv { z ^ { 2 } - 2 j } \\
& z^{2}-z(1+j) \\
& z(1+j)-2 j \\
& z(1+j)-(1+j)^{2} \\
& (1+j)^{2}-2 j
\end{aligned}
$$

But $(1+j)^{2}=1+2 j-j^{2}=2 j$! Thus $z^{2}-2 j=[z-(1+j)][z+(1+j)]$ and so

$$
\lim _{z \rightarrow(1+j)} \frac{z^{2}-2 j}{z-(1+j)}=\lim _{z \rightarrow(1+j)}[z+(1+j)]=2(1+j)
$$

Exercise 2. Find $\lim _{z \rightarrow 0}\left(\frac{z^{2}-2}{z-j}\right)$ or show it does not exist.
Answer. Here we use the rules first:

$$
\left.\begin{array}{l}
\lim _{z \rightarrow 0}(z-j)=-j \\
\lim _{z \rightarrow 0}\left(z^{2}-2\right)=-2
\end{array}\right\} \text { (since polynomials are continuous). }
$$

Thus we obtain

$$
\lim _{z \rightarrow 0}\left(\frac{z^{2}-2}{z-j}\right)=\frac{2}{j} .
$$

Exercise 3. Find $\lim _{z \rightarrow 0}\left(\frac{\bar{z}}{z}\right)$ or show it does not exist.

Answer. Note that here we are in the $0 / 0$ case. We have

$$
\lim _{z \rightarrow 0}\left(\frac{\bar{z}}{z}\right)=\lim _{z \rightarrow 0}\left(\frac{x-j y}{x+j y}\right)=\lim _{z \rightarrow 0}\left[\frac{(x-j y)^{2}}{x^{2}+y^{2}}\right]=\lim _{(x, y) \rightarrow(0,0)}\left[\frac{x^{2}-y^{2}}{x^{2}-y^{2}}+\frac{-2 j y x}{x^{2}+y^{2}}\right] .
$$

Observe

$$
\lim _{(x, y) \rightarrow(0,0)}\left[\frac{x^{2}-y^{2}}{x^{2}+y^{2}}\right]= \begin{cases}0 & \text { along } x=y \\ 1 & \text { along } y=0\end{cases}
$$

So it has no limit. We thus conclude that $\lim _{z \rightarrow 0}(\bar{z} / z)$ does not exist. Note that we did not need to consider $\lim _{(x, y) \rightarrow(0,0)}(-2 x y) /\left(x^{2}+y^{2}\right)$.

Exercise 4. Find all z at which $\sin z$ is continuous.

Answer. Note that $\sin z=\left(e^{j z}-e^{-j z}\right) /(2 j)$. But $e^{j z}$ is continuous for all z, since $e^{j z}=e^{j(x+j y)}=e^{-y}(\cos x+j \sin x)$ and $e^{-y} \cos x, e^{-y} \sin x$ are both continuous. The same is true of $e^{-j z}$, and of $\left(e^{j z}-e^{-j z}\right) /(2 j)$. So $\sin z$ is continuous for all z.

Exercise 5. For what z is $f(z)=\left(z^{2}-1\right) /\left(z^{2}+1\right)$ continuous and why?

Answer. $f(z)=\left(z^{2}-1\right) /\left(z^{2}+1\right)$. Now the bottom and top are polynomials and so $f(z)$ is continuous at all z where the bottom $\neq 0$, i.e., at all z such that $z^{2}+1 \neq 0$. What happens at $z^{2}+1=0$, i.e., at $z= \pm j$? We look at $\lim _{z \rightarrow j} \frac{z^{2}-1}{z^{2}+1}$. Observe that

$$
\begin{array}{ll}
z^{2}-1 & \rightarrow \quad j^{2}-1=-2, \\
z^{2}+1 & \rightarrow \quad j^{2}+1=0 .
\end{array}
$$

Thus as $z \rightarrow j,\left(z^{2}-1\right) /\left(z^{2}+1\right)$ blows up. Consequently there is no limit at $z=j$, and the function is not continuous at $z=j$. The same thing happens at $z=-j$. In conclusion, $f(z)=\left(z^{2}-1\right) /\left(z^{2}+1\right)$ is continuous at all z not equal to $\pm j$.

Exercise 6. Find all points where $f(z)=\bar{z}$ is differentiable.

Answer. Let $f(z)=\bar{z}=x-j y$. Then $u=x, v=-y$ and thus $\partial u / \partial x=1$, $\partial v / \partial y=-1$. The Caucy-Riemann equations are never satisfied and $f(z)$ is never differentiable.

Exercise 7. Find $d(z \tan z) / d z$.

Answer. We must find $d(\tan z) / d z$. Now $\tan z=\sin z / \cos z$ and $d(\sin z) / d z=$ $\cos z, d(\cos z) / d z=-\sin z$. These formulas can be obtained by writing $\sin z$ in terms of $\left(e^{j z}-e^{-j z}\right) /(2 j)$, and repeating with $\cos z$. Now

$$
\frac{d(\tan z)}{d z}=\frac{(\cos z)(\cos z)-\sin z(-\sin z)}{\cos ^{2} z}=\frac{1}{\cos ^{2} z}=\sec ^{2} z
$$

by the quotient rule. Thus, by the product rule,

$$
\frac{d(z \tan z)}{d z}=\tan z+z \sec ^{2} z
$$

Exercise 8. Find all points where $w=e^{-\operatorname{Im}(z)}[\cos (\operatorname{Re} z)+j \sin (\operatorname{Re} z)]$ is differentiable with respect to z. What is $d w / d z$ at these points?

Answer. We have $w=e^{-y}(\cos x+j \sin x)$. So $u=e^{-y} \cos x, v=e^{-y} \sin x$ and

$$
\begin{array}{ll}
\frac{\partial u}{\partial x}=-e^{-y} \sin x, & \frac{\partial v}{\partial y}=-e^{-y} \sin x \\
\frac{\partial u}{\partial y}=-e^{-y} \cos x, & \frac{\partial v}{\partial x}=e^{-y} \cos x
\end{array}
$$

The Cauchy-Riemann equations are always satisfied, and w has a derivative for all z. At any $z=x+j y$,

$$
\frac{d w}{d z}=-e^{-y} \sin x+j\left(e^{-y} \cos x\right)
$$

Let $f(z)=u+j v$ be analytic in some region of the plane. In this region we then have the Cauchy-Riemann Equations:

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}
$$

If we differentiate these w.r.t. x and y respectively, we get

$$
\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial^{2} v}{\partial x \partial y}, \quad \frac{\partial^{2} u}{\partial y^{2}}=-\frac{\partial^{2} v}{\partial x \partial y}
$$

and thus

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=\frac{\partial^{2} v}{\partial x \partial y}-\frac{\partial^{2} v}{\partial x \partial y}=0
$$

So u satisfies Laplace's Equation

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0
$$

in the region. This is an important equation which arises in a variety of steadystate problems (temperature distribution in bodies, electrostatic potentials, etc.). Its solutions are said to be harmonic functions. So if $f(z)$ is analytic, then u is harmonic. If we differentiate the original Cauchy-Riemann equations the other way around, then we find that v is also harmonic. So if f is analytic, both its real and imaginary parts are harmonic. There is one more thing. Suppose u, v are 2 harmonic functions which also satisfy the Cauchy-Riemann equations. Then u, v are harmonic conjugates and $f=u+j v$ is analytic. Note that the Cauchy-Riemann equations are not symmetric (due to the - sign in the second equation). This fixes which is u and which is v in $f=u+j v$. In general these cannot be interchanged.

Example 1. Show that $r=x^{2}-y^{2}$ is harmonic, find its harmonic conjugate and use the two functions to construct an analytic function with these as real and imaginary parts.

Answer. To see that r is harmonic we compute $\frac{\partial^{2} r}{\partial x^{2}}+\frac{\partial^{2} r}{\partial y^{2}}=2-2=0$. So r is harmonic. We next find a harmonic conjugate. Suppose we first think of r as " u ", then we need v such that

$$
2 x=\frac{\partial v}{\partial y} \quad \text { and } \quad-2 y=-\frac{\partial v}{\partial x} .
$$

This is the same problem as finding the "potential," or solving "exact differential equations." The first equation gives $v=2 x y+H(x)$ for some function H. The second gives $2 y=2 y+H^{\prime}(x)$. So $H^{\prime}(x)=0$, i.e., $H=$ a constant C. We have found $v=2 x y+C$ is a harmonic conjugate for any C and thus $f=\left(x^{2}-y^{2}\right)+j(2 x y+C)$ is the associated analytic function. You may have recognized f as $z^{2}+C j$ for a (real) constant C.

Suppose now we think of r as " v ". Then we need u such that

$$
\frac{\partial u}{\partial x}=-2 y, \quad \frac{\partial u}{\partial y}=-2 x .
$$

Now we find $u=-2 x y+H(y)$ and then $H(y)=C$. So, in this case $u=-2 x y+C$ with C real. The function now becomes $g=(-2 x y+C)+j\left(x^{2}-y^{2}\right)$. Note that f and g are different. But we see the connection after a minute: $f=-j g$, and the arbitrary constants are negatives of each other. Does this make any sense? Yes, if you notice that if $f=-j g$, then the real part of f is the imaginary part of g and the imaginary part of f is the minus the real part of g.

In summary, given a harmonic function r, we can construct by means of 75
the Cauchy-Riemann equations its harmonic conjugate. What this depends on is whether we think of r as the real or as the imaginary part of an analytic function. Usually, if we write u (for r) then we mean that u is to be the real part, while if we write v (for r) we mean that v is to be the imaginary part of f.

A point z_{0} such that f^{\prime} does not exist at z_{0}, but does so at all points near z_{0}, is called a singular point of f. In practice, almost all singular points arise because f is not defined (blows up) at the point in question, for example,

Example 2. Let $f(z)=z /\left(z^{2}+1\right)$. If $z^{2}+1 \neq 0$, then $f^{\prime}(z)$ exists: we just apply the quotient rule and the fact that $z, z^{2}+1$ are differentiable. If $z^{2}+1=0$, i.e., $z= \pm j$, then f does not exist, so f^{\prime} does not exist, so $\pm j$ are singular points.
II.e Angular Properties: Conformal Maps, Orthogonal Families

We start by recalling the following. Let

$$
\mathcal{C}=\left\{\begin{array}{l}
x=x(t) \\
y=y(t)
\end{array} \quad a \leq t \leq b\right.
$$

be a curve in the $x y$ plane. The position vector is $\mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}$. (Note that here \mathbf{j} is a vector, not $j=\sqrt{-1}!$) Then the velocity vector is $d \mathbf{r} / d t=x^{\prime} \mathbf{i}+y^{\prime} \mathbf{j}$, and its direction is tangential to \mathcal{C} (in the direction of increasing t).

We now pass to the complex plane, and use the analogy between z and 2-d vectors. Again let \mathcal{C} be the given curve, then $z(t)=x(t)+j y(t)$ (now j is $\sqrt{-1}$) is a curve in the complex plane. It is of course the same curve as before, just written in different form. We differentiate z with respect to the real variable t, and get $z^{\prime}(t)=x^{\prime}(t)+j y^{\prime}(t)$. Note that this is not a derivative with respect to z. It is just $\lim _{t \rightarrow t_{0}}\left[z(t)-z\left(t_{0}\right)\right] /\left(t-t_{0}\right)$, the same as for ordinary differentiation. We observe that $z^{\prime}(t)$ when plotted, is tangential to \mathcal{C}, indeed we have the same picture as before.

Now suppose $w=f(z)$ is an analytic function. This function maps points from
the z-plane to the w-plane. We are interested in what happens to points on the given curve $\mathcal{C}: \quad z=x(t)+j y(t)$. They get taken to $w(t)=f(z(t))$, which will vary depending on the specific choice of f (and \mathcal{C}).

There is one thing however which we notice. By the Chain Rule,

$$
\frac{d w}{d t}=\frac{d f}{d z} \cdot \frac{d z}{d t}, \quad \text { so } \quad\left|\frac{d w}{d t}\right|=\left|\frac{d f}{d z}\right| \cdot\left|\frac{d z}{d t}\right|
$$

and

$$
\arg \left[\frac{d w}{d t}\right]=\arg \left[\frac{d f}{d z}\right]+\arg \left[\frac{d z}{d t}\right] .
$$

We observe that $d w / d t$ is a tangent vector to the image of \mathcal{C} under w, and focus on the second equation. We note that $\arg [d w / d t]$ (i.e., the angle the tangent makes w.r.t. the u-axis) is the original angle of the tangent (i.e., $\arg [d z / d t]$) plus the argument of $d f / d z$, unless $d f / d z=0$ or $d z / d t=0$ in which case $d w / d t=0$ and thus $d w / d t$ does not have a defined argument.

The key observation is that $d f / d z$ does not have any dependence on the specific \mathcal{C}, i.e., choose a point z_{0} and suppose $\underline{2}$ curves C_{1} and C_{2} pass through z_{0}, say at $t=0$. The two curves get mapped by w to $w\left(C_{1}\right)$ and $w\left(C_{2}\right)$ respectively, while z_{0} is taken to $w\left(z_{0}\right)$, as in the picture.

Suppose none of $\frac{d f}{d z}\left(z_{0}\right), \frac{d z_{1}}{d t}(0), \frac{d z_{2}}{d t}(0)$ are zero. Then the tangent vectors to C_{1}, C_{2} at the meeting point z_{0} get rotated by the same angle (namely $\arg \left[\frac{d f}{d z}\left(z_{0}\right)\right]$), so the angle between C_{1}, C_{2} at z_{0} and their images $w\left(C_{1}\right), w\left(C_{2}\right)$ at $w\left(z_{0}\right)$ stays the same.

In summary: let $w=f(z)$ and suppose $\frac{d f}{d z}\left(z_{0}\right) \neq 0$, then w maps curves intersecting at z_{0} into the w plane in such a way that the angle between them is preserved at $w\left(z_{0}\right)$. Such a map is called conformal. In particular, if two curves meet at right angles in the z-plane, so do their images in the w-plane. We emphasize that each curve may be distorted by the map w. It is only the angle between them that stays the same.

The previous discussion had to do with the connection between "angles" in the z plane and in the w plane. There is another "angular" property of analytic functions which should be mentioned, which deals with angles just in the z-plane. Again, let $w=u+j v$ and consider the families of curves $u(x, y)=c, v(x, y)=d$ (for arbitrary constants c, d) in the (x, y) plane. Note that $u(x, y)=c$ will give y, say, as a function of x, denoted by $y_{1}(x)$. We find, differentiating implicitly w.r.t. x, and treating y_{1} as a function of x :

$$
\frac{\partial u}{\partial x} \frac{\partial x}{\partial x}+\frac{\partial u}{\partial y} \frac{d y_{1}}{7 x}=0 .
$$

That is,

$$
\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y} \frac{d y_{1}}{d x}=0 .
$$

In the same way, for any curve (i.e., for any constant d) of the second family $v(x, y)=d$ we have y as a function of x, denoted by $y_{2}(x)$ and

$$
\frac{\partial v}{\partial x}+\frac{\partial v}{\partial y} \frac{d y_{2}}{d x}=0
$$

Now suppose a member of the first family meets a member of the second at $z_{0}=$ $x_{0}+j y_{0}$. Then at this point we find from the Cauchy-Riemann equations:

$$
\frac{d y_{1}}{d x} \cdot \frac{d y_{2}}{d x}=\frac{\frac{\partial u}{\partial x}}{\frac{\partial u}{\partial y}} \cdot \frac{\frac{\partial v}{\partial x}}{\frac{\partial v}{\partial y}}=-1
$$

So the two curves meet at right angles!
In summary, the family of curves $u(x, y)=c, v(x, y)=d$ in the (x, y) plane meet at right angles (if at all) at a point where $w=u+j v$ is analytic unless of course one of the derivatives $\partial u / \partial y, \partial v / \partial y$ are zero. Since we can however interchange x with y in the previous discussion, all that we need again is that $f^{\prime}(z) \neq 0$. What happens at this last possibility requires a special treatment, as does the situation where w is not analytic at the point in question, which is beyond the scope of this course. We pass to examples.

Example 1. We consider the situation for a relatively simple case: $w=z^{2}$. Observe first that $d w / d z=2 z$, so w is conformal except at $z=0$, and angles between curves are preserved. To illustrate this, consider two straight lines on the z-plane $y=0$ and $y=x-1$. Clearly these meet at $x=1, y=0$ with an angle of $\theta=\pi / 4$. (To see this, note that a tangent vector to $y=x-1$ is $\mathbf{i}+\mathbf{j}$.)

Consider their images. Note that $u+j v=\left(x^{2}-y^{2}\right)-2 j x y$. So $y=0$ gets taken to

$$
\left\{\begin{array}{l}
u=x^{2} \\
v=0
\end{array} \quad-\infty<x<\infty\right.
$$

This is the positive u semiaxis (crossed over twice note, as x goes from $-\infty$ to ∞).
On the other hand, $y=x-1$ gets taken to:

$$
\left\{\begin{array}{l}
u=x^{2}-(x-1)^{2}=2 x-1 \\
v=2 x(x-1)=2 x^{2}-2 x
\end{array}\right.
$$

Solving for x in terms of u and substituting into the equation for v gives

$$
v=\frac{(u+1)(u-1)}{2}=\frac{u^{2}-1}{2}
$$

which is a parabola. Finally, $z=1$ becomes $w=1^{2}=1$, i.e., $u=1, v=0$. So in the w plane the picture is:

We check what ϕ is. By the theory, it should be $\pi / 4$. Now $w\left(C_{2}\right)$ in parametric 81
form is: $u=u, v=\left(u^{2}-1\right) / 2$, so the position vector $\mathbf{r}=u \mathbf{i}+\left(u^{2}-1\right) / 2 \mathbf{j}$ and the tangent vector is $d \mathbf{r} / d u=\mathbf{i}+u \mathbf{j}$ (in the direction of increasing u). So at $w=1$ (i.e., $u=1, v=0$) we get $d \mathbf{r} / d u=\mathbf{i}+\mathbf{j}$ and we find $\phi=\pi / 4$.

Next, let us see what happens to $x=0$ and $y=0$ (i.e., the two axes). Clearly these meet at $\pi / 2$ in the (x, y) plane. Their images under w are

$$
\left\{\begin{array} { l }
{ u = - y ^ { 2 } } \\
{ v = 0 }
\end{array} \quad \text { and } \quad \left\{\begin{array}{l}
u=x^{2} \\
v=0
\end{array} .\right.\right.
$$

So $x=0$ gets mapped to the negative u semiaxis, while $y=0$ gets mapped to the positive u semiaxis. The angle between these is clearly not $\pi / 2$!

The problem is that the x and y axes meet at $(0,0)$ and there $d w / d z=2 z$ is zero, so the map is not conformal there.

Finally, consider the family of curves $u=x^{2}-y^{2}=c_{1}, v=2 x y=c_{2}$ in the (x, y) plane, for constants c_{1}, c_{2}. We expect these two to meet at right angles, at points where derivatives $\neq 0$ are involved. We sketch a few curves.

We can check (by taking tangents) that indeed these meet at right angles, except for the cases $c_{1}=c_{2}=0$. Here the curves meet at $(0,0)$ but not at right angles! Again the difficulty is that $d w / d z=2 z=0$ there.

In conclusion, these geometric properties of analytic function are useful in solving numerically (and otherwise) a variety of practical problems in Electrical Engineering. In fairness, I feel such an approach was more important in the past, since today we have a variety of different solution procedures on the computer: finite elements, adaptive grids, etc., etc., etc. Furthermore, while most significant practical problems involve 3 space dimensions, analytic function approaches really belong to a 2 -d world, i.e., u, v are just functions of (x, y).

Further Exercises:

Exercise 1. Find $d f / d z$ if it exists: $f(z)=\sinh (z)+|z-j|^{2}$.

Answer. Let $f(z)=\sinh z+|z-j|^{2}$. Now $d(\sinh z) / d z=\cosh z$ everywhere. This can be seen by writing $\sinh z=\left(e^{z}-e^{-z}\right) / 2$. What about $d\left(|z-j|^{2}\right) / d z$? Now $|z-j|^{2}=x^{2}+(y-1)^{2}$. So $u=x^{2}+(y-1)^{2}, v=0$. The Cauchy-Riemann equations give: $2 x=0,2(y-1)=0$. So we need $x=0, y=1$ and then the derivative of $|z-j|^{2}$ is $\partial u / \partial x+j \partial v / \partial x=0$. So $f(z)=\sinh z+|z-j|^{2}$ is differentiable only at $z=0+1 j=j$.

Exercise 2. Find $d f / d z$ if it exists: $f(z)=z^{2} \bar{z}+e^{\left(z^{2}\right)}$.

Answer. Let $f(z)=z^{2} \bar{z}+e^{z^{2}}$. Now $e^{z^{2}}$ is entire, i.e., differentiable everywhere. In fact, $d\left(e^{z^{2}}\right) / d z=e^{z^{2}} 2 z$ by the chain rule. Now

$$
z^{2}|\bar{z}|=\left[\left(x^{2}-y^{2}\right)+2 x y j\right]\left[x^{2}+y^{2}\right] .
$$

So

$$
u=\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)=x^{4}-y^{4}, \quad v=\left(x^{2}+y^{2}\right)(2 x y)
$$

Thus

$$
\begin{array}{ll}
\frac{\partial u}{\partial x}=4 x^{3}, & \frac{\partial v}{\partial x}=(2 x)(2 x y)+\left(x^{2}+y^{2}\right)(2 y) \\
\frac{\partial u}{\partial y}=-4 y^{3}, & \frac{\partial v}{\partial y}=(2 y)(2 x y)+\left(x^{2}+y^{2}\right)(2 x)
\end{array}
$$

So

$$
\left.\begin{array}{c}
4 x^{3}=6 x y^{2}+2 x^{3} \tag{*}\\
-4 y^{3}=-\left(6 x^{2} y+2 y^{3}\right) \\
84
\end{array}\right\}
$$

Well, $x=y=0$ works. Do any other points work? We rewrite the equations of $(*)$ as

$$
\begin{aligned}
& 2 x^{3}=6 x y^{2} \\
& 2 y^{3}=6 x^{2} y
\end{aligned}
$$

These show that if one of x, y is zero so is the other. We may assume that both x, y are $\neq 0$. Then we have $2 x^{2}=6 y^{2}$ and $2 y^{2}=6 x^{2}$. Consequently we must have $x=y=0$ and there are no other solutions.

Exercise 3. It is known that $f(z)$ is entire and that $\overline{f(z)}=f(z)$. What is $f(z)$?

Answer. We know that $f(z)$ is entire, so $d f / d z$ exists for all z. Now put $f=u+j v$. Then $\bar{f}=f$ and so $u+j v=u-j v$, i.e., $v \equiv 0$. But $\partial u / \partial x=\partial v / \partial y=0$ and $\partial u / \partial y=0$ also. So $u=$ constant. In summary, f is a real constant.

Exercise 4. Let $u=2 y(1-x)$. Show that u is harmonic, find its harmonic conjugate v and a function $f(z)=u+j v$ which is entire.

Answer. $\quad u=2 y(1-x)$. Then we note $u_{x x}=0, u_{y y}=0$ and thus $u_{x x}+u_{y y}=0$. We conclude that u is harmonic. Now we find v from the Cauchy-Riemann equatins:

$$
\frac{\partial u}{\partial x}=-2 y=\frac{\partial v}{\partial y} \quad \longrightarrow \quad v=-y^{2}+C(x) \quad \longrightarrow \quad \frac{\partial v}{\partial x}=\frac{d C}{d x}
$$

Then

$$
\frac{\partial u}{\partial y}=-2 x+2=-\frac{\partial v}{\partial x}
$$

We conclude $d C / d x=2 x-2$, and thus $C=x^{2}-2 x+D$ with $D=$ constant. In summary, $v=-y^{2}+x^{2}-2 x+D$ and $w=2 y(1-x)+\left(-y^{2}+x^{2}-2 x+D\right) j$.

Exercise 5. Repeat exercise 4, except now $v=2 y(1-x)$ and you are to find u, and $f(z)=u+j v$.

Answer. Now $v=2 y(1-x)$. We already know v is harmonic from exercise 4 . We wish to find u. Observe that $\partial u / \partial x=\partial v / \partial y=2(1-x)$. Consequently,

$$
u=2 x-x^{2}+C(y) .
$$

Next

$$
\frac{d C}{d y}=\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}=2 y
$$

We conclude $d C / d y=2 y$ or $C=y^{2}+D$ for a constant D. Finally, $u=2 x-x^{2}+$ $y^{2}+D$ and $f=\left(2 x-x^{2}+y^{2}+D\right)+j 2 y(1-x)$.

Remark: Note that this f is j times the f found in exercise 4.

Exercise 6. Repeat exercise 4, with $u=\cos x \sinh y$.

Answer. Now $u=\cos x \sinh y$, so $u_{x x}=-\cos x \sinh y$ and $u_{y y}=\cos x \sinh y$. We conclude $u_{x x}+u_{y y}=0$ and u is harmonic. Now

$$
\frac{\partial u}{\partial x}=-\sin x \sinh y=\frac{\partial v}{\partial y}
$$

and thus

$$
v=-\sin x \cosh y+C(x) .
$$

But

$$
\frac{\partial u}{\partial y}=\cos x \cosh y=-\frac{\partial v}{\partial x}=\cos x \cosh y-\frac{d C}{d x} .
$$

Thus $d C / d x=0$ and $C=$ constant. Finally,

$$
f=\cos x \sinh y+(-\sin x \cosh y+C) j .
$$

Exercise 7. It is known that both $f=u+j v$ and $g=v+j u$ are entire. What are u and v ?

Answer. Now $f=u+j v$ is entire and so

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x} .
$$

But $g=v+j u$ is also entire, i.e.,

$$
\frac{\partial v}{\partial x}=\frac{\partial u}{\partial y}, \quad \frac{\partial v}{\partial y}=-\frac{\partial u}{\partial x} .
$$

We conclude

$$
\frac{\partial u}{\partial x}=0, \quad \frac{\partial u}{\partial y}=0, \quad \frac{\partial v}{\partial y}=0, \quad \frac{\partial v}{\partial x}=0 .
$$

But then

$$
\begin{array}{lll}
\frac{\partial u}{\partial x}=\frac{\partial u}{\partial y}=0 & \longrightarrow & u=\text { constant } \\
\frac{\partial v}{\partial x}=\frac{\partial v}{\partial y}=0 & \longrightarrow & v=\text { constant }
\end{array}
$$

So u and v are both constants.

Exercise 8. Construct by complex variable methods a family of curves orthogonal to the family $x+y=c$.

Answer. The first family is $x+y=c$. We recall that if $f=u+j v$ is analytic, with $d f / d z \neq 0$, then the families $u=c, v=d$ for constants c, d meet at right angles. Now choose $u=x+y$. Now $u_{x x}+u_{y y}=0$ and we choose v by

$$
\frac{\partial u}{\partial x}=1=\frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y}=1=-\frac{\partial v}{\partial x}
$$

We have $v=y-x+$ const. So the second family is $y-x=d$. Note that

$$
\frac{d f}{d z}=\frac{\partial u}{\partial x}+j \frac{\partial v}{\partial x}=1-j \neq 0 .
$$

So we conclude the members of the family $y-x=d$ meet those of the family $x+y=c$ at right angles.

III. Integrals

III.a Introduction

We begin by recalling "real" vector path integrals. Let \mathcal{C} be a curve in the (x, y) plane given by

$$
\mathcal{C}=\left\{\begin{array}{l}
x=x(t) \\
y=y(t)
\end{array} \quad a \leq t \leq b,\right.
$$

and let $\mathbf{F}=M \mathbf{i}+N \mathbf{j}$ be a vector field.

We define

$$
\int_{\mathcal{C}} \mathbf{F} \cdot d \mathbf{r}=\int_{t=a}^{b}\left(M \frac{d x}{d t}+N \frac{d y}{d t}\right) d t
$$

Let us now further suppose that \mathcal{C} is a simple closed path, i.e., the start point of $\mathcal{C}=$ end point of \mathcal{C}, and \mathcal{C} does not otherwise cross itself. We denote by $\oint \mathbf{F} \cdot d \mathbf{r}$, the integral of \mathbf{F} around \mathcal{C} in the counterclockwise direction, i.e., with the "inside" of \mathcal{C} on the left side as we traverse \mathcal{C}. We could evaluate such integrals by parametrizing \mathcal{C} and proceeding just as for the first part. It is important for us to note another way, given by Green's Theorem: Let \mathcal{C} be a simple closed path and suppose R is the region enclosed by \mathcal{C}. Then

$$
\oint_{\mathcal{C}} \mathbf{F} \cdot d \mathbf{r}=\iint_{R}\left[\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right] d x d y
$$

It is assumed that $\partial N / \partial x$ and $\partial M / \partial y$ both exist and are continuous inside R and on \mathcal{C}. This will be the case for what follows, except for important situations when N, M blow up at some point inside R. Green's Theorem then fails, and we replace it by the following version: Let R be a region of the plane, with boundary C_{1}, and a hole with boundary C_{2} as shown. (Note that earlier we started with a path \mathcal{C} and R denoted the "inside" of \mathcal{C}. Now we start with R, and C_{1}, C_{2} denote its two boundaries.)

Then

$$
\oint_{C_{1}} \mathbf{F} \cdot d \mathbf{r}=\iint_{R}\left[\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right] d x d y+\oint_{C_{2}} \mathbf{F} \cdot d \mathbf{r}
$$

So, if $\partial N / \partial x \equiv \partial M / \partial y$ in R, then

$$
\oint_{C_{1}} \mathbf{F} \cdot d \mathbf{r}=\oint_{C_{2}} \mathbf{F} \cdot d \mathbf{r} .
$$

This is important for us, because the result holds if $\partial N / \partial x, \partial M / \partial y$ both exist and are continuous in R, in particular: M, N could blow up inside "the hole." What happens inside the "hole" does not matter, but the price we pay is the calculation of $\oiiint_{C_{2}} \mathbf{F} \cdot d \mathbf{r}$.

We conclude this review by pointing out that the second result follows from the first, if we make a cut from C_{1} to C_{2}. We have:

$$
\iint_{R}\left[\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right] d x d y=\oint_{C_{1}} \mathbf{F} \cdot d \mathbf{r}+\int_{C_{3}} \mathbf{F} \cdot d \mathbf{r}+\oint_{C_{2}} \mathbf{F} \cdot d \mathbf{r}+\int_{C_{4}} \mathbf{F} \cdot d \mathbf{r} .
$$

But C_{3} is C_{4} traversed backwards while C_{2} is traversed clockwise and thus

$$
\begin{aligned}
& \int_{C_{3}} \mathbf{F} \cdot d \mathbf{r}=-\int_{C_{4}} \mathbf{F} \cdot d \mathbf{r} \\
& \oint_{C_{2}} \mathbf{F} \cdot d \mathbf{r}=-\oint_{C_{2}} \mathbf{F} \cdot d \mathbf{r},
\end{aligned}
$$

and the result.
III.b Path Integrals in the Complex Plane

We are now ready to return to the complex plane. Given a path \mathcal{C}, we define the integral of a complex function $f(z)$, i.e., $\int_{\mathcal{C}} f(z) d z$, just like we did for vectors, keeping in mind that $j^{2}=-1$.

$$
\begin{aligned}
\int_{\mathcal{C}} f(z) d z & =\int_{\mathcal{C}}(u+j v)(d x+j d y) \\
& =\int_{\mathcal{C}}[(u d x-v d y)+j(v d x+u d y)] \\
& =\int_{t=a}^{b}\left[u \frac{d x}{d t}-v \frac{d y}{d t}\right] d t+j \int_{t=a}^{b}\left[v \frac{d x}{d t}+u \frac{d y}{d t}\right] d t
\end{aligned}
$$

where \mathcal{C} is given by

$$
\left\{\begin{array}{l}
x=x(t) \\
y=y(t)
\end{array} \quad a \leq t \leq b .\right.
$$

In more condensed notation:

$$
\int_{\mathcal{C}} f(z) d z=\int_{t=a}^{b}[f(z(t))]\left(\frac{d z}{d t}\right) d t
$$

Note that we can interpret intuitively $\int_{\mathcal{C}} f(z) d z$ as follows: Let t vary from t to $t+d t$, then z changes from $z(t)$ to $z(t+d t)$. Thus

$$
f(z) d z \cong f(z)[z(t+d t)-z(t)] \cong f(z)\left[\frac{d z}{d t}\right] d t
$$

Summing as t goes from a to b and taking the limit as $d t \rightarrow 0$ gives the result. Observe that there is no immediate physical interpretation to $\int_{\mathcal{C}} f(z) d z$ (unlike $\int_{\mathcal{C}} \mathbf{F} \cdot d \mathbf{r}=$ work $)$.

Before doing an example, we note
(1) Let $d w / d z=f$ in a region with no holes containing the path \mathcal{C}. Then $f d z / d t=(d w / d z)(d z / d t)=d w$ and thus $\int_{\mathcal{C}} f d z=w$ (end point) $-w$ (start point).
(2) $\int_{\mathcal{C}} f(z) d z$ will depend in general not only on the start/end points, but also on the specific path taken.
(3) If we denote by $-\mathcal{C}$, the path \mathcal{C} travelled backwards, then

$$
\int_{\mathcal{C}} f(z) d z=-\int_{-\mathcal{C}} f(z) d z
$$

(4) If the path $\mathcal{C}=C_{1}+C_{2}$ as shown, then

$$
\int_{\mathcal{C}} f(z) d z=\int_{C_{1}} f(z) d z+\int_{C_{2}} f(z) d z
$$

(5) Let

$$
\mathcal{C}=\left\{\begin{array}{l}
x=x(t) \\
y=y(t)
\end{array} \quad a \leq t \leq b .\right.
$$

Then

$$
\int_{t=a}^{t=b}\left|z^{\prime}\right| d t=\int_{\substack{t=a \\ 93}}^{t=b} \sqrt{\left(x^{\prime}\right)^{2}+\left(y^{\prime}\right)^{2}} d t=L
$$

the length of \mathcal{C}.
(6) If \mathcal{C} is a path parallel to the x-axis, i.e.,

$$
\mathcal{C}=\left\{\begin{array}{l}
x=x(t) \\
y=y_{0}
\end{array} \quad a \leq t \leq b\right.
$$

with y_{0} constant, then $d y=0$ and

$$
\int_{\mathcal{C}} f(z) d z=\int_{a}^{b}\left(u \frac{d x}{d t}+j v \frac{d x}{d t}\right) d t
$$

Now some examples.

Example 1. Calculate $\int_{\mathcal{C}} z^{2} d z$ where \mathcal{C} is the part of the parabola $y=x^{2}$ from $z=0$ to $z=1+j$.

Answer. First note that $d\left(z^{3} / 3\right) / d z=z^{2}$. Thus

$$
\int_{\mathcal{C}} z^{2} d z=\left.\frac{z^{3}}{3}\right|_{0} ^{1+j}=\frac{(1+j)^{3}}{3}
$$

To practice, we also parametrize:

$$
\mathcal{C}=\left\{\begin{array}{l}
x=t \\
y=t^{2}
\end{array} \quad 0 \leq t \leq 1\right.
$$

(of course we could also parametrize \mathcal{C} as

$$
\left\{\begin{array}{l}
x=x \\
y=x^{2}
\end{array} \quad 0 \leq x \leq 1\right.
$$

and in other ways as well). Then $z=t+j t^{2}$ on \mathcal{C} and

$$
\begin{aligned}
\int_{\mathcal{C}} z^{2} d z & =\int_{t=0}^{1}\left(t+j t^{2}\right)^{2}(1+2 j t) d t=\int_{t=0}^{1}\left(t^{2}+2 j t^{3}-t^{4}\right)(1+2 j t) d t \\
& =\int_{0}^{1}\left[\left(t^{2}-5 t^{4}\right)+j\left(4 t^{3}-2 t^{5}\right)\right] d t=\left(\frac{1}{3}-1\right)+j\left(1-\frac{2}{6}\right)
\end{aligned}
$$

Example 2. Calculate $\oiint_{\mathcal{C}} 1 / z d z$ if \mathcal{C} is the circle centered at $z=0$, of radius 1 , traversed counterclockwise.

Answer. We first parametrize \mathcal{C}, and the angle θ seems useful as a parameter.

So

$$
\mathcal{C}=\left\{\begin{array}{l}
x=\cos \theta \\
y=\sin \theta
\end{array} \quad 0 \leq \theta \leq 2 \pi .\right.
$$

Then, on $\mathcal{C}, z=\cos \theta+j \sin \theta=e^{j \theta}$! And

$$
\oint_{\mathcal{C}} \frac{1}{z} d z=\int_{\theta=0}^{2 \pi} \frac{1}{e^{j \theta}}\left(\frac{d z}{d \theta}\right) d \theta=\int_{95}^{2 \pi} \frac{j e^{j \theta}}{e^{j \theta}} d \theta=j \int_{0}^{2 \pi} d \theta=2 \pi j .
$$

Important Remark. Note that we can't use Green's Theorem directly here - see below-(and indeed $\Phi 1 / z d z \neq 0)$ since $1 / z$ blows up at $z=0$. Yet intuitively there should be a connection between $\oiint_{\mathcal{C}} f(z) d z$ over simple closed paths \mathcal{C}-just like our circle - and Green's Theorem. Indeed there is, see below, but for now we do such integrals by parametrizing.

Important Example 3. Let n be an integer, positive or negative but not equal -1 , and let z_{0} be a fixed point of the plane. Calculate

$$
\oint_{\mathcal{C}}\left(z-z_{0}\right)^{n} d z
$$

where \mathcal{C} is a circle of radius r centered at z_{0}.

Answer. Again, parametrize \mathcal{C} first. So let $z_{0}=x_{0}+j y_{0}$.

Then \mathcal{C} is

$$
\left\{\begin{array}{l}
x=x_{0}+r \cos \theta \\
y=y_{0}+r \sin \theta
\end{array} \quad 0 \leq \theta \leq 2 \pi,\right.
$$

i.e., $z=z_{0}+r(\cos \theta+j \sin \theta)=z_{0}+r e^{j \theta}$. Then

$$
\begin{aligned}
\oint_{\mathcal{C}}\left(z-z_{0}\right)^{n} d z & =\int_{\theta=0}^{2 \pi}\left(r^{n} e^{n j \theta}\right) r j e^{j \theta} d \theta \\
& =\int_{\theta=0}^{2 \pi} j r^{n+1} e^{(n+1) j \theta} d \theta=\left.j r^{n+1} \frac{e^{(n+1) j \theta}}{(n+1) j}\right|_{\theta=0} ^{2 \pi} .
\end{aligned}
$$

Here we have used the fact that $n \neq-1$, so $n+1 \neq 0$. So

$$
\oint_{\mathcal{C}}\left(z-z_{0}\right)^{n} d z=\frac{r^{n+1}}{n+1}\left[e^{(n+1) j 2 \pi}-e^{0}\right] .
$$

But

$$
e^{j(n+1) 2 \pi}=\cos (2 \pi(n+1))+j \sin (2 \pi(n+1))=1+0 j
$$

and thus $\mathscr{\oiint}_{\mathcal{C}}\left(z-z_{0}\right)^{n} d z=0$, regardless of n or of r or z_{0} (except $n \neq-1$).

Remark. Note that if, actually, $n=-1$, then

$$
\oint_{\mathcal{C}}\left(z-z_{0}\right)^{-1} d z=\int_{\theta=0}^{2 \pi} j d \theta=2 \pi j \neq 0!
$$

So $\mathscr{\mathscr { C }}_{\mathcal{C}}\left(z-z_{0}\right)^{-1} d z$ is not zero, and equals $2 \pi j$ regardless of z_{0} or r.

We now focus on the connection between the integrals of $f(z)$ over simple closed paths \mathcal{C} and the properties of f inside \mathcal{C}.
III.c Cauchy's Theorem, Cauchy's Integral Formula and Consequences We have the following result.

Theorem. Let \mathcal{C} be a simple closed path and $f(z)$ an analytic function inside and on \mathcal{C}. Then

$$
\oint_{\mathcal{C}} f(z) d z=0 .
$$

Proof: We use Green's Theorem. Let $f=u+j v$ and remember $\partial u / \partial x=\partial v / \partial y$, $\partial u / \partial y=-\partial v / \partial x$ inside and on \mathcal{C}.

So

$$
\begin{aligned}
\oint_{\mathcal{C}} f(z) d z & =\oint_{\mathcal{C}}(u+j v)(d x+j d y) \\
& =\oint_{\mathcal{C}}(u d x-v d y)+j \oint_{\mathcal{C}} v d x+u d y .
\end{aligned}
$$

Now

$$
\oint_{\mathcal{C}}(u d x-v d y) \stackrel{\text { Green }}{=} \iint_{R}\left(-\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right) d x d y \stackrel{\text { C. R. equations }}{=} 0
$$

and

$$
\oint_{\mathcal{C}}(v d x+u d y) \stackrel{\text { Green }}{=} \iint_{R}\left(\frac{\partial u}{\partial x}-\frac{\partial v}{\partial y}\right) d x d y \stackrel{\text { C. R. equations }}{=} 0 .
$$

So

$$
\oint_{\mathcal{C}} f(z) d z=0
$$

Consequences.

(1) If f is analytic, \mathcal{C} not closed, then $\int_{\mathcal{C}} f(z) d z$ depends only on start/stop points. Indeed, if \mathcal{C} is given, and C_{1} is another path with the same start/stop points, $C_{1}+(-\mathcal{C})$ make a simple closed path, so then

$$
\int_{C_{1}} f(z) d z-\int_{\mathcal{C}} f(z) d z=0
$$

i.e.,

$$
\int_{\mathcal{C}} f(z) d z=\int_{C_{1}} f(z) d z .
$$

Of course we require f to be analytic on C_{1}, C_{2} and the region between them.
(2) Let \mathcal{C} be any simple closed path. Then

$$
\oint_{\mathcal{C}} e^{z} d z=0, \quad \oint_{\mathcal{C}} z^{3} d z=0, \quad \oint_{\mathcal{C}} \sin z d z=0, \text { etc. }
$$

(3) Let C_{1}, C_{2} be as shown.

Suppose f is analytic in the region between C_{1} and C_{2}. Then

$$
\oint_{C_{1}} f(z) d z=\oint_{99} f(z) d z .
$$

To see this, look at cuts, just like before.

We now pass to a closely related result: Cauchy's integral formula. Before we do, we observe a couple of preliminary results. Recall that from the defintion of the integral, $\int_{\mathcal{C}} f(z) d z$ is obtained by discretizing \mathcal{C} into pieces as t goes from t to $t+d t$. We then sum $\sum f(z(t))[z(t+d t)-z(t)]$ over all the subsegments into which \mathcal{C} has been decomposed and take limit as $d t \rightarrow 0$.

Now we recall that $|a||b|=|a b|$ and $|a+b| \leq|a|+|b|$ for any complex a, b. So

$$
\left|\sum f(z(t)) d z\right| \leq \sum|f(z(t))||d z|
$$

where we have put $d z$ for $z(t+d t)-z(t)$. If we know $|f(z(t))| \leq M$ for some M, we conclude that

$$
\left|\int_{\mathcal{C}} f(z(t)) d z\right| \leq \int_{\mathcal{C}} M|d z| .
$$

Now

$$
|d z|=\sqrt{(d x)^{2}+(d y)^{2}}=\sqrt{\left(x^{\prime}\right)^{2}+\left(y^{\prime}\right)^{2}} d t=d \ell
$$

the bit of length of \mathcal{C} between $z(t)$ and $z(t+d t)$. So

$$
\left|\int_{\mathcal{C}} f(z(t)) d z\right| \leq M \int_{\mathcal{C}}|d z|=M \ell
$$

where $\ell=$ length of \mathcal{C}. Note that this is true for \mathcal{C} closed or not. Now we pass to our next result. Let \mathcal{C} be any simple closed path and z_{0} any point inside \mathcal{C}. We consider $\mathscr{\oiint} f(z) /\left(z-z_{0}\right) d z$ for any f analytic inside and on \mathcal{C}.

At first sight, one may think that this integral should be zero, but then one notices that Cauchy's Theorem does not hold inside \mathcal{C} since $f(z) /\left(z-z_{0}\right)$ has zero for the bottom at $z=z_{0}$. Thus $f(z) /\left(z-z_{0}\right)$ does not exist at $z=z_{0}$, never mind being differentiable. So, we take z_{0} "out" by introducing a new path C_{1} which is a small circle of radius ε centered at z_{0} (as shown).

Let R^{\prime} be the region between \mathcal{C} and C_{1}. Then $f(z) /\left(z-z_{0}\right)$ is analytic in R^{\prime} (remember: the quotient rule holds, and z_{0} is not in R^{\prime}). So

$$
\oint_{\mathcal{C}} \frac{f(z)}{z-z_{0}} d z=\oint_{101} \frac{f(z)}{z-z_{0}} d z
$$

just as noted before. We focus on the right hand side. We add and subtract $f\left(z_{0}\right)$:

$$
\oint_{C_{1}} \frac{f(z)}{z-z_{0}} d z=\oint_{C_{1}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}} d z+\oint_{C_{1}} \frac{f\left(z_{0}\right)}{z-z_{0}} d z .
$$

Now the second integral is

$$
\oint_{C_{1}} \frac{f\left(z_{0}\right)}{z-z_{0}} d z=f\left(z_{0}\right) \oint_{C_{1}} \frac{d z}{z-z_{0}}=f\left(z_{0}\right) \cdot 2 \pi j
$$

since C_{1} is a circle centered at z_{0}. (This is exactly one of the earlier examples!)
On the other hand, if C_{1} has small enough radius, for z on C_{1} we have

$$
\frac{f(z)-f\left(z_{0}\right)}{z-z_{0}} \cong \frac{d f}{d z}\left(z_{0}\right) .
$$

Then

$$
\begin{aligned}
\left|\oint_{C_{1}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}} d z\right| & \leq \oint_{C_{1}}\left|\frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}\right||d z| \\
& \leq M \oint_{C_{1}}|d z|=M \cdot \text { length of } C_{1} \\
& =M \cdot 2 \pi \varepsilon \longrightarrow 0 \text { as } \varepsilon \rightarrow 0
\end{aligned}
$$

where M is an estimate on $\left|\frac{d f}{d z}\left(z_{0}\right)\right|$. So, we get by letting $\varepsilon \rightarrow 0$,

$$
\oint_{\mathcal{C}} \frac{f(z)}{z-z_{0}} d z=(2 \pi j) f\left(z_{0}\right)
$$

or

$$
f\left(z_{0}\right)=\frac{1}{2 \pi j} \oint_{\mathcal{C}} \frac{f(z)}{z-z_{0}} d z
$$

This is an amazing formula. It shows that if f is analytic and we choose any \mathcal{C} and any z_{0} inside \mathcal{C}, then

$$
f\left(z_{0}\right)=\frac{1}{2 \pi j} \oint_{\mathcal{C}} \frac{f(z)}{z-z_{0}} d z .
$$

This means that if I know just $f(z)$ on \mathcal{C}, for any \mathcal{C} containing a point z_{0}, then I know $f\left(z_{0}\right)$!

So if an analytic function f is given on a simple closed path \mathcal{C}, then we automatically specify f inside \mathcal{C}. Any changes from these values of f must destroy the property of f being differentiable! Totally different from the "real" world! We consider some examples.

Example 1. Evaluate $\frac{1}{2 \pi j} \mathscr{C}_{\mathcal{C}} \frac{f(z)}{z-z_{0}} d z$ if (a) $f(z)=e^{z}$; (b) $f(z)=\sin z$; (c) $f(z)=$ z^{10}; and z_{0} is a point inside the simple closed path \mathcal{C}.

Answer. (a) $e^{z_{0}} ; ~(\mathrm{~b}) \sin \left(z_{0}\right) ;$ (c) z_{0}^{10}.

Example 2. Same as Example 1, except z_{0} is outside \mathcal{C}.

Answer. (a) 0; (b) 0; (c) 0.
Note that in Examples 1 and 2 we did not specify \mathcal{C}, nor the specific z_{0} either inside or outside \mathcal{C} !

There are more consequences of this formula. We have

$$
f\left(z_{0}\right)=\frac{1}{2 \pi j} \oint \mathcal{C} \frac{f(z)}{z-z_{0}} d z .
$$

It is useful to change notation: let s replace z and z replace z_{0}. We get

$$
f(z)=\frac{1}{2 \pi j} \oint_{\mathcal{C}} \frac{f(s)}{s-z} d s
$$

for any z inside the simple closed contour \mathcal{C}. We then have

$$
\frac{d f(z)}{d z}=\frac{1}{2 \pi j} \oint_{\mathcal{C}} \frac{f(s)}{(s-z)^{2}} d s
$$

by differentiating both sides with respect to z. If we do it again, we get

$$
\frac{d^{2} f(z)}{d z^{2}}=\frac{2}{2 \pi j} \oint_{\mathcal{C}} \frac{f(s)}{(s-z)^{3}} d s
$$

Then

$$
\frac{d^{3} f}{d z^{3}}(z)=\frac{3 \cdot 2}{2 \pi j} \oint_{\mathcal{C}} \frac{f(s)}{(s-z)^{4}} d s
$$

and so

$$
\frac{d^{n} f}{d z^{n}}(z)=\frac{n!}{2 \pi j} \oint_{\mathcal{C}} \frac{f(s)}{(s-z)^{n+1}} d s
$$

These formulas, connecting integrals and derivatives, will be used in what follows.

Further Exercises:

Exercise 1. Let C_{1} be the circle $x^{2}+y^{2}=1$, and C_{2} be the straight line $y=x$ in the z-plane. These curves meet at $z_{0}=1 / \sqrt{2}+1 / \sqrt{2} j$. Find the angle between their image curves $w\left(C_{1}\right), w\left(C_{2}\right)$ at the point of intersection $w\left(z_{0}\right)$ if $w=1 / z$.

Answer. Now C_{1} is the circle $x^{2}+y^{2}=1$ and C_{2} is the line $y=x$. So we can parametrize C_{1} as

$$
\left\{\begin{array}{l}
x=\cos \theta \\
y=\sin \theta
\end{array} \quad 0 \leq \theta \leq 2 \pi\right.
$$

Let $\mathbf{r}_{1}(\theta)=\mathbf{i} \cos \theta+\mathbf{j} \sin \theta$ be the position vector for C_{1}. Then $d\left(\mathbf{r}_{1}(\theta)\right) / d \theta=$ $-\mathbf{i} \sin \theta+\mathbf{j} \cos \theta$. In the same way

$$
C_{2}=\left\{\begin{array}{l}
x=t \\
y=t
\end{array} \quad-\infty<t<\infty, \quad \mathbf{r}_{2}(t)=t \mathbf{i}+t \mathbf{j}, \quad \frac{d \mathbf{r}_{2}}{d t}=\mathbf{i}+\mathbf{j}\right.
$$

So C_{1}, C_{2} meet at $1 / \sqrt{2}+j 1 / \sqrt{2}$ (thus $\cos \theta=1 / \sqrt{2}, \sin \theta=1 / \sqrt{2}$) at an angle ϕ given by

$$
\left(-\frac{1}{\sqrt{2}} \mathbf{i}+\mathbf{j} \frac{1}{\sqrt{2}}\right) \cdot(\mathbf{i}+\mathbf{j})=\cos \phi\left|-\frac{1}{\sqrt{2}}+j \frac{1}{\sqrt{2}}\right||\mathbf{i}+\mathbf{j}| .
$$

So $\cos \phi=0$ and $\phi=\pi / 2$. Now $w=1 / z, d w / d z=-1 / z^{2}$ and $d w / d z \neq 0$ at $z=1 / \sqrt{2}+j 1 / \sqrt{2}$. Thus $w\left(C_{1}\right), w\left(C_{2}\right)$ meet at the same angle as C_{1}, C_{2}, namely $\pi / 2$.

Evaluate the following integrals: $\int_{\mathcal{C}} f(z) d z$.
Exercise 2. $\quad f(z)=(\bar{z})^{2}, \mathcal{C}$ is the piece of parabola $y=x^{2}$ from $(0,0)$ to $(1,1)$.

Answer.

$$
\int_{\mathcal{C}}(\bar{z})^{2} d z=\int_{\mathcal{C}}(x-j y)^{2}(d x+j d y)
$$

\mathcal{C} can be parametrized as $\left\{\begin{array}{l}x=t \\ y=t^{2}\end{array} \quad 0 \leq t \leq 1\right.$. Thus

$$
\begin{aligned}
\int_{\mathcal{C}}(\bar{z})^{2} d z & =\int_{t=0}^{1}\left(t-j t^{2}\right)^{2}(1+2 t j) d t=\int_{t=0}^{1}\left(t^{2}-2 j t^{3}-t^{4}\right)(1+2 t j) d t \\
& =\left(\frac{1}{3}-\frac{2 j}{4}-\frac{1}{5}\right)+2 j\left(\frac{1}{4}-\frac{2 j}{5}-\frac{1}{6}\right) .
\end{aligned}
$$

Exercise 3. $\quad f(z)=1 / z, \mathcal{C}$ is the semicircle $x^{2}+y^{2}=4$ from $(0,2)$ to $(0,-2)$ with $x \geq 0$.

Answer.

$$
\int_{\mathcal{C}} \frac{1}{z} d z, \quad \mathcal{C}=\left\{\begin{array}{l}
x=2 \sin \theta \\
y=2 \cos \theta
\end{array} \quad 0 \leq \theta \leq \pi .\right.
$$

Since $z=2(\sin \theta+j \cos \theta)=2 j(\cos \theta-j \sin \theta)=2 j e^{-j \theta}$,

$$
\int_{\mathcal{C}} \frac{1}{z} d z=\int_{\theta=0}^{\pi}\left(2 j e^{-j \theta}\right)^{-1}(2 j)(-j) e^{-j \theta} d \theta=\int_{0}^{\pi}(-j) d \theta=-\pi j .
$$

Exercise 4. $f(z)=e^{z}, \mathcal{C}$ is any smooth path joining $1-j$ to j.

Answer. Put $w=e^{z}$. Then $d w / d z=e^{z}$. So
$\int_{\mathcal{C}} f(z) d z=w($ end $)-w($ start $)=e^{j}-e^{1-j}=[\cos (1)+j \sin (1)]-e[\cos (1)-j \sin (1)]$.

Exercise 5. $f(z)=\sin z, \mathcal{C}$ is any smooth path joining 0 to $2 j$.

Answer. Same as 4: $w=-\cos z$. So

$$
\int_{\mathcal{C}} f(z) d z=-\cos (2 j)-(-\cos 0)=1-\cos (2 j)
$$

Now

$$
\cos (2 j)=\frac{e^{(2 j) j}+e^{(-2 j) j}}{2}=\frac{e^{-2}+e^{2}}{2}, \quad \text { and } \quad \int_{\mathcal{C}} f(z) d z=1-\frac{1}{2}\left(e^{2}-e^{-2}\right)
$$

Exercise 6. $f(z)=\bar{z}, \mathcal{C}$ is the straight line joining $z=0$ to $z=1+j$.

Answer. In this case

$$
\mathcal{C}=\left\{\begin{array}{l}
x=t \\
y=t
\end{array} \quad 0 \leq t \leq 1\right.
$$

So

$$
\int_{\mathcal{C}} f(z) d z=\int_{t=0}^{1}(t-j t)(1+j) d t=\int_{t=0}^{1} 2 t d t=1
$$

Exercise 7. $f(z)=(\bar{z})^{-1}, \mathcal{C}$ is the circle $x^{2}+y^{2}=1$, traversed counterclockwise once.

Answer. Once again,

$$
\mathcal{C}=\left\{\begin{array}{l}
x=\cos \theta \\
y=\sin \theta
\end{array} \quad 0 \leq \theta \leq 2 \pi\right.
$$

So $x+j y$ on \mathcal{C} is $\cos \theta+j \sin \theta=e^{j \theta}, x-j y=e^{-j \theta}$. Then

$$
\int_{\mathcal{C}} \frac{1}{\bar{z}} d z=\int_{\theta=0}^{2 \pi} \frac{1}{e^{-j \theta}} j e^{j \theta} d \theta=j \int_{0}^{2 \pi} e^{2 j \theta} d \theta=\left.\frac{e^{2 j \theta}}{2}\right|_{0} ^{2 \pi}=0 .
$$

Exercise 8. Evaluate $\oint f(z) d z$ if $f(z)=e^{z} /(z-j)$ and \mathcal{C} is the circle centered at $z=0$ of radius $1 / 2$.

Answer. Since $z=j$ is not inside/on $\mathcal{C}, e^{z} /(z-j)$ is analytic in and on \mathcal{C} and $\oint f(z) d z=0$.

Exercise 9. Same as exercise 8 except \mathcal{C} is the circle centered at $z=2 j$ of radius 4.

Answer.

Now j is inside \mathcal{C} so

$$
\oint \frac{e^{z}}{z-j} d z=2 \pi j\left[\left.e^{z}\right|_{j}\right]=2 \pi j e^{j}
$$

Exercise 10. Evaluate $\mathscr{\varnothing} 1 /(\bar{z}+j) d z$ if \mathcal{C} is the circle of radius 1 centered at j.

Answer. It would be tempting to say $\oint 1 /(\bar{z}+j) d z=2 \pi j(0)$, but since $-j$ is not in/on \mathcal{C}, this is wrong since we have \bar{z}, not z ! So the only way to deal with this, given that also \bar{z} is not analytic, is to parametrize and carry out the calculations. Now $\mathcal{C}=$ circle of radius 1 centered at j.

Thus

$$
\mathcal{C}=\left\{\begin{array}{l}
x=0+\cos \theta \\
y=1+\sin \theta
\end{array} \quad 0 \leq \theta \leq 2 \pi,\right.
$$

i.e., on \mathcal{C},

$$
\begin{array}{ll}
z=x+j y=j+e^{j \theta}, & d z=j e^{j \theta} d \theta \\
\bar{z}=-j+e^{-j \theta} \quad \Longrightarrow \quad \bar{z}+j=e^{-j \theta}
\end{array}
$$

So

$$
\oint_{\mathcal{C}} \frac{1}{\bar{z}+j} d z=\int_{\theta=0}^{2 \pi} \frac{j e^{j \theta}}{e^{-j \theta}} d \theta=j \int_{0}^{2 \pi} e^{2 j \theta} d \theta=j\left[\frac{e^{2 j \theta}}{2 j}\right]_{0}^{2 \pi}=0 .
$$

So we get 0 anyway!

Exercise 11. Evaluate $\oint \cos z / z d z$ if \mathcal{C} is the path consisting of straight lines, joining the points $-j$ to 1 to j to -1 .

Answer.

$$
\begin{aligned}
\oint_{\mathcal{C}} \frac{\cos z}{z} d z & =2 \pi j[\cos 0] \quad \text { since } 0 \text { is inside } \mathcal{C} \\
& =2 \pi j .
\end{aligned}
$$

Exercise 12. Same as exercise 11 except \mathcal{C} is the semicircle centered at $z=1+j$ of radius 4 with $\operatorname{Re}(z) \geq 1$ and the straight line from $1+5 j$ to $1-3 j$.

Answer.

In this case $z=0$ is outside \mathcal{C}. Thus $\mathscr{C}_{\mathcal{C}} \cos z / z d z=0$ as $\cos z / z$ is analytic inside and on \mathcal{C}.

III.d Taylor Series and Laurent Series

So far we have discussed three situations: (1) $\int_{\mathcal{C}} f(z) d z$ with \mathcal{C} just a path encountered in practice (i.e., maybe not a simple closed path); (2) $\mathscr{C}_{\mathcal{C}} f(z) d z$ for \mathcal{C} a simple closed path; $(3) \mathscr{C}_{\mathcal{C}} f(s) /(s-z) d s$ for \mathcal{C} a simple closed path, and z inside \mathcal{C}.

In case (1) (which includes simple closed paths), for general $f(z)$, we can only calculate $\int_{\mathcal{C}} f(z) d z$ by parametrizing the path and actually working out the integral. For case (2), if $f(z)$ is analytic inside and on \mathcal{C}, then $\mathscr{C}_{\mathcal{C}} f(z) d z=0$. This result also has an implication for case (1). If \mathcal{C}, C_{1} are two paths with f analytic between and on C_{1}, C_{2}, then

$$
\int_{C_{1}} f(z) d z=\int_{C_{2}} f(z) d z
$$

Indeed $C_{1}+\left(-C_{2}\right)$ can be viewed as a simple closed path, so

$$
0=\oint_{C_{1}+\left(-C_{2}\right)} f(z) d z=\int_{C_{1}} f(z) d z-\int_{C_{2}} f(z) d z
$$

and we can do the calculation with a simpler path. Finally, in case (3),

$$
\oint_{\mathcal{C}} \frac{f(s)}{s-z} d s=[f(z)] 2 \pi j,
$$

if again f is analytic inside and on \mathcal{C}.
Unfortunately for the applications we seek (inverting transforms and interpreting the answer) cases (1), (2), (3) are not enough. We shall wish to work out $\int_{\mathcal{C}} f(z) d z$, with \mathcal{C} a simple closed path, but with $f(z)$ complicated and blowing up at various points inside \mathcal{C}, say at z_{1}, z_{2}, \ldots So we cannot usually use either cases (2) or (3) directly. Of course, once again one could try to replace \mathcal{C} by a simpler path C_{1}, say a circle, such that f is analytic between and on C_{1} and \mathcal{C}.

Then

$$
\oint_{\mathcal{C}} f(z) d z=\oint_{C_{1}} f(z) d z
$$

and one could attempt to parametrize C_{1} and actually carry out the calculations. Unfortunately, for most problems of practical interest, even this attempt does not work, since $f(z)$ will simply be too complicated for us to do the needed calculations on C_{1}. It seems that integrals for problems of practical interest cannot be solved, and yet there is a "sneaky" way (related to case (3)) by means of which we can find $\oiiint_{\mathcal{C}} f(z) d z$ relatively easily. This has to do with series expansions for $f(z)$, which we now consider.

III.d.1. Power Series.

We recall first a few results about power series, that is, series of type

$$
\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}=a_{0}+a_{1}\left(z-z_{0}\right)+a_{2}\left(z-z_{0}\right)^{2}+a_{3}\left(z-z_{0}\right)^{3}+\cdots
$$

with $a_{0}, a_{1}, a_{2}, a_{3}, \ldots$, complex constants. It is clear that as we begin to calculate $S_{N}(z)=\sum_{n=0}^{N} a_{n}\left(z-z_{0}\right)^{n}$ we may find that $\left|S_{N}(z)\right|$ blows up or oscillates wildly as $N \rightarrow \infty$. A trivial example of this is $\sum_{n=0}^{\infty}(z-1)^{n}$ with $z_{0}=1 ; a_{1}, a_{2}, \cdots=1$. Then if $z=2$, say,

$$
S_{N}(2)=\sum_{n=0}^{N}(2-1)^{n}=\underbrace{1+1+1+\cdots+1}_{N+1 \text { times }}=N+1 .
$$

So $\left|S_{N}(2)\right|=N+1 \rightarrow \infty$. We state in such a case that $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ diverges.

On the other hand, if $\left|z-z_{0}\right|$ is small enough, then S_{N} will actually approach a complex number L as $N \rightarrow \infty$. In this case we state that $\sum_{0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ converges (to L) and write $L=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$.

One can spend a lot of time on these problems, but for us it will suffice to note a few facts.

Suppose we want to just see if a given power series converges without trying to evaluate the limit L. One of the most useful criteria is the ratio test. Look at the ratio of two consecutive terms of the series:

$$
\frac{\left|a_{n+1}\left(z-z_{0}\right)^{n+1}\right|}{\left|a_{n}\left(z-z_{0}\right)^{n}\right|}=\left|\frac{a_{n+1}}{a_{n}}\right|\left|z-z_{0}\right| .
$$

For convergence, we ask that z be such that this ratio, for n large, is less than 1 . I.e.,

$$
\lim _{n \rightarrow \infty}\left[\left|\frac{a_{n+1}}{a_{n}}\right|\left|z-z_{0}\right|\right]<1
$$

or

$$
\left|z-z_{0}\right| \lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|<1 .
$$

Finally,

$$
\left|z-z_{0}\right|<\lim _{n \rightarrow \infty}\left|\frac{a_{n}}{a_{n+1}}\right| .
$$

So, if this estimate holds, the series converges. On the other hand if z is such that

$$
\left|z-z_{0}\right|>\lim _{n \rightarrow \infty}\left|\frac{a_{n}}{a_{n+1}}\right|
$$

then the series diverges. If

$$
\left|z-z_{0}\right|=\lim _{n \rightarrow \infty}\left|\frac{a_{n}}{a_{n+1}}\right|
$$

the problem is delicate, and not within the scope of this course. We illustrate this with a useful example.

Example 1. Consider (for some given z_{0}) the series $\sum_{n=0}^{\infty}\left(z-z_{0}\right)^{n}$. Here all $a_{n}=1$ and so we have convergence if

$$
\left|z-z_{0}\right|<\lim _{n \rightarrow \infty}\left|\frac{a_{n}}{a_{n+1}}\right|=\lim _{n \rightarrow \infty}\left|\frac{1}{1}\right|=1
$$

and divergence if

$$
\left|z-z_{0}\right|>\lim _{n \rightarrow \infty}\left|\frac{1}{1}\right|=1
$$

So if $\left|z-z_{0}\right|<1$ the series converges, if $\left|z-z_{0}\right|>1$, the series diverges. The radius of the circle centered at z_{0} which divides the region of convergence from the region of divergence, is called the radius of convergence. In this case, it's 1 .

Note that in general we do not have a clue from the ratio test as to what a convergent series actually converges to (i.e., what L is). But for $\sum_{n=0}^{\infty}\left(z-z_{0}\right)^{n}$ we can actually work out what L is. Set

$$
S_{N}=\sum_{n=0}^{N}\left(z-z_{0}\right)^{n}=1+\left(z-z_{0}\right)+\cdots+\left(z-z_{0}\right)^{N} .
$$

Then

$$
\begin{gathered}
\left(z-z_{0}\right) S_{N}=\left(z-z_{0}\right)+\left(z-z_{0}\right)^{2}+\cdots+\left(z-z_{0}\right)^{N+1} \\
114
\end{gathered}
$$

and so

$$
S_{N}\left[1-\left(z-z_{0}\right)\right]=1-\left(z-z_{0}\right)^{N+1}
$$

That is,

$$
S_{N}=\frac{1-\left(z-z_{0}\right)^{N+1}}{1-\left(z-z_{0}\right)}
$$

Since $\left|z-z_{0}\right|<1$, then

$$
\left|\left(z-z_{0}\right)^{N+1}\right|=\left|z-z_{0}\right|^{N+1} \longrightarrow 0 \quad \text { as } N \rightarrow \infty
$$

and so

$$
S_{N} \longrightarrow \frac{1}{1-\left(z-z_{0}\right)} \quad \text { as } N \rightarrow \infty
$$

I.e.,

$$
\sum_{n=0}^{\infty}\left(z-z_{0}\right)^{n}=\frac{1}{1-\left(z-z_{0}\right)}
$$

In summary,

$$
\sum_{n=0}^{\infty}\left(z-z_{0}\right)^{n}=\frac{1}{1-\left(z-z_{0}\right)} \quad \text { if } \quad\left|z-z_{0}\right|<1
$$

But $\sum_{n=0}^{\infty}\left(z-z_{0}\right)^{n}$ does not exist if $\left|z-z_{0}\right|>1$. Note that if $\left|z-z_{0}\right|>1$, $1 /\left(1-\left(z-z_{0}\right)\right)$ does exist; it just does not equal $\sum_{0}^{\infty}\left(z-z_{0}\right)^{n}$. What happens if $\left|z-z_{0}\right|=1$, is not clear from these arguments, and of not much interest to us.

III.d.2. Taylor and Laurent Series (Mathematics).

In this section we consider the purely mathematical aspects of the series we wish to use. Unfortunately, the Laurent series part as presented in this section cannot be effectively used in practice, since it's nonconstructive.

We now return to complex functions. We have first of all (as a warm up) Taylor's Series. Let f be analytic inside and on C_{0}, a circle of radius r_{0} centered 115
at z_{0}, and let z be a point inside C_{0} as shown.

We have

$$
f(z)=\frac{1}{2 \pi j} \oint_{C} \frac{f(s)}{s-z} d s
$$

Now we write

$$
\frac{1}{s-z}=\frac{1}{\left(s-z_{0}\right)-\left(z-z_{0}\right)}=\frac{1}{s-z_{0}}\left[\frac{1}{1-\frac{z-z_{0}}{s-z_{0}}}\right] .
$$

But $\left|z-z_{0}\right|<\left|s-z_{0}\right|=r_{0}$ since z_{0} is the center of the circle. That is,

$$
\frac{1}{s-z}=\frac{1}{s-z_{0}} \sum_{n=0}^{\infty} \frac{\left(z-z_{0}\right)^{n}}{\left(s-z_{0}\right)^{n}}=\sum_{n=0}^{\infty} \frac{\left(z-z_{0}\right)^{n}}{\left(s-z_{0}\right)^{n+1}}
$$

We conclude

$$
\begin{aligned}
f(z) & =\frac{1}{2 \pi j} \oint_{C} \frac{f(s)}{s-z} d s=\frac{1}{2 \pi j} \oint_{C} f(s) \sum_{n=0}^{\infty} \frac{\left(z-z_{0}\right)^{n}}{\left(s-z_{0}\right)^{n+1}} d s \\
& =\sum_{n=0}^{\infty} \underbrace{\left(\frac{1}{2 \pi j} \oint_{C} \frac{f(s)}{\left(s-z_{0}\right)^{n+1}} d s\right)}_{\frac{1}{n!} \frac{d^{n} f}{d z^{n}}\left(z_{0}\right) \text { from the previous section }}\left(z-z_{0}\right)^{n} .
\end{aligned}
$$

So

$$
f(z)=\sum_{n=0}^{\infty} \frac{1}{n!} \frac{d^{n} f}{d z^{n}}\left(z_{0}\right)\left(z-z_{0}\right)^{n}
$$

We have found the good old Taylor's Series! Unfortunately, this is not quite enough.
We need a variation of this series, called the Laurent Series.

Suppose f is analytic in the region between the two concentric circles C_{1}, C_{2} as shown. Let z_{0} be the center, and z a point in between the two circles.

Now repeating our earlier procedures, we cut the region between C_{1}, C_{2} by introducing the paths C_{3}, C_{4}.

Then $\mathcal{C}=C_{1}+C_{3}+\left(-C_{2}\right)+C_{4}$ is a path which encloses a region in which f is analytic (observe C_{2} is traversed backwards) and z is a point in this region. We have

$$
f(z)=\frac{1}{2 \pi j} \int_{\mathcal{C}} \frac{f(s)}{s-z} d s=\frac{1}{2 \pi j}\left[\int_{C_{1}}+\int_{C_{3}}+\int_{-C_{2}}+\int_{C_{4}}\right] .
$$

But

$$
\int_{C_{3}} \frac{f(s)}{s-z} d s=-\int_{C_{4}} \frac{f(s)}{s-z} d s
$$

So

$$
f(z)=\frac{1}{2 \pi j} \oint_{C_{1}} \frac{f(s)}{s-z} d s-\frac{1}{2 \pi j} \oint_{C_{2}} \frac{f(s)}{s-z} d s
$$

Let us focus first on $\mathscr{C}_{C_{1}} f(s) /(s-z) d s$. Observe that s is a point on C_{1}, so $\left|z-z_{0}\right|<\left|z_{0}-s\right|$

and

$$
\frac{1}{s-z}=\frac{1}{\left(s-z_{0}\right)+\left(z_{0}-z\right)}=\frac{1}{s-z_{0}}\left[\frac{1}{1-\frac{\left(z-z_{0}\right)}{s-z_{0}}}\right]=\frac{1}{s-z_{0}} \sum_{n=0}^{\infty} \frac{\left(z-z_{0}\right)^{n}}{\left(s-z_{0}\right)^{n}}
$$

So

$$
\oint_{C_{1}} \frac{f(s)}{s-z} d s=\sum_{n=0}^{\infty}\left[\oint_{C_{1}} \frac{f(s)}{\left(s-z_{0}\right)^{n+1}} d s\right]\left(z-z_{0}\right)^{n} .
$$

Note that $\mathscr{C}_{C_{1}} f(s) /\left(s-z_{0}\right)^{n+1} d s$ may not be at all related to a derivative of f, since f may not have a derivative at z_{0}. We focus on the 2nd integral: - $\mathscr{C}_{C_{2}} f(s) /(s-z) d s$.

Now, s is on C_{2}, and so $\left|s-z_{0}\right|<\left|z-z_{0}\right|$.

We have

$$
\frac{1}{s-z}=\frac{1}{\left(s-z_{0}\right)+\left(z_{0}-z\right)}=\frac{1}{z_{0}-z}\left[\frac{1}{\frac{s-z_{0}}{z_{0}-z}+1}\right]=\frac{1}{z-z_{0}}\left[\frac{-1}{1-\frac{\left(s-z_{0}\right)}{z-z_{0}}}\right] .
$$

So

$$
-\oint_{C_{2}} \frac{f(s)}{s-z} d s=\oint_{C_{2}} \frac{f(s)}{\left(z-z_{0}\right)}\left[\frac{1}{1-\frac{\left(s-z_{0}\right)}{z-z_{0}}}\right] d s=\oint_{C_{2}} \frac{f(s)}{z-z_{0}} \sum_{n=0}^{\infty}\left(\frac{s-z_{0}}{z-z_{0}}\right)^{n} d s
$$

$$
=\sum_{n=0}^{\infty}\left[\oint_{C_{2}} f(s)\left(s-z_{0}\right)^{n}\right] \frac{1}{\left(z-z_{0}\right)^{n+1}} d s
$$

In summary,

$$
\begin{aligned}
f(z)=\sum_{n=0}^{\infty}[& \left.\frac{1}{2 \pi j} \oint_{C_{1}} \frac{f(s)}{\left(s-z_{0}\right)^{n+1}} d s\right]\left(z-z_{0}\right)^{n} \\
& +\sum_{n=0}^{\infty}\left[\frac{1}{2 \pi j} \oint_{C_{2}} f(s)\left(s-z_{0}\right)^{n} d s\right] \frac{1}{\left(z-z_{0}\right)^{n+1}} .
\end{aligned}
$$

Observe that, for a given z_{0}, the integrals over C_{1} and C_{2} are constants. This is called the Laurent Series for f. In view of what was said at the beginning of this section about the difficulty of calculating integrals in practical situations, the Laurent Series is basically never calculated in a practical problem from its definition. The importance of this series comes from the first term in the second sum (i.e., for $n=0$). In this case the term is

$$
\frac{1}{2 \pi j}\left[\frac{\mathscr{C}_{C_{2}} f(s) d s}{s-z_{0}}\right]
$$

So if by some miracle we can find the Laurent Series for f, then $\mathscr{C}_{C_{2}} f(s) d s$ can be found just by reading the coefficient of $1 /\left(z-z_{0}\right)$! Even more usefully, if we can just find the coefficient of $1 /\left(z-z_{0}\right)$-never mind the rest of the series-then we are done as far as finding $\mathscr{C}_{C_{2}} f(s) d s$ is concerned. How to achieve this goal is the topic of the next section.

One notational remark: Note that the Laurent series can be expressed after a summation index change as:

$$
f(z)=\sum_{-\infty}^{\infty} c_{n}\left(z-z_{0}\right)^{n}
$$

with

$$
c_{n}=\frac{1}{2 \pi j} \oint_{C_{1}} \frac{f(s)}{\left(s-z_{0}\right)^{n+1}} d s
$$

for any $n=0, \pm 1, \pm 2, \pm 3, \ldots$ It is valid for all z between C_{1} and C_{2} !

We conclude with the following important remark. Suppose - as is usually the case in practice - that f blows up at z_{0} and z_{1} and nowhere else in the disc D centered at z_{0} of radius $\left|z_{0}-z_{1}\right|$.

Let C_{1}, C_{2} be two circles in D as shown.

We calculate (at least in theory) the Laurent series using our earlier formulas and the given C_{1}, C_{2}. The coefficients c_{n} in the series involve path integrals, some over C_{1} and others over C_{2}. So it would appear at first that the c_{n} depend on the specific C_{1}, C_{2} chosen. This is not the case. Suppose $C_{1}^{\prime}, C_{2}^{\prime}$ are two other paths, as shown, which may not be circles.

Then $\oiiint_{C_{1}}=\oiiint_{C_{1}^{\prime}}^{\prime}$ and $\oiiint_{C_{2}}=\oint_{C_{2}^{\prime}}^{\prime}$ since the functions being integrated have a derivative in the disc centered at z_{0} of radius $\left|z-z_{0}\right|$, except at z_{0} itself and on the rim of the disc. So the c_{n} are always the same for any pair of nested paths, in the disc D, which also contain z_{0}. That is to say, the dependence of the coefficients c_{n} on C_{1}, C_{2} is fictitious, since any pair of paths C_{1}, C_{2} inside D can be used. The resulting c_{n} will be the same. In other words, c_{n} really only depend on z_{0}, z_{1} and $f(z)$.

III.d.3. Taylor and Laurent Series (Engineering).

The previous section was theoretical, and the part on the Laurent series is not of much practical use due to the inability to calculate the integrals involved.

From a practical point of view, the following considerations are more useful, and summarize what we did in the previous section. First, suppose $f(z)$ is analytic at z_{0}. Then we can write a Taylor series for f using the formula you have already seen in the past:

$$
f(z)=\sum_{n=0}^{\infty}\left[\frac{d^{n} f}{d z^{n}}\left(z_{0}\right)\right] \frac{\left(z-z_{0}\right)^{n}}{n!} .
$$

We can be sure that this series converges, i.e., actually equals f, for z near z_{0}. Indeed it will converge for all z inside a disc centered at z_{0} which does not contain any singular points of $f(z)$.

On the other hand, suppose $f(z)$ has a singular point at z_{0}, but is analytic at
all points near z_{0}. What we have in mind is a function that blows up at z_{0} but is differentiable near z_{0}, e.g., $f(z)=z^{2} /\left(z^{2}+1\right)$ with z_{0} either $+j$ or $-j$. We then can represent $f(z)$ in the Laurent series form

$$
f(z)=\sum_{n=-\infty}^{\infty} c_{n}\left(z-z_{0}\right)^{n}
$$

for some coefficients c_{n}. These coefficients cannot be found from the definition of the Laurent series, since they involve integrals too complicated to be evaluated for $f(z)$ of practical interest. The c_{n} must be evaluated in some other way, and in general this is virtually impossible. For the $f(z)$ found in practice, this can however be done fairly easily, see the next section. We observe two things. First, the Laurent series will converge in the largest disc centered at z_{0} (except at z_{0} itself) which contains no other singular points.

Second, note that if

$$
f(z)=\sum_{n=-\infty}^{\infty} c_{n}\left(z-z_{0}\right)^{n}
$$

and C is a circle centered at z_{0}, then

$$
\oint f(z) d z=\sum_{n=-\infty}^{\infty} c_{n} \oint_{\mathcal{C}}\left(z-z_{0}\right)^{n} d z=c_{-1} 2 \pi j
$$

since $\oint_{\mathcal{C}}\left(z-z_{0}\right)^{n} d z=0$ except if $n=-1$, when it equals $2 \pi j$ (by the earlier important example). Thus if we know c_{-1} (by some miracle), then we know $\mathscr{C}^{C} f(z) d z$.

We begin this section by examining ways in which the Laurent series can actually be calculated. We then pass to the question of how to find just the coefficient of $1 /\left(z-z_{0}\right)$. Finding the complete Laurent series is harder than finding just the coefficient of $1 /\left(z-z_{0}\right)$.

As mentioned in the last section, a direct calculation of the Laurent series, by evaluating the integrals involved in the definition, is basically impossible. Instead we use Taylor and other series, as well as division, multiplication, etc. These steps will be illustrated in the examples that follow. We just have two important remarks.
(1) When a series is obtained-on the way to finding the Laurent series-pay attention to where it converges.
(2) We know the Laurent series is of type: $f(z)=\sum_{n=-\infty}^{n=\infty} c_{n}\left(z-z_{0}\right)^{n}$ with c_{n} constants. It can be shown that any series of this type must be the Laurent series for f about z_{0}.

Example 1. Let $f(z)=1 / z(2-z)$. Find the Laurent series for $f(z)$ valid about $z=0$ (i.e., $z_{0}=0$).

Answer. Note that the paths C_{1}, C_{2} are not given here. We discussed this point in the last section. We seek a series of type $f(z)=\sum_{n=-\infty}^{\infty} c_{n} z^{n}$ which converges near $z=0$. We don't even dream of using the definition of the series. Instead, note

$$
\frac{1}{2-z}=\frac{1}{2} \frac{1}{1-\frac{z}{2}}
$$

Now

$$
\frac{1}{1-\frac{z}{2}}=\sum_{n=0}^{\infty}\left(\frac{z}{2}\right)^{n}, \quad \text { converges if } \quad|z|<2
$$

So

$$
\begin{aligned}
\frac{1}{z(2-z)} & =\frac{1}{z} \frac{1}{2} \sum_{n=0}^{\infty}\left(\frac{z}{2}\right)^{n}=\sum_{n=0}^{\infty} \frac{z^{n-1}}{2^{n+1}} \\
& =\frac{1}{z 2}+\frac{1}{2^{2}}+\frac{z}{2^{3}}+\frac{z^{2}}{2^{4}}+\cdots
\end{aligned}
$$

We have thus found a series for $f(z)=1 /(z(2-z))$ of the right type. This is the Laurent series for f in the region $D: 0<|z|<2$.

Example 2. Same problem as Example 1, except the series is to be valid about $z=2$.

Answer. As a first step, we examine why the series found in Example 1 does not work. We got there

$$
f(z)=\sum_{n=0}^{\infty} \frac{z^{n-1}}{2^{n+1}}=\frac{1}{4} \sum_{n=0}^{\infty} \frac{z^{n-1}}{2^{n-1}}=\frac{1}{4} \sum_{n=0}^{\infty}\left(\frac{z}{2}\right)^{n-1} .
$$

So if z is any number with $|z|>2$, then this series diverges $(|z / 2|>1!)$. So $f(z)$ is O.K. for $z \neq 2$ but the series is not, and we wish a series valid for some disc centered at $z=2$! The idea is to get a series so that if $|z-2|$ is small then it converges, and to do this we rearrange $f(z)$ as follows:

$$
\begin{aligned}
\frac{1}{z(z-2)} & =\frac{1}{[(z-2)+2](z-2)}=\frac{1}{z-2}\left[\frac{1}{2-(2-z)}\right]=\frac{1}{(z-2)} \frac{1}{2}\left[\frac{1}{1-\frac{(2-z)}{2}}\right] \\
& =\frac{1}{2(z-2)} \sum_{n=0}^{\infty} \frac{(2-z)^{n}}{2^{n}}=\sum_{n=0}^{\infty} \frac{(z-2)^{n-1}(-1)^{n}}{2^{n+1}}
\end{aligned}
$$

This series converges for $|z-2|<2$, i.e., in the region shown.

Remark 1. That the answer for Example 2 is so similar to that for Example 1with $z-2$ in place of z-is basically a fluke.

Remark 2. Note that on the border of $|z-2|<2$, we have the other singular point!

Example 3. Same as Examples 1 and 2, except now the Laurent series is to hold in a disc about $z=4 j$.

Answer. We need to find a series valid in a disc centered at $z=4 j$ of radius 4 (since the nearest singular point will be at $z=0,4$ units from $z=4 j$).

Since at $z=4 j$ the function is differentiable, we could calculate the Taylor series. This would be correct, but better to proceed as follows. We write $1 / z(z-2)$ in
powers of $z-4 j$, i.e.,

$$
\frac{1}{z(z-2)}=\frac{1}{[(z-4 j)+4 j]} \frac{1}{[(z-4 j)+(4 j-2)]}
$$

We could expand

$$
\frac{1}{(z-4 j)+4 j}=\frac{1}{4 j} \frac{1}{\frac{(z-4 j)}{4 j}+1}=\frac{1}{4 j} \frac{1}{1-\frac{(-z+4 j)}{4 j}}
$$

and

$$
\frac{1}{z-4 j+4 j-2}=\frac{1}{4 j-2} \frac{1}{1-\frac{(4 j-z)}{4 j-2}}
$$

and multiply the series term by term. This is not recommended, since series multiplication term by term is a recipe for making mistakes. Series addition however is easy. So we use a partial fraction expansion (more on this later)

$$
\frac{1}{z(z-2)}=\frac{A}{z}+\frac{B}{z-2},
$$

so

$$
1=A(z-2)+B z \quad \text { for all } z, \quad \text { i.e., } A=-\frac{1}{2}, B=\frac{1}{2}
$$

and

$$
\frac{1}{z(z-2)}=\frac{1}{2} \frac{1}{z-2}-\frac{1}{2} \frac{1}{z} .
$$

Now

$$
\frac{1}{z-2}=\frac{1}{(z-4 j)+4 j-2}=\frac{1}{4 j-2} \frac{1}{1-\frac{4 j-z}{4 j-2}}=\frac{1}{4 j-2} \sum_{n=0}^{\infty}\left(\frac{4 j-z}{4 j-2}\right)^{n} .
$$

In the same way,

$$
\frac{1}{z}=\frac{1}{(z-4 j)+4 j}=\frac{1}{4 j} \frac{1}{1-\left(\frac{4 j-z}{4 j}\right)}=\frac{1}{4 j} \sum_{n=0}^{\infty}\left(\frac{4 j-z}{4 j}\right)^{n} .
$$

So

$$
\begin{aligned}
\frac{1}{z(z-2)} & =\frac{1}{2}\left(\sum_{n=0}^{\infty} \frac{(4 j-z)^{n}}{(4 j-2)^{n+1}}-\sum_{n=0}^{\infty} \frac{(4 j-z)^{n}}{(4 j)^{n+1}}\right) \\
& =\sum_{n=0}^{\infty}(-4 j+z)^{n} \frac{1}{2}\left[\frac{1}{(4 j-2)^{n+1}}-\frac{1}{(4 j)^{n+1}}\right](-1)^{n} .
\end{aligned}
$$

Note that the first series converges for $|4 j-z|<|4 j-2|=\sqrt{20}$, the second for $|4 j-z|<|4 j|=4$, so the sum converges for $|4 j-z|<4$. We can relate this to the location of the singular points: $1 /(z-2)$ blows up at $z=2,1 / z$ at $z=0$. So from $4 j$ these points are $\sqrt{20}$ and 4 units distant respectively.

Example 4. Find a Laurent series for $e^{\frac{1}{z}}$ valid about $z=0$.

Answer. $\quad e^{\frac{1}{z}}$ has only one singular point $(z=0)$, so we expect a series valid for all $z \neq 0$. Now to do this, we actually use the Taylor series. We know

$$
e^{w}=\sum_{n=0}^{\infty} \frac{w^{n}}{n!},
$$

so put $w=1 / z$ to get

$$
e^{\frac{1}{z}}=\sum_{n=0}^{\infty}\left(\frac{1}{z}\right)^{n} \frac{1}{n!} .
$$

Note that by the ratio test this converges for all $z \neq 0$, as n ! will ensure that the
ratio of two consecutive terms is eventually (i.e., for n large enough) less than one, regardless of how small $|z|$ may be.

Example 5. Same as Example 4, except $f(z)=e^{\frac{1}{z}} / z^{3}$.

Answer. After Example 4 this is easy.

$$
f(z)=\frac{1}{z^{3}}\left(\sum_{n=0}^{\infty} \frac{1}{z^{n}} \frac{1}{n!}\right)=\sum_{n=0}^{\infty} \frac{1}{z^{n+3}} \frac{1}{n!} .
$$

Do not let the above examples fool you. Finding a Laurent series can be really tough! Fortunately, for most practical problems we do not need to find the whole series, just the residue, i.e., the coefficient of $1 /\left(z-z_{0}\right)$.

In Example 5, we found an example of a function whose Laurent series had terms of type $1 / z^{n}$ with n arbitrarily large. This is not the situation usually found in practice. Instead, the "practical" functions have the property that the part of the Laurent series with negative $\left(z-z_{0}\right)$ powers terminates after a few terms, i.e., the series look like:

$$
f(z)=\sum_{n=0}^{\infty} c_{n}\left(z-z_{0}\right)^{n}+\frac{d_{1}}{\left(z-z_{0}\right)}+\frac{d_{2}}{\left(z-z_{0}\right)^{2}}+\cdots+\frac{d_{m}}{\left(z-z_{0}\right)^{m}}
$$

with the d 's= 0 after d_{m}. Some d 's before d_{m} could also be zero but d_{m} itself is not. In such cases, f is said to have a pole of order m at z_{0}. If $m=1$, the pole is simple.

As an example:

Example 6. Find the Laurent expansion of e^{z} / z^{4} about $z=0$.

Answer.

$$
e^{z}=\sum_{n=0}^{\infty} \frac{z^{n}}{n!} \quad \Longrightarrow \quad \frac{e^{z}}{z^{4}}=\sum_{n=0}^{\infty} \frac{z^{n-4}}{n!}
$$

That is,

$$
\begin{aligned}
\frac{e^{z}}{z^{4}} & =\frac{1}{z^{4}}+\frac{1}{z^{3}}+\frac{1}{z^{2}} \frac{1}{2!}+\frac{1}{z 3!}+\sum_{n=4}^{\infty} \frac{z^{n-4}}{n!} \\
& =\frac{1}{z^{4}}+\frac{1}{z^{3}}+\frac{1}{2 z^{2}}+\frac{1}{6 z}+\sum_{n=0}^{\infty} \frac{z^{n}}{(n+4)!} .
\end{aligned}
$$

We conclude that e^{z} / z^{4} has a pole of order 4 at $z=0$.

There is a way, given $f(z)$, to tell when it has a pole of order m at $z=z_{0}$. This happens when:
(a) $\left.f(z)\left(z-z_{0}\right)^{m}\right|_{z=z_{0}}$ gives a finite number (\neq zero)
(b) $\left.f(z)\left(z-z_{0}\right)^{p}\right|_{z=z_{0}}=0$ if $p>m$
(c) $\left.f(z)\left(z-z_{0}\right)^{q}\right|_{z=z_{0}}$ blows up if $q<m$.

In practical situations, poles correspond to zeros of the transfer function, and are relatively easy to both spot and find their order. For example, in the previous case, we find

$$
f(z)=\frac{e^{z}}{z^{4}},
$$

so

$$
\left.\frac{e^{z}}{z^{4}} \cdot z^{p}\right|_{z=0}=\left.e^{z} z^{p-4}\right|_{z=0}= \begin{cases}0 & \text { if } p>4 \\ 1 & \text { if } p=4 \\ \infty & \text { if } p<4\end{cases}
$$

and the function has a pole of order 4 .
Now suppose f has a pole of order m at $z=z_{0}$. I.e., the Laurent series is

$$
f(z)=\sum_{n=0}^{\infty} c_{n}\left(z-z_{0}\right)^{n}+\frac{d_{1}}{\left(z-z_{0}\right)}+\cdots+\frac{d_{m}}{\left(z-z_{0}\right)^{m}}
$$

Then

$$
f(z)\left(z-z_{0}\right)^{m}=\sum_{n=0}^{\infty} c_{n}\left(z-z_{0}\right)^{n+m}+d_{1}\left(z-z_{0}\right)^{m-1}+\cdots++d_{m-1}\left(z-z_{0}\right)+d_{m}
$$

We have

$$
d_{m}=\lim _{z \rightarrow z_{0}}\left(f(z)\left(z-z_{0}\right)^{m}\right) .
$$

Next, differentiating both sides setting $z=z_{0}$ gives

$$
d_{m-1}=\left.\frac{d}{d z}\left[f(z)\left(z-z_{0}\right)^{m}\right]\right|_{z=z_{0}} .
$$

Differentiate again

$$
d_{m-2}=\left.\frac{1}{2} \frac{d^{2}}{d z^{2}}\left[f(z)\left(z-z_{0}\right)^{m}\right]\right|_{z=z_{0}}
$$

and so on. The way to remember this is that the right side is just the Taylor series for $f(z)\left(z-z_{0}\right)^{m}$ and the coefficients are given accordingly. In particular,

$$
d_{1}=\left.\frac{1}{(m-1)!} \frac{d^{m-1}}{d z^{m-1}}\left[f(z)\left(z-z_{0}\right)^{m}\right]\right|_{z=z_{0}}
$$

except, if $m=1$, then

$$
d_{1}=\lim _{z \rightarrow z_{0}}\left(f(z)\left(z-z_{0}\right)\right) .
$$

So we can find d_{1} (indeed as many coefficients of the Laurent series as we wish) reasonably easily if f just has a pole of order m at $z=z_{0}$. We pass to examples.

Example 7. Find the part of the Laurent series for $f(z)=1 / z(2-z)$ about $z=0$ and $z=2$, which involves negative exponents.

Answer. This is exactly the same function as in Examples 1 and 2. Now about 130
$z=0$ we have

$$
\left.z f(z)\right|_{z=0}=\left.\frac{1}{2-z}\right|_{z=0}=\frac{1}{2}
$$

so $z=0$ is a pole of order 1 (i.e., a simple pole) and its coefficient is $1 / 2$. About $z=2:$

$$
\left.(z-2) f(z)\right|_{z=2}=-\left.\frac{1}{z}\right|_{z=2}=-\frac{1}{2}
$$

so $z=2$ is also a simple pole, and the coefficient is $-1 / 2$. In the first case, the Laurent series starts with $\frac{1}{z} \cdot \frac{1}{2}$ and in the second case with $-\frac{1}{2} \cdot \frac{1}{(z-2)}$. In both cases, all other series terms involve nonnegative exponents of z and $z-2$ respectively.

Example 8. Same as Example 7, except $f(z)=\cot z$ and $z_{0}=0$.

Answer. First of all note that $f(0)$ does not exist, so $z=0$ is a singular point. We wish to multiply $f(z)$ by a power of z, say z^{m}, so that $\left.z^{m} f(z)\right|_{z=0}$ is a nonzero number. Now

$$
\cot z=\frac{\cos z}{\sin z} \quad \text { and } \quad \sin z=z-\frac{z^{3}}{3!}+\frac{z^{5}}{5!}-\cdots,
$$

so $\sin z / z \rightarrow 1$ as $z \rightarrow 0$, and the same is true of $z / \sin z$. In summary, $\left.z f(z)\right|_{z=0}=$ $\cos 0=1$, so $f(z)$ has a pole of order 1 at $z=0$ and the coefficient of $1 / z=1$.

We conclude by recalling that the functions found in practice have the form

$$
\frac{f(z)}{\left(z-z_{0}\right)^{n_{0}}\left(z-z_{1}\right)^{n_{1}} \cdots\left(z-z_{m}\right)^{n_{m}}}
$$

with $f(z)$ differentiable. So the poles will be at $z_{0}, z_{1}, \ldots, z_{m}$ and these will have multiplicities $n_{0}, n_{1}, \ldots, n_{m}$, respectively except if f turns out to be also zero at one or more of z_{0}, \ldots, z_{m}. This is extremely rare in practice. If it happens, say at z_{0}, one just divides out $\left(z-z_{0}\right)$ from the top and bottom until the resulting $f(z)$
is not zero at z_{0} or $\left(z-z_{0}\right)$ is no longer in the bottom. More examples in the next section.

Further Exercises:

Exercise 1. Find Laurent series expansion for $1 /(z+j)$ valid in the regions: (a) $|z|<1$, (b) $|z|>1$, (c) $|z-2 j|<1$, (d) $|z+j|<1$.

Answer. (a) Since $|z|<1$, we write (as we wish to expand about $z=0$)

$$
\frac{1}{z+j}=\frac{1}{j} \frac{1}{1+(z / j)}=\frac{1}{j} \frac{1}{1-(-z / j)}=\frac{1}{j} \sum_{n=0}^{\infty}\left(-\frac{z}{j}\right)^{n}=\sum_{n=0}^{\infty} \frac{(-1)^{n} z^{n}}{j^{n+1}}
$$

This converges if $|z / j|<1$, i.e., $|z|<|j|=1$, as needed.
(b) Since $|z|>1$,

$$
\frac{1}{z+j}=\frac{1}{z} \frac{1}{1+j / z}=\frac{1}{z} \sum_{n=0}^{\infty} \frac{(-1)^{n} j^{n}}{z^{n}}=\sum_{n=0}^{\infty} \frac{(-1)^{n} j^{n}}{z^{n+1}}
$$

(c) Now $|z-2 j|<1$, so

$$
\begin{aligned}
\frac{1}{z+j} & =\frac{1}{(z-2 j)+(2 j+j)}=\frac{1}{(z-2 j)+3 j} \\
& =\frac{1}{3 j} \frac{1}{\left[1-\frac{(2 j-z)}{3 j}\right]}=\frac{1}{3 j} \sum_{n=0}^{\infty} \frac{(2 j-z)^{n}}{(3 j)^{n}}
\end{aligned}
$$

(d) Finally, $1 /(z+j)$ is already in the Laurent series expansion form for $f(z)=1 /(z+j)$ valid for $|z+j|<1$.

Exercise 2. Find Laurent series representations for $\sin z / z^{3}$. For what z is this representation valid?

Answer. Now

$$
\sin z=z-\frac{z^{3}}{3!}+\frac{z^{5}}{5!}-\frac{z^{7}}{7!}+\cdots=\sum_{n=0}^{\infty} \frac{(-1)^{n} z^{2 n+1}}{(2 n+1)!} .
$$

Thus

$$
\frac{\sin z}{z^{3}}=\sum_{n=0}^{\infty} \frac{(-1)^{n} z^{2 n-2}}{(2 n+1)!}, \quad \text { valid at } z=0 .
$$

Since there are no other singular points for $\sin z /\left(z^{3}\right)$ but $z=0$, we conclude that this series holds for all $z \neq 0$. (We can see this also by the ratio test for convergence:

$$
\left|\frac{z^{2(n+1)+1}}{z^{2 n+1}}\right|<\lim _{n \rightarrow \infty}\left[\frac{\frac{1}{(2 n+1)!}}{\frac{1}{(2(n+1)+1)!}}\right],
$$

i.e., $\left|z^{2}\right|<\lim _{n \rightarrow \infty}(2 n+2)(2 n+3)=\infty$.)

Exercise 3. Determine the Laurent series expansion for $f(z)=1 /(z+1)(z+2)$ valid in the regions: (a) $|z+1|<1$, (b) $|z+2|<1$, (c) $|z|<1$, (d) $|z|>2$.

Answer. (a) Since $|z+1|<1$, we have

$$
\begin{aligned}
\frac{1}{(z+1)(z+2)} & =\frac{1}{(z+1)[(z+1)+1]}=\frac{1}{(z+1)[1-(-(z+1))]} \\
& =\frac{1}{z+1} \sum_{n=0}^{\infty}(-1)^{n}(z+1)^{n}=\sum_{n=0}^{\infty}(-1)^{n}(z+1)^{n-1}
\end{aligned}
$$

(b) Now $|z+2|<1$, thus:

$$
\begin{aligned}
\frac{1}{(z+1)(z+2)} & =\frac{1}{[(z+2)-1](z+2)}=\frac{-1}{z+2} \frac{1}{[1-(z+2)]} \\
& =\frac{-1}{z+2} \sum_{n=0}^{\infty}(z+2)^{n}=-\sum_{n=0}^{\infty}(z+2)^{n-1}
\end{aligned}
$$

(c) Next, $\frac{1}{(z+1)(z+2)}=\frac{A}{z+1}+\frac{B}{z+2}$ with $A(z+2)+B(z+1)=1$. So

$$
\left.\begin{array}{r}
A+B=0 \\
2 A+B=1
\end{array}\right\} \begin{aligned}
& A=1 \\
& B=-1
\end{aligned}
$$

and $\frac{1}{(z+1)(z+2)}=\frac{1}{z+1}-\frac{1}{z+2}$. But

$$
\begin{aligned}
& \frac{1}{z+1}=\sum_{n=0}^{\infty}(-1)^{n} z^{n}, \\
& \frac{1}{z+2}=\frac{1}{2} \sum_{n=0}^{\infty}(-1)^{n}\left(\frac{z}{2}\right)^{n}=\sum_{n=0}^{\infty} \frac{(-1)^{n} z^{n}}{2^{n+1}} .
\end{aligned}
$$

Finally,

$$
\frac{1}{(z+1)(z+2)}=\sum_{n=0}^{\infty}(-1)^{n} z^{n}\left(1-\frac{1}{2^{n+1}}\right) .
$$

(d) Now $|z|>2$. We still have: $\frac{1}{(z+1)(z+2)}=\frac{1}{z+1}-\frac{1}{z+2}$ and

$$
\begin{aligned}
& \frac{1}{z+1}=\frac{1}{z} \cdot \frac{1}{1+\frac{1}{z}}=\frac{1}{z} \sum_{n=0}^{\infty}(-1)^{n}\left(\frac{1}{z}\right)^{n} \\
& \frac{1}{z+2}=\frac{1}{z} \cdot \frac{1}{1+\frac{2}{z}}=\frac{1}{z} \sum_{n=0}^{\infty}(-1)^{n}\left(\frac{2}{z}\right)^{n} .
\end{aligned}
$$

Finally, $\frac{1}{z+1}-\frac{1}{z+2}=\sum_{n=0}^{\infty} \frac{(-1)^{n}\left(1-2^{n}\right)}{z^{n+1}}$.
Exercise 4. Determine the Laurent series expansion for $f(z)=z^{4} e^{\frac{1}{z}}$ valid for $|z|>0$.

Answer. Now $e^{w}=\sum_{n=0}^{\infty} \frac{w^{n}}{n!}$. Thus $e^{\frac{1}{z}}=\sum_{n=0}^{\infty} \frac{z^{-n}}{n!}$. Finally,

$$
z^{4} e^{\frac{1}{z}}=\sum_{n=0}^{\infty} \frac{z^{4-n}}{n!}
$$

Exercise 5. Same as exercise 4 if $f(z)=z^{3} \cos (1 / z)$.

Answer. Observe that

$$
\cos w=1-\frac{w^{2}}{2!}+\frac{w^{4}}{4!}-\frac{w^{6}}{6!}+\cdots=\sum_{n=0}^{\infty} \frac{(-1)^{n} w^{2 n}}{(2 n)!} .
$$

So

$$
z^{3} \cos \left(\frac{1}{z}\right)=z^{3} \sum_{n=0}^{\infty} \frac{(-1)^{n} z^{-2 n}}{(2 n)!}=\sum_{n=0}^{\infty} \frac{(-1)^{n} z^{3-2 n}}{(2 n)!} .
$$

III.f Summary and the Residue Theorem

We first summarize the situation of the previous section and prepare for the practical problems that follow in the next sections.

The main problem, as we shall see, is this: We are given a function $f(z)$ and a contour \mathcal{C}. Our problem is to evaluate $\mathscr{C}_{\mathcal{C}} f(z) d z$. Since we know that $f(z)$ has poles at $z_{1}, z_{2}, \ldots, z_{m}$ inside \mathcal{C}, the integral will not $=0$.

In practice, f will be given by the physical problem, and spotting z_{1}, \ldots, z_{m} and their order is reasonably easy-see below. Since f is differentiable apart from the poles, we can, by introducing cuts, replace $\mathscr{C}_{\mathcal{c}} f(z) d z$ by the sum

$$
\oint_{C_{1}} f(z) d z+\oint_{C_{2}} f(z) d z+\cdots+\oint_{C_{m}} f(z) d z
$$

where $C_{1}, C_{2}, \ldots, C_{m}$ are small circles centered at z_{1}, \ldots, z_{m}, respectively. The radius of C_{1}, \ldots, C_{m} is so small that $f(z)$ has no other singular point inside C_{1}, \ldots, C_{m} besides z_{1}, \ldots, z_{m}.

So

$$
\oint_{\mathcal{C}} f(z) d z=\oint_{C_{1}} f(z) d z+\cdots+\oint_{C_{m}} f(z) d z .
$$

Consider $\mathscr{C}_{C_{1}} f(z) d z$. Suppose we can find the residue of f at z_{1} : this means finding the coefficient of $1 /\left(z-z_{1}\right)$ in the Laurent series for f, but we don't even dream of finding the whole series! Then

$$
\oint_{C_{1}} f(z) d z=2 \pi j\left(\operatorname{Res}\left(z_{1}\right)\right)
$$

where $\operatorname{Res}\left(z_{1}\right)$ means the residue of f at z_{1}. We do the same for $\mathscr{C}_{C_{2}}, \mathscr{C}_{C_{3}}, \ldots$, etc. and get

$$
\oint_{\mathcal{C}} f(z) d z=2 \pi j\left(\operatorname{Res}\left(z_{1}\right)+\operatorname{Res}\left(z_{2}\right)+\cdots+\operatorname{Res}\left(z_{m}\right)\right) .
$$

We now practice this important result.

Example 1. Find $\mathscr{C}_{\mathcal{C}} \frac{(z-3 j)}{(z+j)(z-j)} d z$ if \mathcal{C} is a simple closed path enclosing both $z=j$ and $z=-j$.

Answer. Here $f(z)=(z-3 j) /(z+j)(z-j)$ has two poles: at $z=j$ and at $z=-j$, and both poles are inside \mathcal{C}.

Now at $z=j$, we have

$$
\left.(z-j) \frac{(z-3 j)}{(z+j)(z-j)}\right|_{z=j}=\left.\frac{z-3 j}{z+j}\right|_{z=j}=\frac{-2 j}{2 j}=-1 .
$$

Since this is not zero but had we multiplied by a higher power of $(t-j)$ we would have gotten zero, we have both that $z=j$ is a pole of order 1 (i.e., simple) and that the residue is -1 .

In the same way, at $z=-j$,

$$
\left.(z+j) \frac{(z-3 j)}{(z+j)(z-j)}\right|_{z=-j}=\left.\frac{z-3 j}{z-j}\right|_{z=-j}=\frac{-4 j}{-2 j}=2 .
$$

So, again, $z=-j$ is a simple pole and the residue is 2 .
Finally,

$$
\oint_{\mathcal{C}} \frac{z-3 j}{(z+j)(z-j)} d z=2 \pi j(-1+2)=2 \pi j .
$$

Example 2. Same as Example 1, except \mathcal{C} now only encloses $z=j$ and not $z=-j$.

Answer. Now there is only one pole inside \mathcal{C}, namely $z=j$, and so

$$
\oint_{\mathcal{C}} \frac{z-3 j}{(z+j)(z-j)} d z=2 \pi j(-1)
$$

Note that the fact $z=-j$ is no longer inside \mathcal{C} has no effect whatsoever on the 139
calculations we perform at $z=j$. The residue at $z=j$ is exactly the same as before.

Example 3. Find $\mathscr{C}_{\mathcal{C}} \frac{\sin z}{(z-1)(z-j)} d z$ where \mathcal{C} is a path enclosing both $z=1$ and $z=j$.

Answer. Note that once again we do not specify \mathcal{C} exactly! Since \mathcal{C} encloses both $z=1$ and $z=j$ and $\operatorname{since} \sin z$ is always differentiable, $\sin z /(z-1)(z-j)$ has two poles, namely at $z=1$ and $z=j$, both inside \mathcal{C}.

Thus

$$
\oint_{\mathcal{C}} \frac{\sin z}{(z-1)(z-j)} d z=2 \pi j[(\text { Residue at } z=1)+(\text { Residue at } z=j)] .
$$

Now at $z=1$ we have

$$
\left.(z-1)\left[\frac{\sin z}{(z-1)(z-j)}\right]\right|_{z=1}=\left.\frac{\sin z}{z-j}\right|_{z=1}=\frac{\sin (1)}{1-j} \neq 0
$$

Thus at $z=1$ we have a pole of order 1 for the same reason as in the earlier examples, and

$$
\begin{gathered}
\text { Residue }=\frac{\sin (1)}{1-j} . \\
140
\end{gathered}
$$

At $z=j$, we have

$$
\left.(z-j)\left[\frac{\sin z}{(z-1)(z-j)}\right]\right|_{z=j}=\left.\frac{\sin z}{z-1}\right|_{z=j}=\frac{\sin (j)}{j-1}
$$

and

$$
\text { Residue }=\frac{\sin (j)}{j-1}=\frac{e^{j^{2}}-e^{-j^{2}}}{2 j(j-1)}=\frac{e^{-1}-e^{1}}{2 j(j-1)} .
$$

Finally,

$$
\oint_{\mathcal{C}} \frac{\sin z}{(z-1)(z-j)} d z=2 \pi j\left[\frac{\sin (1)}{1-j}+\frac{e^{-1}-e^{1}}{2 j(j-1)}\right] .
$$

Example 4. Same as Example 3, except f is now $\sin z /(z-1)^{2}(z-j)$.

Answer. Note that now the pole at $z=1$ is of order $2(\operatorname{since} \sin (1) /(1-j) \neq 0)$.

We need to calculate the residues and this is not as easy as the earlier examples! To practice, we do it in two ways. First, we expand $\sin z /(z-j)$ as a Taylor series about $z=1$, or more precisely, we calculate the first few terms in this expansion.

We have

$$
\begin{aligned}
\left.\frac{\sin z}{z-j}\right|_{z=1} & =\frac{\sin (1)}{1-j} \\
\left.\frac{d}{d z}\left(\frac{\sin z}{z-j}\right)\right|_{z=1} & =\left.\frac{(\cos z)(z-j)-\sin z}{(z-j)^{2}}\right|_{z=1}=\frac{\cos (1)(1-j)-\sin (1)}{(1-j)^{2}}
\end{aligned}
$$

These are the first two terms of the Taylor series for $\sin z /(z-j)$, i.e.,

$$
\frac{\sin z}{z-j}=\frac{\sin (1)}{1-j}+\frac{\cos (1)(1-j)-\sin (1)}{(1-j)^{2}}(z-1)+\text { Junk } \cdot(z-1)^{2} .
$$

If we divide by $(z-1)^{2}$, we find that the residue is

$$
\frac{\cos (1)(1-j)-\sin (1)}{(1-j)^{2}}
$$

exactly as given by the earlier formulas in the preceding section.
Now, for the fast way, since $z=1$ is a pole of order 2 ,

$$
\left.\frac{d}{d z}\left(\frac{\sin z}{z-j}\right)\right|_{z=1}=\frac{\cos (1)(1-j)-\sin (1)}{(1-j)^{2}}
$$

Next, $z=j$ is still a simple pole, so the residue there is $\sin (1) /(j-1)^{2}$, and we get

$$
\oint_{\mathcal{C}} \frac{\sin z}{(z-1)^{2}(z-j)} d z=2 \pi j\left[\frac{\cos (1)(1-j)-\sin (1)}{(1-j)^{2}}+\frac{\sin (j)}{(j-1)^{2}}\right] .
$$

Example 5. Find $\mathscr{C}_{\mathcal{C}} f(z) d z$ is \mathcal{C} encloses the point $z=j$ and

$$
f(z)=\frac{1}{(z-j)^{3}}+\frac{127}{(z-j)^{2}}+100(z-j)+10(z-j)^{3}+e^{z} .
$$

Answer. There is nothing to calculate in this example! $f(z)$ is already given as a Laurent series about $z=j$, except for e^{z}. But e^{z} is always differentiable and can be expanded in a Taylor series about $z=j$ and it does not have the term $1 /(z-j)$ since all powers of $(z-j$) will be positive. Equivalently, $f(z)$ contains the term $0 /(z-j)$, so the residue is zero and $\mathscr{C}_{\mathcal{C}} f(z) d z=0$ even though j is inside \mathcal{C} !

Example 8. $\mathscr{C}_{\mathcal{C}} \sin z / z d z$ where $z=0$ is inside \mathcal{C}.

Answer. Note that at $z=0$ we have $\sin z=0$, so

$$
\left.z \cdot \frac{\sin z}{z}\right|_{z=0}=0
$$

and clearly

$$
\left.z^{m} \cdot \frac{\sin z}{z}\right|_{z=0}=0, \quad \text { for any } m>1
$$

So $\sin z / z$ does not blow up at $z=0$, and $z=0$ is not a pole, despite appearances. You can see this also from the expansion

$$
\frac{\sin z}{z}=\left(z-\frac{z^{3}}{3!}+\frac{z^{5}}{5!}-\cdots\right) \frac{1}{z}=1-\frac{z^{2}}{3!}+\frac{z^{4}}{5!}-\cdots
$$

This is actually the Laurent series, and there are no negative powers of z. So the residue $=$ coeff. of $1 / z=0$ and

$$
\oint_{\mathcal{C}} \frac{\sin z}{z} d z=0 .
$$

This situation is called a removable singularity: it looks like a pole, but it is not since the top also vanishes at z_{0} and the ratio stays bounded.

Further Exercises:

Calculate the residue at each singular point.
Exercise 1. $f(z)=1 /\left(z^{2}+3 j z-2\right)$.

Answer. $f(z)=1 /\left(z^{2}+3 j z-2\right)$. We factor the bottom:

$$
z^{2}+3 j z-2=0 \quad \Longleftrightarrow \quad z=\frac{-3 j \pm \sqrt{-9+8}}{2}=\frac{-3 j \pm j}{2}=-j,-2 j .
$$

So $z^{2}-3 j z-2=(z+j)(z+2 j)$ and $f(z)=1 /(z+j)(z+2 j)$. We have two singular points at $z=-j,-2 j$. Note that each is a pole of order 1 and thus:

$$
\begin{aligned}
& \text { residue at } z=-j \text { is } \frac{1}{(-j+2 j)}=\frac{1}{j} \\
& \text { residue at } z=-2 j \text { is } \frac{1}{(-2 j+j)}=\frac{-1}{j} .
\end{aligned}
$$

Exercise 2. $\quad f(z)=1 /\left(z^{2}-2 j z-1\right)$.

Answer. $f(z)=1 /\left(z^{2}-2 j z-1\right)$. Now

$$
z^{2}-2 j z-1=0 \quad \Longleftrightarrow \quad z=\frac{2 j \pm \sqrt{-4+4}}{2}
$$

We have $z^{2}-2 j z-1=(z-j)^{2}$ and $f(z)=1 /(z-j)^{2}$. There is only one singular point, at $z=j$, and the residue there is

$$
\left.\frac{d}{d z}\left(f(z)(z-j)^{2}\right)\right|_{z=j}=\left.\frac{d}{d z}(1)\right|_{z=j}=0
$$

You could have seen this immediately, since $f(z)=1 /(z-j)^{2}$ is already written in a Laurent series about $z=j$, and the coefficient of $1 /(z-j)$ is 0 , since there is no $1 /(z-j)$ term.

Exercise 3. $f(z)=\csc z$.

Answer. $f(z)=\csc z=1 / \sin z$. Note that $f(z)$ has a singular point whenever $\sin z=0$, i.e., $\left(e^{j z}-e^{-j z}\right) /(2 j)=0$ or $e^{2 j z}=1$ or $2 j z=\log (1)=2 n \pi j,(n=$ $0, \pm 1, \pm 2, \ldots)$ or $z=n \pi$. Now what is the order of the pole at $z=n \pi$? Observe that we can expand $\sin z$ about $n \pi$ and get

$$
\begin{aligned}
\sin z= & \sin (n \pi)+\left.\frac{d}{d z}(\sin z)\right|_{z=n \pi}(z-n \pi)+\left.\frac{1}{2!} \frac{d^{2}}{d z^{2}}(\sin z)\right|_{z=n \pi}(z-n \pi)^{2} \\
& \quad+\left.\frac{1}{3!} \frac{d^{3}}{d z^{3}}(\sin z)\right|_{z=n \pi}(z-n \pi)^{3}+\ldots \\
& =\cos (n \pi)(z-n \pi)+\frac{1}{3!}(-\cos (n \pi))(z-n \pi)^{3}+\ldots \\
= & (-1)^{n}(z-n \pi)+\frac{1}{3!}(-1)^{n+1}(z-n \pi)^{3}+\ldots
\end{aligned}
$$

Thus

$$
\left.f(z)(z-n \pi)\right|_{z=n \pi}=\left.\frac{1}{(-1)^{n}+\frac{1}{3!}(-1)^{n+1}(z-n \pi)^{2}+\ldots}\right|_{z=n \pi}=\frac{1}{(-1)^{n}}
$$

and the pole is simple at each $n \pi$ with residue $1 /(-1)^{n}$.

Exercise 4. $f(z)=\cos z /\left(e^{z}-1\right)$.

Answer. $f(z)=\cos z /\left(e^{z}-1\right)$. Now a singular point will arise whenever $e^{z}=1$, i.e., $z=2 k \pi j, k=0, \pm 1, \pm 2, \ldots$ Also,

$$
e^{z}=\sum_{n=0}^{\infty} \frac{1}{n!}\left(z-z_{0}\right)^{n} \quad \text { for any } z_{0},
$$

so

$$
e^{z}=\sum_{n=0}^{\infty} \frac{1}{n!}(z-2 k \pi j)^{n} \quad \text { and } \quad e^{z}-1=(z-2 k \pi j)+\frac{(z-2 k \pi j)^{2}}{2!}+\ldots
$$

and at $z=2 k \pi j$,

$$
\begin{aligned}
\left.f(z)(z-2 k \pi j)\right|_{z=2 k \pi j} & =\left.\frac{\cos z}{1+\frac{(z-2 k \pi j)^{2}}{2!}+\ldots}\right|_{z=2 k \pi j}=\frac{\cos (2 k \pi j)}{1} \\
& =\frac{e^{j(2 k \pi j)}+e^{-j(2 k \pi j)}}{2}=\frac{e^{-2 k \pi}+e^{2 k \pi}}{2}
\end{aligned}
$$

which is the residue.

Exercise 5. Calculate the part of the Laurent series for $z_{0}=0$ that involves negative powers of $\left(z-z_{0}\right)$ if $f=\sin z /\left[\left(z^{2}+1\right) z^{3}\right]$.

Answer. Now $f(z)=\sin z /\left[\left(z^{2}+1\right) z^{3}\right]$. It appears that $z=0$ is a pole of order 3 , but this is not so, $\operatorname{since} \sin z=0$ at $z=0$ too. Then

$$
\left.\frac{(\sin z) z^{2}}{\left(z^{2}+1\right) z^{3}}\right|_{z=0}=\left.\frac{z-\frac{z^{3}}{3!}+\frac{z^{5}}{5!}+\cdots}{\left(z^{2}+1\right) z}\right|_{z=0}=\frac{1}{1}=1
$$

while

$$
\left.\frac{(\sin z) z^{m}}{\left(z^{2}+1\right) z^{3}}\right|_{z=0}=0 \quad \text { if } m>2
$$

So the pole of order 2 and the Laurent series for f has negative power part:
$d_{1} /(z-0)^{2}+d_{2} /(z-0)^{2}$ with

$$
d_{2}=\left.\frac{(\sin z) z^{2}}{\left(z^{2}+1\right) z^{3}}\right|_{z=0}=1, \quad d_{1}=\left.\frac{d}{d z}\left[\frac{\sin z}{\left(z^{2}+1\right) z}\right]\right|_{z=0}
$$

Now

$$
\begin{aligned}
\frac{d}{d z}\left[\frac{\sin z}{z\left(z^{2}+1\right)}\right] & =\frac{(\cos z)\left(z^{3}+z\right)-(\sin z)\left(3 z^{2}+1\right)}{z^{2}\left(z^{2}+1\right)^{2}} \\
& =\frac{z^{3} \cos z-(\sin z) 3 z^{2}}{z^{2}\left(z^{2}+1\right)^{2}}+\frac{z(\cos z)-\sin z}{z^{2}\left(z^{2}+1\right)^{2}} \\
& =\frac{z \cos z-(\sin z) 3}{\left(z^{2}+1\right)^{2}}+\frac{z\left(1-\frac{z^{2}}{2!}+\frac{z^{4}}{4!}-\cdots\right)-\left(z-\frac{z^{3}}{3!}+\frac{z^{5}}{5!}-\cdots\right)}{z^{2}\left(z^{2}+1\right)^{2}}
\end{aligned}
$$

Now let $z \rightarrow 0$. The first piece tends to $0 / 1^{2}=0$. The second piece is

$$
\frac{-\frac{z^{2}}{2!}+\frac{z^{3}}{3!}+\text { higher powers of } z}{z^{2}\left(z^{2}+1\right)^{2}}
$$

So, as $z \rightarrow 0$, the second piece also tends to 0 and $d_{1}=0$. Thus the negative part of the series is just $1 / z^{2}$.

Evaluate the following integrals.
Exercise 6. $\mathscr{C}_{\mathcal{C}} z e^{\frac{1}{z}} d z$, if \mathcal{C} is any simple closed path that contains $z=0$.
Answer. $\int_{\mathcal{C}} z e^{\frac{1}{z}} d z=2 \pi j$ (residue at $z=0$). Now $e^{\frac{1}{z}}=\sum_{n=0}^{\infty} \frac{1}{n!z^{n}}$, so

$$
z e^{\frac{1}{z}}=z\left(1+\frac{1}{z}+\frac{1}{2!z^{2}}+\cdots\right)=z+1+\frac{1}{2!z}+\frac{1}{3!z^{2}}+\cdots .
$$

Observe that $z e^{\frac{1}{z}}$ does not have a pole at $z=0$, or, if you prefer, it has a pole of infinite order there. We conclude

$$
\oint_{\mathcal{C}} z e^{\frac{1}{z}} d z=2 \pi j\left(\frac{1}{2!}\right)=\pi j .
$$

Exercise 7. $\int_{\mathcal{C}} \sin z /\left[z(z+j)^{2}\right] d z$, if \mathcal{C} is the circle $|z|=10$.

Answer. Since $|z|=10$ has for interior points both $z=0$ and $z=-j$, we consider both points. Note that $z=0$ is not a pole $(\operatorname{since} \sin z=0$ at $z=0$ too, and $\left.\sin z=z-z^{3} / 3!+z^{5} / 5!+\cdots\right)$. The only pole is $z=-j$, which is double. So

$$
\left.\frac{d}{d z}\left[\frac{\sin z}{z}\right]\right|_{z=-j}=\left.\frac{(\cos z) z-\sin z}{1}\right|_{-j}=\cos (-j)(-j)-\sin (-j)
$$

and

$$
\oint_{\mathcal{C}} \frac{\sin z}{z(z+j)^{2}}=2 \pi j[\cos (-j)(-j)-\sin (-j)]
$$

Exercise 8. (a) $\mathscr{C}_{\mathcal{C}} \frac{e^{z}}{z^{10}} d z$, if (a) \mathcal{C} is the circle $|z|=1$, (b) \mathcal{C} is the circle $|z+4 j|=2$.

Answer. (a) $\oint_{\mathcal{C}} e^{z} / z^{10} d z=2 \pi j$ (residue at $z=0$). Now e^{z} / z^{10} has a pole of order 10 at $z=0$, so

$$
\text { residue at } z=0=\left.\frac{1}{9!} \frac{d^{9}}{d z^{9}}\left(e^{z}\right)\right|_{z=0}=\frac{1}{9!} e^{0}=\frac{1}{9!} .
$$

We conclude

$$
\oint \frac{e^{z}}{z^{10}} d z=\frac{2 \pi j}{9!}
$$

(b) $z=0$ is not inside nor on $|z+4 j|=2$. So e^{z} / z^{10} is analytic inside and on \mathcal{C} and

$$
\oint_{\mathcal{C}} \frac{e^{z}}{z^{10}} d z=0
$$

III.g An Application: Evaluation of Improper Real Integrals

Complex integrals can be used to evaluate some real integrals. As a first example, consider integrals of the type $\int_{-\infty}^{\infty} f(x) d x$. We emphasize that x here denotes a real variable, and illustrate the concept by considering the following examples. The basic idea is to form these "real" integrals into path integrals in the complex plane.

Example 1. Evaluate $\int_{-\infty}^{\infty} \frac{1}{1+x^{2}} d x$.

Answer. We recall that

$$
\int_{-\infty}^{\infty} \frac{1}{1+x^{2}} d x=\lim _{R \rightarrow \infty}\left[\int_{-R}^{R} \frac{1}{1+x^{2}} d x\right]
$$

and we start by looking at $\int_{-R}^{R} \frac{1}{1+x^{2}} d x$. Now consider for a moment $f(z)=1 /\left(1+z^{2}\right)$ and suppose we wish to find $\mathscr{C}_{\mathcal{C}} f(z) d z$ where $\mathcal{C}=C_{1}+C_{2}$ as shown.

In particular, C_{2} can be taken to be the semicircle of radius R. Now

$$
\oint_{\mathcal{C}} f(z) d z=\int_{C_{1}} f(z) d z+\int_{C_{2}} f(z) d z
$$

and note that we can parametrize C_{1} by

$$
C_{1}=\left\{\begin{array}{l}
x=x \\
y=0 . \\
149
\end{array}\right.
$$

So $z=x, d z=d x$ on C_{1} and

$$
\int_{C_{1}} f(z) d z=\int_{x=-R}^{R} f(x) d x=\int_{-R}^{R} \frac{1}{1+x^{2}} d x
$$

and this is precisely what we wish to calculate! Now $\mathscr{C}_{\mathcal{C}} f(z) d z$ can be done by residues, but unfortunately,

$$
\oint_{C_{1}} f(z) d z=\int_{-R}^{R} \frac{1}{1+x^{2}} d x+\int_{C_{2}} f(z) d z
$$

and we need to deal with $\int_{C_{2}} f(z) d z=\int_{C_{2}} \frac{1}{1+z^{2}} d z$. Observe that

$$
C_{2}=\left\{\begin{array}{l}
x=R \cos \theta \\
y=R \sin \theta
\end{array} \quad 0 \leq \theta \leq \pi,\right.
$$

i.e., $z=R e^{j \theta}$. This enables us to estimate $\int_{C_{2}} \frac{1}{1+z^{2}} d z$:

$$
\left|\int_{C_{2}} \frac{1}{1+z^{2}} d z\right| \leq \int_{\theta=0}^{\pi}\left|\frac{1}{1+z^{2}}\right|\left|\frac{d z}{d \theta}\right| d \theta
$$

We have

$$
\begin{aligned}
\left|\frac{d z}{d \theta}\right| & =\left|R j e^{j \theta}\right|=R \\
\left|1+z^{2}\right| & \geq\left|z^{2}\right|-|1|=|z|^{2}-1=R^{2}-1 .
\end{aligned}
$$

So

$$
\left|\int_{C_{2}} \frac{1}{1+z^{2}} d z\right| \leq \int_{\theta=0}^{\pi} \frac{1}{R^{2}-1} \cdot R d \theta=\frac{\pi R}{R^{2}-1} \rightarrow 0 \text { as } R \rightarrow \infty
$$

Remark. The above estimate is often not carried out in detail. It suffices to note that if $f(x)=P(x) / Q(x)$ with P, Q polynomials and the order of Q is at least two more than the order of $P(x)$, then the above estimate always goes through. I.e.,

$$
\left|\int_{C_{2}} \frac{P(z)}{Q(z)} d z\right| \begin{gathered}
\rightarrow 0 \\
150
\end{gathered} \quad \text { as } \quad R \rightarrow \infty
$$

In summary,

$$
\oint_{\mathcal{C}} f(z) d z=\int_{-R}^{R} \frac{1}{1+x^{2}} d x+\int_{C_{2}} f(z) d z
$$

and

$$
\int_{C_{2}} f(z) d z \rightarrow 0 \quad \text { as } \quad|z|(\text { i.e., } R) \rightarrow \infty
$$

But for R big, $\mathscr{C}_{\mathcal{C}} f(z) d z$ never changes: Observe that $f(z)$ has 2 (simple) poles at $z= \pm j$. So

$$
\oint_{\mathcal{C}} f(z) d z=2 \pi j(\operatorname{Res} z=j)=2 \pi j \cdot \frac{1}{2 j}=\pi
$$

for all such R, i.e.,

$$
\pi=\int_{-R}^{R} \frac{1}{1+x^{2}} d x+\int_{C_{2}} f(z) d z
$$

So taking limit of both sides as $R \rightarrow \infty$ gives

$$
\pi=\int_{-\infty}^{\infty} \frac{1}{1+x^{2}} d x+\lim _{R \rightarrow 0}\left[\int_{C_{2}} f(z) d z\right]=\int_{-\infty}^{\infty} \frac{1}{1+x^{2}} d x
$$

and we are done.

Example 2. $\int_{-\infty}^{\infty} \frac{x}{\left(x^{2}+1\right)\left(x^{2}+4\right)} d x$.
Answer. We repeat the earlier process. Note first that the order of the bottom $=4$, order of the top $=1$ so we construct the path \mathcal{C} just like before and know

$$
\left|\int_{C_{2}} \frac{z}{\left(z^{2}+1\right)\left(z^{2}+4\right)} d z\right| \rightarrow 0 \quad \text { as } \quad R \rightarrow \infty
$$

All we need to calculate is $\oint_{\mathcal{C}} \frac{z}{\left(z^{2}+1\right)\left(z^{2}+4\right)} d z$ by means of residues.

Now the poles are $z= \pm j, \pm 2 j$ (the zeros of the bottom) and these are all of order 1 (i.e., simple), but only two: $j, 2 j$ are inside \mathcal{C}. Thus

$$
\begin{array}{ll}
\text { Residue at } j: & \frac{j}{2 j\left(j^{2}+4\right)}=\frac{1}{2(3)}=\frac{1}{6} \\
\text { Residue at } 2 j: & \frac{2 j}{\left((2 j)^{2}+1\right)(4 j)}=\frac{1}{2(-3)}=-\frac{1}{6} .
\end{array}
$$

So

$$
\int_{-\infty}^{\infty} \frac{x}{\left(x^{2}+1\right)\left(x^{2}+4\right)} d x=2 \pi j\left(\frac{1}{6}-\frac{1}{6}\right)=0
$$

We consider a different type of "real" integrals which can be done by complex path integrals. Specifically, we look at

$$
\int_{0}^{2 \pi} f(\sin \theta, \cos \theta) d \theta
$$

We keep in mind that θ was used as a parameter when we evaluate a complex integral over the unit circle, so it seems reasonable to put $z=e^{j \theta}$, then

$$
\sin \theta=\frac{e^{j \theta}-e^{-j \theta}}{2 j}=\frac{1}{2 j}\left(z-\frac{1}{z}\right), \quad \cos \theta=\frac{1}{2}\left(z+\frac{1}{z}\right)
$$

and

$$
d z=j e^{j \theta} d \theta=j z d \theta \quad \Longrightarrow \quad d \theta=\frac{d z}{j z}
$$

In summary:

$$
\int_{0}^{2 \pi} f(\sin \theta, \cos \theta) d \theta=\oint_{\mathcal{C}} f\left(\frac{1}{2 j}\left(z-\frac{1}{z}\right), \frac{1}{2}\left(z+\frac{1}{z}\right)\right) \frac{d z}{j z}
$$

where \mathcal{C} is the unit circle.

Example 3. Evaluate $\int_{0}^{2 \pi} \frac{1}{\sin \theta+2} d \theta$.

Answer. We put $z=e^{j \theta}$ and get

$$
\int_{0}^{2 \pi} \frac{1}{\sin \theta+2} d \theta=\oint_{\mathcal{C}} \frac{1}{\left(z-\frac{1}{z}\right) \frac{1}{2 j}+2} \frac{d z}{j z}
$$

where \mathcal{C} is the unit circle. Now

$$
\oint_{\mathcal{C}} \frac{d z}{2 j z+\left(z^{2}-1\right) \frac{1}{2}}=\oint_{\mathcal{C}} \frac{2 d z}{z^{2}-1+4 j z} .
$$

The roots of the bottom are

$$
z=\frac{-4 j \pm \sqrt{-16+4}}{2}=(-2 \pm \sqrt{3}) j,
$$

SO

$$
z^{2}+4 j z-1=(z+(2+\sqrt{3}) j)(z+(2-\sqrt{3}) j)
$$

Observe that $(-2+\sqrt{3}) j$ is inside \mathcal{C}, but $(-2-\sqrt{3}) j$ is not, since

$$
\left\{\begin{array}{l}
|(-2+\sqrt{3}) j|=2-\sqrt{3}<1 \\
|(-2-\sqrt{3}) j|=2+\sqrt{3}>1
\end{array}\right.
$$

We also note that the pole at $(-2+\sqrt{3}) j$ is simple. Then

$$
\oint_{\mathcal{C}} \frac{2}{z^{2}+4 j z-1} d z=2 \pi j\left(\frac{2}{2 \sqrt{3} j}\right)=\frac{2 \pi}{\sqrt{3}} .
$$

As a final comment, we recall that $f(x)$ is even iff $f(x)=f(-x)$. Suppose $f(x)$ is even, then

$$
\int_{0}^{\infty} f(x) d x=\frac{1}{2} \int_{-\infty}^{\infty} f(x) d x
$$

We can thus evaluate $\int_{0}^{\infty} f(x) d x$ by evaluating $\int_{-\infty}^{\infty} f(x) d x$ and dividing by 2 . As an example consider $\int_{0}^{\infty} \frac{1}{1+x^{2}} d x$. Here $f(x)=\frac{1}{1+x^{2}}$ for $f(x)=f(-x)$ and f is even. We thus have $\int_{0}^{\infty} \frac{1}{1+x^{2}} d x=\frac{1}{2} \cdot \pi$ from Example 1. Note also that $f(x)$ is odd if $f(x)=-f(-x)$, so

$$
\int_{-\infty}^{\infty} f(x) d x=\lim _{R \rightarrow \infty}\left[\int_{-R}^{R} f(x) d x\right]
$$

but

$$
\int_{-R}^{R} f(x) d x=\int_{-R}^{0} f(x) d x+\int_{0}^{R} f(x) d x=-\int_{0}^{R} f(x) d x+\int_{0}^{R} f(x) d x=0
$$

and $\int_{-\infty}^{\infty} f(x) d x=0$! Unfortunately, we can't do $\int_{0}^{\infty} f(x) d x$ if $f(x)$ is odd.

We now come one of the main reasons for all the work we have done: inverting the Laplace Transform. The basic idea - constructing suitable paths in the complex plane - is similar to the previous section. You may recall that given $y=f(t)$ (usually t is actually time), $L(f)(s)$-the Laplace Transform of f-is given by

$$
L(f)(s)=\int_{0}^{\infty} e^{-s t} f(t) d t
$$

In elementary courses, s is thought of as being a real number, but in practical problems this is not the case and you should think of s as being complex. Indeed, $s=j w$ with $w=$ frequency is of particular significance. So we wish to think as $L(f)(s)$ being given for any complex s. The formulas you hopefully recall hold unchanged for s complex. In particular, $L\left(e^{a t}\right)(s)=1 /(s-a)$ if $\operatorname{Re}(s)>\operatorname{Re}(a)$.

Now let $f(s)$ be the transform of some function $h(t)$. We know $f(s)$ and wish to find $h(t)$, i.e., we wish to invert the transform. In practice, $f(s)$ will have some poles at some points s_{1}, \ldots, s_{m} of the complex plane. As is often the case in practice we start by assuming s_{1}, \ldots, s_{m} all lie in the left half plane. (We shall deal with the other case later.) We construct the path $\mathcal{C}=C_{1}+C_{2}$ with C_{2} a semicircle of radius R as shown.

Think of R as being large. If s is any point inside the semicircle (as shown), then
since f is analytic inside and on \mathcal{C} we have

$$
f(s)=\frac{1}{2 \pi j} \oint_{\mathcal{C}} \frac{f(z)}{z-s} d z
$$

Think of s as being temporarily fixed, and assume $|f(z)| \rightarrow 0$ as $|z| \rightarrow \infty$. This is the case for most "practical" functions but not for all. The latter case is more complicated and we do not deal with it in this course. Look at C_{2} : if z is on C_{2} then $|f(z)| \rightarrow 0$ as $|z|$ (i.e., R) approaches ∞, and $1 /|z-s|$ also goes to zero as $|z| \rightarrow \infty$. One can formally show that as a consequence $\int_{C_{2}} f(z) /(z-s) d z \rightarrow 0$ as $R \rightarrow \infty$, and a detailed proof is given in theoretical courses. So, since $f(s)$ never changes as $R \rightarrow \infty$, we get

$$
\begin{aligned}
f(s) & =\frac{1}{2 \pi j} \oint_{\mathcal{C}} \frac{f(z)}{z-s} d z=\frac{1}{2 \pi j}\left[\int_{C_{1}} \frac{f(z)}{z-s} d z+\int_{C_{2}} \frac{f(z)}{z-s} d z\right] \\
& \longrightarrow \frac{1}{2 \pi j}\left[\int_{C_{1}^{*}} \frac{f(z)}{z-s} d z\right] \quad \text { as } \quad|z| \rightarrow \infty
\end{aligned}
$$

where C_{1}^{*} is the y-axis traversed from $+\infty$ to $-\infty$. In summary,

$$
f(s)=\frac{1}{2 \pi j} \int_{C_{1}^{*}} \frac{f(z)}{z-s} d z
$$

Note that C_{1}^{*} can be parametrized as

$$
\left\{\begin{array}{l}
x=0 \\
y=-\ell
\end{array} \quad-\infty \leq \ell \leq \infty .\right.
$$

So, on $C_{1}^{*}, z=-j \ell,-\infty \leq \ell \leq \infty$. Next, remember

$$
L\left(e^{a t}\right)=\frac{1}{s-a}, \quad \text { so } \quad L\left(e^{z t}\right)=\frac{1}{s-z}
$$

and thus

$$
\begin{gathered}
f(s)=-\frac{1}{2 \pi j} \int_{C_{1}^{*}} f(z) L\left(e^{z t}\right) d z=L\left[-\frac{1}{2 \pi j} \int_{C_{1}^{*}} f(z) e^{z t} d z\right] . . . ~ . ~ . ~
\end{gathered}
$$

On the other hand, $L(h(t))=f(s)$, so

$$
L(h(t))=L\left[-\frac{1}{2 \pi j} \int_{C_{1}^{*}} f(z) e^{z t} d z\right]
$$

or

$$
h(t)=-\frac{1}{2 \pi j} \int_{C_{1}^{*}} f(z) e^{z t} d z .
$$

You might be tempted, since we know the parametrization of C_{1}^{*} and since C_{1}^{*} is not a simple closed path, to try to actually evaluate the integral over C_{1}^{*} directly, i.e., by parametrizing and working out the integral for each t. This would be fatal. Instead, much as we did in the last section, we turn $\int_{C_{1}^{*}}$ into an integral over a simple closed path, which we can then evaluate by residues! Since $\mathcal{C}=C_{1}+C_{2}$ was a simple closed path, you might think we would go back to \mathcal{C} and pass to the limit as $R \rightarrow \infty$, but usually not so. Instead we start by looking at t, which as pointed out earlier, is almost always time. We are interested in what happens for $t>0$, since in Laplace transform approaches, the clock starts at $t=0$ (if it does not-say it starts at $t=a$ we can always move this to $t=0$ by a shift in time). Look at $\int_{C_{1}}$, it is:

$$
\int_{C_{1}} f(z) e^{z t} d z
$$

So over the old C_{2} for the same function $f(z) e^{z t}$ we would have $\left|e^{z t}\right|=\left|e^{R(\cos \theta+j \sin \theta) t}\right|$ $=e^{R(\cos \theta) t}$ (note C_{2} can be parametrized as $z=R e^{j \theta},-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$). This is really bad news if $t>0$, since $e^{R(\cos \theta) t}$ blows up as $R \rightarrow \infty$.

In summary, for most $f(z)$ of practical interest,

$$
\left|\int_{C_{2}} f(z) e^{z t} d z\right|
$$

blows up as $R \rightarrow \infty$, due to $t>0$. This is not always the case, as an example
indicates. If $t<0$ note that $\int_{C_{2}} f(z) e^{z t} d z \rightarrow 0$ as a general rule. Thus, in this case,

$$
\begin{aligned}
h(t) & =-\frac{1}{2 \pi j} \int_{C_{1}^{*}} f(z) e^{z t} d z \\
& =\lim _{R \rightarrow \infty}\left[-\frac{1}{2 \pi j} \int_{C_{1}} f(z) e^{z t} d z\right] \\
& =\lim _{R \rightarrow \infty}\left[-\frac{1}{2 \pi j} \int_{C_{1}} f(z) e^{z t} d z-\frac{1}{2 \pi j} \int_{C_{2}} f(z) e^{z t} d z\right] \\
& =\lim _{R \rightarrow \infty}\left[-\frac{1}{2 \pi j} \int_{\mathcal{C}} f(z) e^{z t} d z\right] .
\end{aligned}
$$

But $f(z) e^{z t}$ is differentiable inside and on \mathcal{C} (the poles are on the left $1 / 2$ plane, remember), and we have

$$
\frac{1}{2 \pi j} \int_{\mathcal{C}} f(z) e^{z t} d z=0
$$

and so $h(t)=0$ for $t<0$. True, but of not much practical interest! We want to know what $h(t)$ is for $t>0$! To do this, we use the same idea, but use C_{3} : also a semicircle but on the left half plane.

Remember that R is big, so we may assume $C_{4}=C_{3}+\left(-C_{1}\right)$-which is a simple closed path-encloses all the poles at $s_{1}, s_{2}, \ldots, s_{m}$. Now since $t>0$ and $z=R e^{j \theta}$ on C_{3} with $\frac{\pi}{2}<\theta<\frac{3 \pi}{2}$ then $\cos \theta<0$ and so $\left|e^{z t}\right|=e^{R(\cos \theta) t} \rightarrow 0$ as $R \rightarrow \infty!$ We 158
can now conclude

$$
\left|\int_{C_{3}} f(z) e^{z t} d z\right| \rightarrow 0 \quad \text { as } \quad|z| \rightarrow \infty .
$$

So

$$
\begin{aligned}
h(t) & =-\frac{1}{2 \pi j} \int_{C_{1}^{*}} f(z) e^{z t} d z \\
& =\lim _{R \rightarrow \infty}\left[-\frac{1}{2 \pi j} \int_{C_{1}} f(z) e^{z t} d z\right] \\
& =\lim _{R \rightarrow \infty}\left[\frac{1}{2 \pi j} \int_{-C_{1}} f(z) e^{z t} d z+\frac{1}{2 \pi j} \int_{C_{3}} f(z) e^{z t} d z\right] \\
& =\lim _{R \rightarrow \infty}\left[\frac{1}{2 \pi j} \int_{C_{4}} f(z) e^{z t} d z\right] .
\end{aligned}
$$

But

$$
\begin{aligned}
\frac{1}{2 \pi j} \int_{C_{4}} f(z) e^{z t} d z & =\frac{1}{2 \pi j} \cdot 2 \pi j\left\{\text { Res. at } s_{1}+\text { Res. at } s_{2}+\cdots+\text { Res. at } s_{m}\right\} \\
& =\text { Res. at } s_{1}+\text { Res. at } s_{2}+\cdots+\text { Res. at } s_{m} .
\end{aligned}
$$

This never changes as R gets larger, so

$$
\begin{aligned}
h(t) & =\lim _{R \rightarrow \infty}\left[\frac{1}{2 \pi j} \int_{C_{4}} f(z) e^{z t} d z\right] \\
& =\text { Res. at } s_{1}+\text { Res. at } s_{2}+\cdots+\text { Res. at } s_{m} .
\end{aligned}
$$

We emphasize that the residues are those of $f(z) e^{z t}$, not of $f(z)$ but the poles will be those of $f(z)$, since $e^{z t}$ is always differentiable, $\neq 0$, and cannot contribute "new" poles.

One final notational change. By tradition we write $f(s) e^{s t}$ in place of $f(z) e^{z t}$. We pass to examples.

Example 1. Find the inverse Laplace transform of

$$
f(s)=\frac{s}{(s+1)(s+2)} .
$$

Answer. We use partial fraction expansions. Note that since s is complex, we can factor any polynomial into the product of linear factors $\left(s-s_{1}\right)^{\alpha_{1}}\left(s-s_{2}\right)^{\alpha_{2}} \cdots(s-$ $\left.s_{m}\right)^{\alpha_{m}}$ and with every factor of type $\left(s-s_{1}\right)^{\alpha_{1}}$ we associate the expansion:

$$
\frac{A_{1}}{\left(s-s_{1}\right)}+\frac{A_{2}}{\left(s-s_{1}\right)^{2}}+\cdots+\frac{A_{\alpha}}{\left(s-s_{1}\right)^{\alpha_{1}}} .
$$

In the present case,

$$
f(s)=\frac{s}{(s+1)(s+2)}=\frac{A}{s+1}+\frac{B}{s+2}
$$

and thus

$$
s=A(s+2)+B(s+1) .
$$

Choosing

$$
\left\{\begin{array}{lll}
s=-1 & \text { gives } & -1=A(1)
\end{array} \quad \text { or } \quad A=-1 .\right.
$$

So

$$
f(s)=-\frac{1}{s+1}+\frac{2}{s+2},
$$

and it suffices to invert each piece separately. We choose C_{4} just like before. Now $-e^{s t} /(s+1)$ has a simple pole at $s=-1$, so the inverse of this part is the residue of $-e^{s t} /(s+1)$ at $s=-1$, i.e., $-e^{(-1) t}=-e^{-t}$. In the same way, $2 e^{s t} /(s+2)$ has a simple pole at $s=-2$ and the residue is $2 e^{-2 t}$. The final answer is

$$
\begin{gathered}
-e^{-t}+2 e^{-2 t} \\
160
\end{gathered}
$$

The previous method, using partial fractions, is useful since it decomposes the problem into simpler pieces. However, for a simple problem as given in Example 1, it is easier to just do it directly:

$$
f(s) e^{s t}=\frac{s e^{s t}}{(s+1)(s+2)}
$$

has two simple poles at $s=-1$ and $s=-2$. The sum of the residues is

$$
\frac{(-1) e^{-t}}{(-1+2)}+\frac{(-2) e^{-2 t}}{(-2+1)}=-e^{-t}+2 e^{-2 t}
$$

just like before!

Important Remark. Suppose the problem were

$$
\frac{s}{(2 s+2)(s+2)}
$$

(we just multiplied the bottom by two). Again the poles are at $s=-1, s=-2$, but the residue at $s=-1$ is not $(-1) e^{-t} /(-1+2)$. This is due to the fact that the residue is the Laurent series coefficient of $1 /(s+1)$, not of $1 /(2 s+2)$. So, we must divide by two, i.e., write

$$
\frac{s}{(2 s+2)(s+2)}=\frac{s}{2(s+1)(s+2)}
$$

and the residue at $s=-1$ is

$$
\frac{(-1) e^{-t}}{2(-1+2)}!
$$

Example 2. Find the inverse Laplace transform of

$$
f(s)=\frac{1}{(s-1)(s-2)}
$$

Answer. $\quad f(s)$ and thus $f(s) e^{s t}$ has poles at $s=1$ and $s=2$ so we can't use the same simple closed path as before with C_{1} being the imaginary axis, because in such a case the poles would actually be on the right of C_{1} as shown in the following picture.

So we move C_{1} and C_{2} to the left of $s=2$ by choosing C_{1} to lie on the line with real part $\sigma_{0}>2$ as shown in the picture below.

We repeat exactly what we did and conclude as before

$$
h(t)=-\frac{1}{2 \pi j} \int_{C_{1}^{*}} f(z) e^{z t} d z
$$

Again we introduce the other semicircle; but we face an apparent problem: on C_{4}, the real part of z is not always negative so it looks like we can't conclude that for $t>0$,

$$
\left|\int_{C_{4}} f(z) e^{z t} d z\right|_{162} \rightarrow 0 \quad \text { as } R \rightarrow \infty .
$$

But this is not a real problem since for most z we have $\operatorname{Re}(z)<0$ as $R \rightarrow \infty$. So, we just make the variable change $z=z^{\prime}+\sigma_{0}$. Then

$$
h(t)=\frac{1}{2 \pi j} \int_{z=\sigma_{0}-j \infty}^{\sigma_{0}+j \infty} f(z) e^{z t} d z
$$

becomes

$$
\begin{aligned}
h(t) & =\frac{1}{2 \pi j} \int_{z^{\prime}=-j \infty}^{j \infty} f\left(z^{\prime}+\sigma_{0}\right) e^{\left(z^{\prime}+\sigma_{0}\right) t} d z^{\prime} \\
& =\frac{1}{2 \pi j} e^{\sigma_{0} t} \int_{z^{\prime}=-j \infty}^{j \infty} f\left(z^{\prime}+\sigma_{0}\right) e^{z^{\prime} t} d z^{\prime} .
\end{aligned}
$$

Now we can repeat exactly what we did before! So

$$
\begin{aligned}
h(t) & =\sum \text { Residues of }\left[e^{\sigma_{0} t} f\left(z^{\prime}+\sigma_{0}\right) e^{z^{\prime} t}\right] \\
& =\sum \text { Residues of }\left[f\left(z^{\prime}+\sigma_{0}\right) e^{\left(z^{\prime}+\sigma_{0}\right) t}\right] .
\end{aligned}
$$

But notice that

$$
\sum \text { Residues of }\left[f\left(z^{\prime}+\sigma_{0}\right) e^{\left(z^{\prime}+\sigma_{0}\right) t}\right]=\sum \text { Residues of }\left[f(z) e^{z t}\right]
$$

since the poles of $f\left(z^{\prime}+\sigma_{0}\right) e^{\left(z^{\prime}+\sigma_{0}\right) t}$ have moved relative to those of $f(z) e^{z t}$ (by $\left.-\sigma_{0}\right)$ but the residue is the same!

In summary, we still get in many practical cases that the inverse transform is
the sum of the residues even if the poles are in the right $1 / 2$ plane. You must be a bit careful with this as one of the examples below indicates. So, if $f(s)=1 /(s-1)(s-2)$, then $f(s) e^{s t}=e^{s t} /(s-1)(s-2)$ and the sum of the residues is

$$
\frac{e^{t}}{(1-2)}+\frac{e^{2 t}}{(2-1)}=-e^{t}+e^{2 t}
$$

Note however the useful observation that when some of the poles are in the right $1 / 2$ plane the inverse transform blows up as $t \rightarrow \infty$.

Example 3. Find the inverse transform of: $\quad f(s)=\frac{s}{s^{2}+1}$.

Answer. The poles are at $s= \pm j$, but based on the discussion given in Example 2 we do not worry about this. We get

$$
f(s) e^{s t}=\frac{s e^{s t}}{(s+j)(s-j)},
$$

so the sum of the residues is

$$
\frac{j}{2 j} e^{j t}+\frac{(-j)}{(-2 j)} e^{-j t}=\frac{e^{j t}+e^{-j t}}{2}=\cos t .
$$

Note that the poles are on the imaginary axis, and the inverse transform oscillates but does not decay as $t \rightarrow \infty$.

We conclude with the following practical and important example.

Example 4. Consider the circuit shown.

Determine $v_{2}(t)$ if: (a) $v_{1}(t)=\sin w t$, (b) $v_{1}(t)$ is

$$
\begin{cases}0, & t<1 \\ 1, & 1 \leq t<\infty .\end{cases}
$$

Assume that all the initial conditions are zero.

Answer. We have

$$
L \frac{d i}{d t}+R i+\frac{Q}{C}=v_{1}(t), \quad \frac{Q}{C}=v_{2}(t) .
$$

Since $Q=\int_{0}^{t} i(t) d t$, we let I denote the Laplace transform of i, V_{1} the transform of $v_{1}(t)$ and V_{2} the transform of $v_{2}(t)$, and take the transform of both sides of each equation to get:

$$
\begin{aligned}
s L I+R I+\frac{I}{s C} & =V_{1} \\
\frac{I}{s C} & =V_{2}
\end{aligned}
$$

and so

$$
\frac{V_{2}}{V_{1}}=\frac{\frac{1}{s C}}{s L+R+\frac{1}{s C}}=\frac{1}{s^{2} L C+s R C+1} .
$$

Observe that the poles are at $s^{2} L C+s R C+1=0$. So we find the roots of

$$
s^{2}+s \frac{R}{L}+\frac{1}{L C}=0
$$

i.e.,

$$
s=\frac{1}{2}\left[-\frac{R}{L} \pm \sqrt{\frac{R^{2}}{L^{2}}-\frac{4}{L C}}\right] .
$$

Put

$$
s_{0}=-\frac{R}{2 L}+\frac{1}{2} \sqrt{\frac{R^{2}}{L^{2}}-\frac{4}{L C}}, \quad s_{165}=-\frac{R}{2 L}-\frac{1}{2} \sqrt{\frac{R^{2}}{L^{2}}-\frac{4}{L C}}
$$

and note that s_{0}, s_{1} may be real, equal or complex depending on the sign of $\frac{R^{2}}{L^{2}}-\frac{4}{L C}$, but in every case they are in the left $1 / 2$ plane. We rewrite

$$
\frac{V_{2}}{V_{1}}=\frac{1}{L C\left(s-s_{0}\right)\left(s-s_{1}\right)}
$$

and so

$$
V_{2}=\frac{V_{1}}{L C\left(s-s_{0}\right)\left(s-s_{1}\right)} .
$$

We now pass to case (a): $v_{1}=\sin w t$ and $V_{1}=w /\left(s^{2}+w^{2}\right)$. In this case

$$
V_{2}=\frac{w}{L C\left(s-s_{0}\right)\left(s-s_{1}\right)(s+j w)(s-j w)}
$$

Suppose $s_{0} \neq s_{1}$. Then there are four simple poles: $s_{0}, s_{1}, \pm j w$ and the residues of $V_{2} e^{s t}$ are:

$$
\begin{aligned}
\text { at } s_{0}: & \frac{w}{L C} \frac{e^{s_{0} t}}{\sqrt{\frac{R^{2}}{L^{2}}-\frac{4}{L C}}\left(s_{0}^{2}+w^{2}\right)} \\
\text { at } s_{1}: & \frac{w}{L C} \frac{e^{s_{1} t}}{\left(-\sqrt{\frac{R^{2}}{L^{2}}-\frac{4}{L C}}\right)\left(s_{1}^{2}+w^{2}\right)} \\
\text { at } j w: & \frac{w}{L C} \frac{e^{j w t}}{\left((j w)^{2}+(j w) \frac{R}{L}+\frac{1}{L C}\right)(2 j w)} \\
\text { at }-j w: & \frac{w}{L C} \frac{e^{-j w t}}{\left((-j w)^{2}+(-j w) \frac{R}{L}+\frac{1}{L C}\right)(-2 j w)} .
\end{aligned}
$$

So

$$
\begin{aligned}
v_{2}(t)=\frac{w}{L C} & {\left[\frac{e^{s_{0} t}}{\sqrt{\frac{R^{2}}{L^{2}}-\frac{4}{L C}}\left(s_{0}^{2}+w^{2}\right)}+\frac{e^{s_{1} t}}{-\sqrt{\frac{R^{2}}{L^{2}}-\frac{4}{L C}}\left(s_{1}^{2}+w^{2}\right)}\right.} \\
& \left.+\frac{e^{j w t}}{\left(-w^{2}+j w \frac{R}{L}+\frac{1}{L C}\right)(2 j w)}+\frac{e^{-j w t}}{\left(-w^{2}-j w \frac{R}{L}+\frac{1}{L C}\right)(-2 j w)}\right]
\end{aligned}
$$

Next, suppose $s_{0}=s_{1}=-R /(2 L)$. Then

$$
V_{2}=\frac{w}{L C\left(s-s_{0}\right)^{2}(s+j w)(s-j w)} .
$$

There are now three poles: $\pm j w$ and s_{0}, with the latter of order two. The residue at s_{0} of $V_{2} e^{s t}$ is thus

$$
\left.\frac{d}{d s}\left[\frac{w e^{s t}}{L C\left(s^{2}+1\right)}\right]\right|_{s=s_{0}}
$$

while the calculation of the residues at $\pm j w$ is unchanged. We observe that it may appear that $v_{2}(t)$ ends up being complex, due to the terms $j w R / L$ and even more so if $\left(R^{2} / L^{2}\right)-4 /(L C)<0$, so that

$$
\sqrt{\frac{R^{2}}{L^{2}}-\frac{4}{L C}}=j \sqrt{\frac{4}{L C}-\frac{R^{2}}{L^{2}}}
$$

This is not the case, and can be used as a check to see if mistakes have been made. To see how the " j "'s must cancel, consider the two terms:

$$
\frac{e^{j w t}}{\left[\left(\frac{1}{L C}-w^{2}\right)+j w \frac{R}{L}\right](2 j w)}+\frac{e^{-j w t}}{\left[\left(\frac{1}{L C}-w^{2}\right)-j w \frac{R}{L}\right](-2 j w)} .
$$

Taking to a common denominator gives:

$$
\begin{aligned}
& \frac{e^{j w t}\left[\left(\frac{1}{L C}-w^{2}\right)-\frac{j w R}{L}\right]-e^{-j w t}\left[\left(\frac{1}{L C}-w^{2}\right)+j w \frac{R}{L}\right]}{(2 j w)\left[\left(\frac{1}{L C}-w^{2}\right)^{2}+w^{2} \frac{R^{2}}{L^{2}}\right]} \\
& \quad=\frac{1}{\left[\left(\frac{1}{L C}-w^{2}\right)^{2}+w^{2} \frac{R^{2}}{L^{2}}\right] w}\left\{\left(\frac{1}{L C}-w^{2}\right)\left(\frac{e^{j w t}-e^{-j w t}}{2 j}\right)-\frac{w R}{L}\left(\frac{e^{j w t}+e^{-j w t}}{2}\right)\right\} \\
& \quad=\frac{1}{w\left[\left(\frac{1}{L C}-w^{2}\right)^{2}+w^{2} \frac{R^{2}}{L^{2}}\right]}\left\{\left(\frac{1}{L C}-w^{2}\right) \sin w t-\frac{w R}{L} \cos w t\right\} .
\end{aligned}
$$

The other two terms combine accordingly. We now pass to case (b), where

$$
v_{1}(t)= \begin{cases}0, & t<1 \\ 1, & 1 \leq t<\infty \\ 167\end{cases}
$$

so $v_{1}(t)=u(t-1)$ (where u is the Heaviside function) and $V_{1}=e^{-s} / s$, leading to

$$
V_{2}=\frac{e^{-s}}{L C\left(s-s_{0}\right)\left(s-s_{1}\right) s}
$$

and thus

$$
V_{2} e^{s t}=\frac{e^{s t} e^{-s}}{L C\left(s-s_{0}\right)\left(s-s_{1}\right) s}=\frac{e^{s(t-1)}}{L C\left(s-s_{0}\right)\left(s-s_{1}\right) s} .
$$

Note that there are 3 poles: $0, s_{0}, s_{1}$ but there is a problem now: if $t<1$ then $t-1<0$ and so $\operatorname{Re}[s(t-1)]>0$ for $\operatorname{Re} s<0$. On the other hand if $t>1$ then $\operatorname{Re}[s(t-1)]<0$ for $\operatorname{Re} s<0$. In the second case $(t>1)$, we can use the previous result. If $t>1$,

$$
v_{2}(t)=\frac{e^{0}}{L C\left(-s_{0}\right)\left(-s_{1}\right)}+\frac{e^{s_{0}(t-1)}}{L C\left(s_{0}-s_{1}\right) s_{0}}+\frac{e^{s_{1}(t-1)}}{L C\left(s_{1}-s_{0}\right) s_{1}}
$$

where we have assumed $s_{0} \neq s_{1}$. If $s_{0}=s_{1}$ we need to find the residue by taking derivatives. So, in this case, the answer is obtained just like before. But what do we do if $t<1$!

Remember the key formula:

$$
h(t)=-\frac{1}{2 \pi j} \int_{C_{1}^{*}} f(z) e^{z t} d z
$$

with $C_{1} *$ the straight line from $\sigma_{0}+j \infty$ to $\sigma_{0}-j \infty$.

Here

$$
-\frac{1}{2 \pi j} \int_{C_{1}^{*}} f(z) e^{z t} d z=-\frac{1}{2 \pi j} \int_{C_{1}^{*}} \frac{e^{z(t-1)}}{L C\left(z-z_{0}\right)\left(z-z_{1}\right) z} d z
$$

where we have gone back in notation from s to z. Since $t-1<0$, we do the obvious; instead of a semicircle to the left of C_{1}^{*}, we construct one to the right since then $\left|e^{z(t-1)}\right| \rightarrow 0$ as $R \rightarrow \infty!$

Then

$$
\begin{aligned}
h(t) & =-\frac{1}{2 \pi j} \int_{C_{1}^{*}} f(z) e^{z t} d z=-\frac{1}{2 \pi j} \lim _{R \rightarrow \infty} \int_{C_{1}} f(z) e^{z t} d z \\
& =-\frac{1}{2 \pi j} \lim _{R \rightarrow \infty} \int_{C_{1}} f(z) e^{z t} d z-\frac{1}{2 \pi j} \lim _{R \rightarrow \infty} \int_{C_{2}} f(z) e^{z t} d z \\
& =-\frac{1}{2 \pi j} \lim _{R \rightarrow \infty} \oint_{C_{1}+C_{2}} f(z) e^{z t} d z .
\end{aligned}
$$

But $f(z) e^{z t}$ is differentiable inside and on $C_{1}+C_{2}$, so

$$
\oint_{C_{1}+C_{2}} f(z) e^{z t} d z=0!
$$

In summary, we have found

$$
\begin{aligned}
& v_{1}(t)=0, \quad \text { if } \quad t<1 \\
& v_{2}(t)=\frac{1}{L C}\left[\frac{1}{s_{0} s_{1}}+\frac{e^{s_{0}(t-1)}}{\left(s_{0}-s_{1}\right) s_{0}}+\frac{e^{s_{1}(t-1)}}{\left(s_{1}-s_{0}\right) s_{1}}\right] \quad \text { if } t>1
\end{aligned}
$$

where we have assumed $s_{0} \neq s_{1}$. Note that this is as it should be, since $v_{1}(t)=0$ if $t<1$ and there are not initial voltages/currents. Thus $v_{2}(t)$ should be zero if $t<1$ and this is what we have found.

Further Exercises:

Evaluate the following integrals.
Exercise 1. $\int_{0}^{2 \pi} \frac{d \theta}{(3 \cos \theta+5)^{2}}$.
Answer. To evaluate $\int_{0}^{2 \pi} d \theta /(3 \cos \theta+5)^{2}$ put

$$
\begin{cases}z=e^{j \theta}, & \cos \theta=\frac{1}{2}\left[z+\frac{1}{z}\right] \\ d z=j z d \theta, & C=\text { unit circle }\end{cases}
$$

Then

$$
\begin{aligned}
\int_{0}^{2 \pi} \frac{d \theta}{(3 \cos \theta+5)^{2}} & =\oint_{\mathcal{C}} \frac{1}{\left[\frac{3}{2}\left(z+\frac{1}{z}\right)+5\right]^{2}} \frac{d z}{j z}=\frac{1}{j} \oint_{\mathcal{C}} \frac{z d z}{\left[\frac{3}{2}\left(z^{2}+1\right)+5 z\right]^{2}} \\
& =\frac{4}{9 j} \oint_{\mathcal{C}} \frac{z d z}{\left[z^{2}+1+\frac{10}{3} z\right]^{2}}
\end{aligned}
$$

Next, note that

$$
z^{2}+\frac{10}{3} z+1=0 \quad \text { iff } \quad z=\frac{-\frac{10}{3} \pm \sqrt{\frac{100}{9}-4}}{2}
$$

i.e.,

$$
\begin{gathered}
z=-\frac{5}{3} \pm \sqrt{\frac{25}{9}-1}=-\frac{5}{3} \pm \frac{4}{3}=-3,-\frac{1}{3} \\
\text { So }\left[z^{2}+1+\frac{10 z}{3}\right]^{2}=\left[(z+3)\left(z+\frac{1}{3}\right)\right]^{2} \text { and } \\
\frac{4}{9 j} \oint_{\mathcal{C}} \frac{z d z}{\left[z^{2}+1+\frac{10}{3} z\right]^{2}}=\frac{4}{9 j} \oint_{\mathcal{C}} \frac{z d z}{(z+3)^{2}\left(z+\frac{1}{3}\right)^{2}} .
\end{gathered}
$$

The only pole inside \mathcal{C} is at $z=-1 / 3$. It is a pole of order 2 , thus

$$
\begin{aligned}
& \text { Residue of } \frac{z}{(z+3)^{2}\left(z+\frac{1}{3}\right)^{2}} \text { at } z=-\frac{1}{3} \text { is } \frac{d}{d z}\left[\frac{z}{(z+3)^{2}}\right]_{z=-\frac{1}{3}} \\
& \qquad=\left.\frac{(z+3)^{2}-z(2)(z+3)}{(z+3)^{4}}\right|_{z=-\frac{1}{3}} ^{171}<
\end{aligned}=\left.\frac{3-z}{(z+3)^{2}}\right|_{z=-\frac{1}{3}}=\frac{3+\frac{1}{3}}{\left(3-\frac{1}{3}\right)^{3}}=\frac{10}{8} \cdot \frac{9}{8^{2}} .
$$

We conclude

$$
\int_{0}^{2 \pi}=2 \pi j\left[\frac{4}{9 j} \cdot \frac{10}{8} \cdot \frac{9}{8^{2}}\right]=\frac{5 \pi}{32}
$$

Exercise 2. $\int_{0}^{2 \pi} \frac{d \theta}{1+\sin ^{2} \theta}$.
Answer. The transformation to the z-plane is the same as the previous problem, except $\sin \theta=(1 /(2 j))[z-1 / z]$. So

$$
\int_{0}^{2 \pi} \frac{d \theta}{1+\sin ^{2} \theta}=\oint_{\mathcal{C}} \frac{1}{1+\frac{1}{(2 j)^{2}}\left(z-\frac{1}{z}\right)^{2}} \frac{d z}{j z}=\frac{1}{j} \oint_{\mathcal{C}} \frac{z}{z^{2}-\frac{1}{4}\left(z^{2}-1\right)^{2}} d z
$$

(The idea is to multiply top and bottom by z in order to remove the " $1 / z$ " term.)
Note next that

$$
z^{2}-\frac{1}{4}\left(z^{2}-1\right)^{2}=z^{2}-\frac{1}{4}\left(z^{4}-2 z^{2}+1\right)=-\frac{1}{4}\left(z^{4}-6 z^{2}+1\right) .
$$

Put $w=z^{2}$. Then $z^{4}-6 z^{2}+1=w^{2}-6 w+1$ and $w^{2}-6 w+1=0$ iff $w=$ $\frac{1}{2}(6 \pm \sqrt{36-4})=3 \pm \sqrt{8}$, i.e., $w^{2}-6 w+1=(w-3+\sqrt{8})(w-3-\sqrt{8})$. We thus have

$$
\begin{aligned}
z^{4}-6 z^{2}+1 & =\left(z^{2}-3+\sqrt{8}\right)\left(z^{2}-3-\sqrt{8}\right) \\
& =\left(z+(3-\sqrt{8})^{\frac{1}{2}}\right)\left(z-(3-\sqrt{8})^{\frac{1}{2}}\right)\left(z+(3+\sqrt{8})^{\frac{1}{2}}\right)\left(z-(3+\sqrt{8})^{\frac{1}{2}}\right)
\end{aligned}
$$

To save writing, put $s_{0}=(3-\sqrt{8})^{\frac{1}{2}}, s_{1}=(3+\sqrt{8})^{\frac{1}{2}}$. Thus

$$
\frac{1}{j} \oint_{\mathcal{C}} \frac{z}{z^{2}-\frac{1}{4}\left(z^{2}-1\right)^{2}} d z=-\frac{1}{4^{-1} j} \oint_{\mathcal{C}} \frac{z d z}{\left(z-s_{0}\right)\left(z+s_{0}\right)\left(z-s_{1}\right)\left(z+s_{1}\right)} .
$$

Note that $\pm s_{1}$ are outside \mathcal{C}, and that the (simple) poles at $\pm s_{0}$ are inside \mathcal{C}. Thus

$$
\frac{1}{j} \oint_{\mathcal{C}} \frac{z}{z^{2}-\frac{1}{4}\left(z^{2}-1\right)^{2}} d z=-\frac{2 \pi j}{4^{-1} j}\left[\frac{s_{0}}{2 s_{0}\left(s_{0}^{2}-s_{1}^{2}\right)}-\frac{s_{0}}{-2 s_{0}\left(s_{0}^{2}-s_{1}^{2}\right)}\right]=-16 \pi\left[\frac{s_{0}}{2 s_{0}\left(s_{0}^{2}-s_{1}^{2}\right)}\right]
$$

$$
=16 \cdot \frac{\pi}{2}\left[\frac{1}{(3+\sqrt{8})-(3-\sqrt{8})}\right]=\frac{\pi}{2}(16) \frac{1}{2 \sqrt{8}}=\frac{4 \pi}{\sqrt{8}} .
$$

Exercise 3. $\int_{-\infty}^{\infty} \frac{x^{4}}{\left(x^{2}+1\right)^{3}} d x$.
Answer. Observe that the order of the bottom is 6 , the order of the top is 4 , thus

$$
\int_{-\infty}^{\infty} \frac{x^{4}}{\left(x^{2}+1\right)^{3}} d x=2 \pi j \text { (sum of residues of } \frac{z^{4}}{\left(z^{2}+1\right)^{3}} \text { in the upper } 1 / 2 \text { plane). }
$$

Now $z^{4} /\left(z^{2}+1\right)^{3}=z^{4} /\left[(z+j)^{3}(z-j)^{3}\right]$. Consequently there is only the pole (of order 3) $z=j$ in the upper $1 / 2$ plane and the residue is

$$
\left.\frac{1}{2} \frac{d^{2}}{d z^{2}}\left[\frac{z^{4}}{(z+j)^{3}}\right]\right|_{z=j}
$$

Now

$$
\frac{d}{d z}\left[\frac{z^{4}}{(z+j)^{3}}\right]=\frac{4 z^{3}(z+j)^{3}-z^{4} 3(z+j)^{2}}{(z+j)^{6}}=\frac{4 z^{3}(z+j)-3 z^{4}}{(z+j)^{4}}=\frac{z^{4}+4 j z^{3}}{(z+j)^{4}}
$$

and thus

$$
\begin{aligned}
\frac{d^{2}}{d z^{2}}\left[\frac{z^{4}}{(z+j)^{3}}\right] & =\frac{\left(4 z^{3}+12 j z^{2}\right)(z+j)^{4}-\left(z^{4}+4 j z^{3}\right) 4(z+j)^{3}}{(z+j)^{8}} \\
& =\frac{\left(4 z^{3}+12 j z^{2}\right)(z+j)-\left(z^{4}+4 j z^{3}\right) 4}{(z+j)^{5}}
\end{aligned}
$$

and as $z=j$ this becomes

$$
\frac{(-4 j-12 j)(2 j)-(1+4) 4}{2^{5} j}=\frac{32-20}{2^{5} j} .
$$

In conclusion,

$$
\int_{-\infty}^{\infty} \frac{x^{4}}{\left(x^{2}+1\right)^{3}} d x=2 \pi j\left[\frac{12}{32 j}\right]=\frac{3 \pi}{4} .
$$

Exercise 4. $\int_{0}^{\infty} \frac{d x}{x^{2}+1}$.

Answer. We have $\int_{0}^{\infty}(d x) /\left(x^{2}+1\right)$, and observe that $1 /\left(x^{2}+1\right)$ is even. We conclude that
$\int_{0}^{\infty} \frac{d x}{x^{2}+1}=\frac{1}{2} \int_{-\infty}^{\infty} \frac{d x}{x^{2}+1}=\frac{1}{2}(2 \pi j)$ (sum of residues of $\frac{1}{z^{2}+1}$ in the upper $\frac{1}{2}$ plane).
We note $1 /\left(z^{2}+1\right)=1 /[(z+j)(z-j)]$, and thus

$$
\int_{0}^{\infty} \frac{d x}{1+x^{2}}=\frac{1}{2} \cdot 2 \pi j\left(\frac{1}{2 j}\right)=\frac{\pi}{2} .
$$

Exercise 5. $\int_{0}^{2 \pi} \frac{d \theta}{\sin ^{2} \theta+4 \cos ^{2} \theta}$.
Answer. We need to evaluate $\int_{0}^{2 \pi}(d \theta) /\left(\sin ^{2} \theta+4 \cos ^{2} \theta\right)$ and the process is the same as the earlier questions. Note first that $\sin ^{2} \theta+4 \cos ^{2} \theta=1+3 \cos ^{2} \theta$ and so

$$
\int_{0}^{2 \pi} \frac{d \theta}{\sin ^{2} \theta+4 \cos ^{2} \theta}=\int_{0}^{2 \pi} \frac{d \theta}{1+3 \cos ^{2} \theta}=\oint_{\mathcal{C}} \frac{1}{1+\frac{3}{4}\left(z+\frac{1}{z}\right)^{2}} \frac{d z}{j z}=\frac{4}{j} \oint_{\mathcal{C}} \frac{z}{4 z^{2}+3\left(z^{2}+1\right)^{2}} d z
$$

But $4 z^{2}+3\left(z^{2}+1\right)^{2}=3 z^{4}+10 z^{2}+3$ and we have

$$
z^{2}=\frac{-10 \pm \sqrt{100-4(3)(3)}}{6}=\frac{-10 \pm 8}{6}=-3,-\frac{1}{3} .
$$

Thus $z= \pm \sqrt{3} j, \pm(1 / \sqrt{3}) j$. Again put $s_{0}=\sqrt{3} j, s_{1}=(1 / \sqrt{3}) j$. Then

$$
\frac{4}{j} \oint_{\mathcal{C}} \frac{z d z}{4 z^{2}+3\left(z^{2}+1\right)^{2}}=\frac{4}{3 j} \oint_{\mathcal{C}} \frac{z}{\left(z-s_{0}\right)\left(z+s_{0}\right)\left(z-s_{1}\right)\left(z+s_{1}\right)} d z
$$

Since $\pm s_{0}$ is outside \mathcal{C}, we find

$$
\begin{aligned}
\frac{4}{j} \oint_{\mathcal{C}} \frac{z d z}{4 z^{2}+3\left(z^{2}+1\right)^{2}} & =\frac{4}{3 j} \cdot 2 \pi j\left[\frac{s_{1}}{\left(s_{1}^{2}-s_{0}^{2}\right)\left(2 s_{1}\right)}-\frac{s_{1}}{\left(s_{1}^{2}-s_{0}^{2}\right)\left(-2 s_{1}\right)}\right]=\frac{8 \pi}{3} \cdot \frac{1}{s_{1}^{2}-s_{0}^{2}} \\
& =\frac{8 \pi}{3} \cdot \frac{1}{\left(-\frac{1}{3}\right)-(-3)}=\frac{8 \pi}{3} \cdot \frac{1}{3-\frac{1}{3}}=\frac{8 \pi}{8}=\pi
\end{aligned}
$$

IV. Fourier Series

IV.a Basic Ideas

Fourier Series furnish a means of writing arbitrary functions, found in practice, in terms of an infinite sum of "nice" functions (in the simplest case: sines and cosines). Thus a wide variety of inputs to a system can be handled if the response to sine and cosine inputs is known.

Not only that, but there exist other families of functions that work besides sines and cosines (see below) and some even work for problems in higher dimensions, i.e., for distributed parameter questions. To begin, we note the following relationships. Suppose $n \neq m$, but both are positive integers, then

$$
\begin{aligned}
\int_{-\pi}^{\pi} \sin n t \sin m t d t & =\int_{-\pi}^{\pi} \frac{\left(e^{j n t}-e^{-j n t}\right)\left(e^{j m t}-e^{-j m t}\right)}{-4} d t \\
& =\int_{-\pi}^{\pi} \frac{e^{j(n+m) t}-e^{j(m-n) t}-e^{-j(m-n) t}+e^{-j(n+m) t}}{-4} d t \\
& =\int_{-\pi}^{\pi} \frac{-\cos (n+m) t+\cos (m-n) t}{2} d t \\
& =\frac{1}{2}\left[\frac{-\sin (n+m) t}{n+m}+\frac{\sin (m-n) t}{m-n}\right]_{-\pi}^{\pi}=0
\end{aligned}
$$

Exactly the same type of calculation shows:

$$
\begin{array}{ll}
\int_{-\pi}^{\pi} \sin n t \cos m t d t=0 & (\text { even if } n=m) \\
\int_{-\pi}^{\pi} \cos n t \cos m t d t=0 & (\text { if } m \neq n)
\end{array}
$$

On the other hand, if $m=n$ then

$$
\int_{-\pi}^{\pi} \cos n t \cos m t d t=\int_{-\pi}^{\pi} \cos ^{2} n t d t=\int_{-\pi}^{\pi} \frac{1+\cos 2 n t}{2} d t=\frac{1}{2} \cdot 2 \pi=\pi
$$

and

$$
\int_{-\pi}^{\pi} \sin n t \sin m t d t=\int_{-\pi}^{\pi} \sin ^{2} n t d t=\int_{-\pi}^{\pi} \frac{1-\cos 2 n t}{2} d t=\pi .
$$

Exactly the same results hold if we integrate $\int_{d}^{d+2 \pi}$ instead of $\int_{-\pi}^{\pi}$. In practice, $d=0$ or $d=-\pi$ (what we chose).

Given an arbitrary function f (such that $|f(t)|$ can be integrated-this is a condition almost always satisfied in practice) we represent f as

$$
\begin{equation*}
f(t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n t+b_{n} \sin n t \tag{1}
\end{equation*}
$$

where

$$
\begin{aligned}
& a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos n t d t, \\
& a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) d t, \\
& b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin n t d t .
\end{aligned}
$$

Note that a_{0}, a_{n}, b_{n} are constants. To see how the coefficients are arrived at, note the following: Choose a value of n, say n_{0}. Then multiply both sides of (1) by $\sin n_{0} t$ and integrate from $-\pi$ to π. We have

$$
\begin{gathered}
\int_{-\pi}^{\pi} f(t) \sin n_{0} t d t=\frac{a_{0}}{2} \int_{-\pi}^{\pi} \sin n_{0} t d t+\sum_{n=1}^{\infty} a_{n} \int_{-\pi}^{\pi} \cos n t \sin n_{0} t d t \\
+\sum_{n=1}^{\infty} b_{n} \int_{-\pi}^{\pi} \sin n t \sin n_{0} t d t
\end{gathered}
$$

Now $\int_{-\pi}^{\pi} \cos n t \sin n_{0} t d t=0$ for any $n=1,2, \ldots$, while $\int_{-\pi}^{\pi} \sin n t \sin n_{0} t d t$ will also be zero except when $n=n_{0}$. Then we get π, and so

$$
\int_{-\pi}^{\pi} f(t) \sin n_{0} t d t=b_{n_{0}} \pi
$$

or

$$
b_{n_{0}}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin n_{0} t d t
$$

In the same way, if we multiply by $\cos n_{0} t$ on both sides of (1) and then integrate from $-\pi$ to π we get the formula for $a_{n_{0}}$. If you multiply by 1 and integrate, we get

$$
\int_{-\pi}^{\pi} f(t) d t=\frac{a_{0}}{2} \cdot 2 \pi
$$

So $a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) d t$ as given. Note that this requires that the series start with " $a_{0} / 2$ ", not " a_{0} ".

The sum of the series on the right hand side of (1) only represents f in the interval $-\pi<t<\pi$ (except where $f(t)$ has a jump) unless f is periodic of period 2π (i.e., $f(t+2 \pi)=f(t)$ for every t) in which case the sum of the series represents f for every t (except where $f(t)$ has a jump). If f is not periodic then the sum of the series still represents a periodic function since it is the sum of functions of period 2π (namely $\sin n t$ and $\cos n t$). See the following examples for clarification of the above satements. The theoretical situation is summarized by the following theorem.

Dirichlet's Theorem. For $-\pi \leq t<\pi$ suppose $f(t)$ is bounded, has a finite number of maximums and minimums and only a finite number of discontinuities (conditions satisfied in practice!). Let $f(t)$ be defined for other values of t by $f(t)=$ $f(t+2 \pi)$. Then the sum of the Fourier series for $f(t)$ converges to:

$$
\begin{equation*}
\frac{1}{2}[f(t+)+f(t-)] \tag{2}
\end{equation*}
$$

at every t where

$$
f\left(t_{0}+\right)=\lim _{t \rightarrow t_{0}} f(t) \quad \begin{gathered}
\text { as } t \rightarrow t_{0} \text { from the right side only, } \\
177
\end{gathered}
$$

$$
f\left(t_{0}-\right)=\lim _{t \rightarrow t_{0}} f(t) \quad \text { as } t \rightarrow t_{0} \text { from the left side only. }
$$

The conditions on f of Dirichlet's Theorem are almost always satisfied in practice. Equation (2) means that if f has a jump at then the Fourier series converges to the middle of the jump; if the function is smooth at t, then the Fourier series converges to $f(t)$.

Example 1. Write a Fourier series for $f(t)$ if

$$
f(t)= \begin{cases}0, & t<0 \\ 1, & t \geq 0\end{cases}
$$

and sketch its sum.

Answer.

We first calculate the coefficients:

$$
\begin{aligned}
& a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) d t=\frac{1}{\pi} \int_{0}^{\pi} d t=1, \\
& a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos n t d t=\frac{1}{\pi} \int_{0}^{\pi} \cos n t d t=\left.\frac{\sin n t}{n \pi}\right|_{0} ^{\pi}=0, \\
& b_{n}=\frac{1}{\pi} \int_{0}^{\pi} \sin n t d t=\frac{1}{\pi}\left[-\frac{\cos n t}{n}\right]_{0}^{\pi}=\frac{1}{n \pi}[1-\cos n \pi] .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& b_{1}=\frac{1}{\pi}[1-\cos \pi]=\frac{2}{\pi}, \\
& b_{2}=\frac{1}{2 \pi}[1-\cos 2 \pi]=0, \\
& b_{3}=\frac{1}{3 \pi}[1-\cos 3 \pi]=\frac{2}{3 \pi} .
\end{aligned}
$$

Therefore,

$$
b_{n}= \begin{cases}\frac{2}{n \pi}, & n \text { odd } \\ 0, & n \text { even }\end{cases}
$$

Therefore the Fourier series for f is

$$
\frac{1}{2}+\sum_{n \text { odd }} \frac{2}{n \pi} \sin n t
$$

i.e.,

$$
f(t)=\frac{1}{2}+\frac{2}{\pi} \sin t+\frac{2}{3 \pi} \sin 3 t+\frac{2}{5 \pi} \sin 5 t+\cdots
$$

The following trick is very useful for writing the sum. Let $n=2 m-1$. Then

$$
\begin{array}{lll}
\text { when } m=1 & \Longrightarrow & n=1 \\
\text { when } m=2 & \Longrightarrow & n=3 \\
\text { when } m=3 & \Longrightarrow & n=5
\end{array}
$$

that is, as m runs over all the integers $>0, n$ runs over all the odd ones >0. Therefore,

$$
\sum_{n \text { odd }} \frac{2}{n \pi} \sin n t=\sum_{m=1}^{\infty} \frac{2}{(2 m-1) \pi} \sin (2 m-1) t \quad(\text { let } n=2 m-1)
$$

and we finally write

$$
f(t)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{(2 n-1) \pi} \sin (2 n-1) t
$$

(Other substitutions are also useful.) Passing to the graph of the sum, by the Dirichlet's Theorem,

The graph of the sum of the series for $-3 \pi<t<3 \pi$ is because of periodicity:

Note that the series repeats outside $-\pi<t<\pi$ what it did inside the interval.
Outside $-\pi<t<\pi$ the series therefore does not represent f.

Example 2. Find the Fourier series for $f(t)=\left\{\begin{array}{ll}0, & -\pi<t<0 \\ \sin t, & 0 \leq t<\pi\end{array}\right.$.

Answer.

$$
\begin{aligned}
& a_{0}=\frac{1}{\pi} \int_{0}^{\pi} \sin t d t=\frac{2}{\pi} \\
& a_{n}=\frac{1}{\pi} \int_{0}^{\pi} \sin t \cos n t d t
\end{aligned}
$$

To evaluate a_{n} it is again useful to recall

$$
\sin t=\frac{e^{j t}-e^{-j t}}{2 j}, \quad \cos t=\frac{e^{j t}+e^{-j t}}{2}
$$

We find

$$
\begin{aligned}
a_{n} & =\frac{1}{\pi} \int_{0}^{\pi}\left(\frac{e^{j t}-e^{-j t}}{2 j}\right)\left(\frac{e^{j n t}+e^{-j n t}}{2}\right) d t \\
& =\frac{1}{4 \pi j} \int_{0}^{\pi}\left[e^{j(n+1) t}+e^{j(1-n) t}-e^{-j(1-n) t}-e^{-j(n+1) t}\right] d t \\
& =\frac{1}{4 \pi j} \int_{0}^{\pi}[2 j \sin (n+1) t+2 j \sin (1-n) t] d t \\
& =\frac{1}{2 \pi} \int_{0}^{\pi}[\sin (n+1) t-\sin (n-1) t] d t \\
& =\frac{1}{2 \pi}\left[\frac{-\cos (n+1) t}{n+1}+\frac{\cos (n-1) t}{n-1}\right]_{0}^{\pi} \\
& =\frac{1}{2 \pi}\left[\frac{(\cos (n-1) \pi)-1}{n-1}-\frac{(\cos (n+1) \pi)-1}{n+1}\right] \\
& =\frac{1}{2 \pi}[(\cos (n-1) \pi)-1] \frac{2}{n^{2}-1}=\frac{1}{\pi\left(n^{2}-1\right)}[(\cos (n-1) \pi)-1] .
\end{aligned}
$$

Hence

$$
a_{n}= \begin{cases}0, & n \text { odd } \\ \frac{-2}{\pi\left(n^{2}-1\right)}, & n \text { even } .\end{cases}
$$

Note that if $n=1$, this formula will not work and a_{1} needs to be calculated separately. Similarly,

$$
\begin{aligned}
b_{n} & =\frac{1}{\pi} \int_{0}^{\pi} \sin t \sin n t d t=\frac{1}{\pi} \int_{0}^{\pi}\left(\frac{e^{j t}-e^{-j t}}{2 j}\right)\left(\frac{e^{j n t}-e^{-j n t}}{2 j}\right) d t \\
& =-\frac{1}{4 \pi} \int_{0}^{\pi}\left[e^{j(n+1) t}-e^{-j(n-1) t}-e^{j(n-1) t}+e^{j(n+1) t}\right] d t \\
& =-\frac{1}{4 \pi} \int_{0}^{\pi} 2[\cos (n+1) t-\cos (n-1) t] d t
\end{aligned}
$$

$$
=-\frac{1}{2 \pi}\left[\frac{\sin (n+1) t}{n+1}-\frac{\sin (n-1) t}{n-1}\right]_{0}^{\pi}=-\frac{1}{2 \pi}\left[\frac{\sin (n+1) \pi}{n+1}-\frac{\sin (n-1) \pi}{n-1}\right]=0
$$

But if $n=1$, this does not work, since we divide by $n-1$! We thus need to calculate b_{1} separately:

$$
\begin{aligned}
b_{1} & =\frac{1}{\pi} \int_{0}^{\pi} \sin t \sin t d t=\frac{1}{\pi} \int_{0}^{\pi} \frac{1-\cos 2 t}{2} d t \\
& =\frac{1}{2 \pi}\left[t-\frac{\sin 2 t}{2}\right]_{0}^{\pi}=\frac{1}{2}
\end{aligned}
$$

and $a_{1}=1 /(2 \pi) \int_{0}^{\pi} \sin 2 t d t=0$. Therefore,

$$
f(t)=\frac{1}{\pi}+\frac{1}{\pi} \sum_{n \text { even }}\left(\frac{-2}{\pi}\right) \frac{1}{n^{2}-1} \cos n t+\frac{1}{2} \sin t
$$

In this example, it is useful to introduce the change $n=2 m$. Then

$$
f(t)=\frac{1}{\pi}+\sum_{m=1}^{\infty} \frac{-2}{m} \frac{\cos 2 m t}{4 m^{2}-1}+\frac{1}{2} \sin t
$$

Comparing the various graphs:

Note that since there are no jumps in $f(t)$, the Fourier series agrees with $f(t)$ inside the interval $-\pi<t<\pi$.

Example 3. Let

$$
f(t)=\left\{\begin{array}{ll}
-t, & \text { for }-\pi<t<0 \\
0, & \text { for } 0<t<\pi
\end{array} .\right.
$$

Find the Fourier series for $f(t)$ and sketch a graph of the sum for $-2 \pi<t<2 \pi$.

Answer.

$$
\begin{aligned}
a_{0} & =\frac{1}{\pi} \int_{-\pi}^{0}-t d t=\frac{1}{\pi} \cdot \frac{\pi^{2}}{2}=\frac{\pi}{2} \\
a_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos n t d t=\frac{1}{\pi} \int_{-\pi}^{0}-t \cos n t d t \\
& =\frac{1}{\pi}\left[\left.\frac{-t \sin n t}{n}\right|_{-\pi} ^{0}+\int_{-\pi}^{0} \frac{\sin n t}{n} d t\right] \quad \text { (integration by parts) } \\
& =\frac{1}{n^{2} \pi}[(\cos n \pi)-1]
\end{aligned}
$$

Therefore,

$$
a_{1}=\frac{-2}{\pi}, a_{2}=0, a_{3}=\frac{-2}{9 \pi}, \ldots
$$

Or

$$
\begin{aligned}
a_{n} & = \begin{cases}0, & n \text { even } \\
\frac{-2}{n^{2} \pi}, & n \text { odd, }\end{cases} \\
b_{n} & =\frac{1}{\pi} \int_{-\pi}^{0}-t \sin n t d t=\frac{1}{\pi}\left[\frac{t \cos n t}{n}\right]_{-\pi}^{0}-\frac{1}{\pi} \int_{-\pi}^{0} \frac{\cos n t}{n} d t \\
& =\frac{\cos n \pi}{n}=\frac{(-1)^{n}}{n} .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
f(t) & =\frac{\pi}{4}+\sum_{n \text { odd }}\left(\frac{-2}{\pi n^{2}} \cos n t\right)+\sum_{n=1}^{\infty} \frac{1}{n}(-1)^{n} \sin n t \\
& =\frac{\pi}{4}-\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}} \cos (2 n-1) t+\sum_{n=1}^{\infty} \frac{1}{n}(-1)^{n} \sin n t .
\end{aligned}
$$

Graph of the series:

Graph of the series

Note that at $t=\pi$, the sum of the Fourier series is $\pi / 2$!

IV.b Even and Odd Functions

The concepts of even and odd functions are important for two reasons. The first is the rapid calculation of Fourier series. The second reason will be mentioned below. We call a function $f(t)$ even if $f(t)=f(-t)$.

Example 1. $f(t)=t^{2}, f(t)=\cos t, f(t)=\cos n t$ are even functions.

A function $f(t)$ is odd if $f(t)=-f(-t)$.

Example 2. $f(t)=t, f(t)=\sin t, f(t)=\sin n t$ are odd functions.

We note that the product of two even or of two odd functions is an even function whereas the product of an even and an odd function is odd. That is,

$$
(\text { even })(\text { even })=\text { even; } \quad(\text { odd })(\text { odd })=\text { even; } \quad(\text { even })(\text { odd })=\text { odd. }
$$

We also note the following properties of these functions:
(i) Let $f(t)$ be an odd function. Then $\int_{-\pi}^{\pi} f(t) d t=0$.

To see this, note that

$$
\begin{aligned}
\int_{-\pi}^{\pi} f(t) d t & =\int_{-\pi}^{0} f(t) d t+\int_{0}^{\pi} f(t) d t \\
& =\int_{\pi}^{0} f(-y)(-d y)+\int_{0}^{\pi} f(t) d t \\
& =\int_{\pi}^{0} f(y) d y+\int_{0}^{\pi} f(t) d t \\
& =-\int_{0}^{\pi} f(t) d t+\int_{0}^{\pi} f(t) d t=0
\end{aligned}
$$

when, in the second step, we made the substitution $y=-t$.
(ii) Let $f(t)$ be an even function. Then $\int_{-\pi}^{\pi} f(t) d t=2 \int_{0}^{\pi} f(t) d t$.

Since

$$
\begin{aligned}
\int_{-\pi}^{\pi} f(t) d t & =\int_{-\pi}^{0} f(t) d t+\int_{0}^{\pi} f(t) d t \\
& =\int_{\pi}^{0} f(-y)(-d y)+\int_{0}^{\pi} f(t) d t \\
& =-\int_{\pi}^{0} f(y) d y+\int_{0}^{\pi} f(t) d t \\
& =\int_{0}^{\pi} f(y) d y+\int_{0}^{\pi} f(t) d t=2 \int_{0}^{\pi} f(t) d t
\end{aligned}
$$

Using the above remarks, we can then state the following: If f is an even function on $-\pi<t<\pi$, then the Fourier series for f has cosine terms only and the coefficients are given by:

$$
\begin{aligned}
& a_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(t) \cos n t d t, \quad n=1,2, \ldots, \\
& a_{0}=\frac{2}{\pi} \int_{0}^{\pi} f(t) d t
\end{aligned}
$$

If f is an odd function on $-\pi<t<\pi$, then the Fourier series for f has sine terms only (since $a_{n}=0$) and the coefficients are given by:

$$
b_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(t) \sin n t d t
$$

If f is even, then $f(t) \sin n t$ is odd ((even)(odd)) and therefore, by (i), $b_{n}=0$. Identically, $f(t) \cos n t$ is even and therefore, by (ii),

$$
a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos n t d t=\frac{2}{\pi} \int_{0}^{\pi} f(t) \cos n t d t
$$

Example 3. $\quad f(t)=t$ for all t. Then f is odd and we immediately conclude that
$a_{n}=0$, and

$$
\begin{aligned}
b_{n} & =\frac{2}{\pi} \int_{0}^{\pi} t \sin n t d t \stackrel{\text { parts }}{=} \frac{2}{\pi}\left\{\left[\frac{-t \cos n t}{n}\right]_{0}^{\pi}+\int_{0}^{\pi} \frac{\cos n t}{n} d t\right\} \\
& =-\frac{2}{n} \cos n \pi=\frac{2}{n}(-1)^{n+1}
\end{aligned}
$$

Therefore,

$$
f(t)=\sum_{n=1}^{\infty} \frac{2}{n}(-1)^{n+1} \sin n t
$$

The graph of the sum is:

Example 4. $f(t)=|t|$. Then $f(t)$ is even and we conclude $b_{n}=0$ and

$$
\begin{aligned}
a_{n} & =\frac{2}{\pi} \int_{0}^{\pi}|t| \cos n t d t=\frac{2}{\pi} \int_{0}^{\pi} t \cos n t d t=\frac{2}{\pi n^{2}}[\cos n \pi-1] \\
& = \begin{cases}0, & n \text { even, } \\
-\frac{4}{\pi n^{2}}, & n \text { odd, }\end{cases} \\
a_{0} & =\frac{2}{\pi} \int_{0}^{\pi} t d t=\pi .
\end{aligned}
$$

Therefore,

$$
f(t)=\frac{\pi}{2}-\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}} \cos (2 n-1) t
$$

Note that we can also obtain useful identities. For example,

$$
\begin{array}{r}
f(0)=0=\frac{\pi}{2}-\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}}, \quad \text { so } \quad \frac{\pi}{2}=\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}} .
\end{array}
$$

If you are in doubt whether a given function is even or odd (or neither) you may be able to decide by looking at its graph. In any case, if still not sure, you can calculate the Fourier series the long way by calculating both the a_{n} and b_{n} without using the short cut.

There is another way in which even and odd functions enter in the discussion. Often we are interested in representing a function $f(t)$ not for $-\pi<t<\pi$ but rather for only $0<t<\pi$. This is the case if, for example, $f(t)$ is only defined in the interval $0<t<\pi$. We can then extend backwards the function $f(t)$ so that it becomes defined for $-\pi<t<\pi$ as either an even or an odd function. (That is, we disregard what f is really doing for $-\pi<t<0$ and define it for convenience.) We can then write the Fourier series for the extended function (which we can do quickly since the extended function is even or odd) but such a series will, in general, represent the original function only for $0<t<\pi$. If we extend f as an odd function we obtain a Fourier series for f in terms of sines only, i.e., a Fourier sine series. Analogously if f is extended as an even function we obtain a Fourier series for f in terms of cosines only, i.e., a Fourier cosine series. Both series will represent f for $0<t<\pi$.

Example 5. Let $f(t)=t$ for $0<t<\pi$. Obtain a Fourier sine series and a Fourier cosine series for f and sketch their sum.

Answer. A Fourier cosine series is obtained by extending f as an even function. For this extension we obtain the Fourier series as follows:

$$
b_{n}=0 \quad \text { (by definition) }
$$

while

$$
\begin{aligned}
a_{n} & =\frac{2}{\pi} \int_{0}^{\pi} t \cos n t d t=\frac{2}{\pi}\left[\left.\frac{t \sin n t}{n}\right|_{0} ^{\pi}-\int_{0}^{\pi} \frac{\sin n t}{n} d t\right] \\
& =\frac{2}{\pi}\left[\frac{\pi \sin n \pi}{n}+\left.\frac{\cos n t}{n^{2}}\right|_{0} ^{\pi}\right] \\
& =\frac{2}{\pi n^{2}}[1-\cos n \pi]= \begin{cases}0, & n \text { even } \\
\frac{2(2)}{\pi n^{2}}, & n \text { odd, }\end{cases} \\
a_{0} & =\frac{2}{\pi} \int_{0}^{\pi} t d t=\frac{2}{\pi} \cdot \frac{\pi^{2}}{2}=\pi,
\end{aligned}
$$

so that

$$
f(t)=\frac{\pi}{2}+\sum_{n=1}^{\infty} \frac{4}{\pi(2 n-1)^{2}} \cos (2 n-1) t
$$

Not surprisingly, this is the same as Example 4.
To obtain a Fourier sine series we extend f as an odd function. For this extension we obtain the series by finding

$$
\begin{aligned}
a_{n} & =0 \quad \text { (by definition) } \\
b_{n} & =\frac{2}{\pi} \int_{0}^{\pi} t \sin n t d t=\frac{2}{\pi}\left[\left.\frac{-t \cos n t}{n}\right|_{0} ^{\pi}+\int_{0}^{\pi} \frac{\cos n t}{n} d t\right] \\
& =\frac{2}{\pi}\left[\left.\frac{-t \cos n t}{n}\right|_{0} ^{\pi}+\left.\frac{\sin n t}{n^{2}}\right|_{0} ^{\pi}\right] \\
& =\frac{2}{\pi}\left[\frac{-\pi \cos n \pi}{n}\right]=-\frac{2}{n}\left\{\begin{array}{ll}
1, & n \text { even } \\
-1, & n \text { odd }
\end{array}=-\frac{2}{n}(-1)^{n}=\frac{2(-1)^{n+1}}{n} .\right.
\end{aligned}
$$

Thus,

$$
f=2 \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin n t
$$

Both the above series represent f in the interval $0<t<\pi$ although their behavior outside this interval is very different. The graphs of the functions involved are as follows:

Fourier Cosine Series

Fourier Sine Series

Example 6. $f(t)=\left\{\begin{array}{ll}\pi, & 0<t<\pi / 2 \\ 0, & \pi / 2<t<\pi\end{array}\right.$.
The Fourier sine series for f is found by using

$$
\begin{aligned}
& a_{n}=0, \\
& b_{n}=2 \int_{0}^{\pi / 2} \sin n t d t=\frac{2}{n}\left(1-\cos \frac{n}{2}\right) .
\end{aligned}
$$

Therefore

$$
b_{n}= \begin{cases}\frac{2}{n}, & n \text { odd } \\ 0, & n \text { a multiple of } 4 \\ \frac{4}{n}, & n \text { even, not a multiple of } 4,\end{cases}
$$

and we obtain the series

$$
\sum_{n=1}^{\infty} \frac{2}{2 n-1} \sin (2 n-1) t+\sum_{n=1}^{\infty} \frac{4}{2(2 n-1)} \sin 2(2 n-1) t
$$

Such a series represents in $-\pi<t<\pi$ the function which is the odd extension of f.

The Fourier cosine series for f is found by using

$$
\begin{aligned}
& b_{n}=0, \quad a_{0}=\frac{2}{\pi} \int_{0}^{\pi / 2} \pi d t=\pi, \\
& a_{n}=2 \int_{0}^{\pi / 2} \cos n t d t=\frac{2}{n} \sin \frac{n \pi}{2}= \begin{cases}0, & n \text { even } \\
\frac{2}{n}(-1)^{\frac{n-1}{2}}, & n \text { odd }\end{cases}
\end{aligned}
$$

and we obtain the series

$$
\frac{\pi}{2}+\sum_{n=1}^{\infty} \frac{2(-1)^{n-1}}{2 n-1} \cos (2 n-1) t
$$

This represents the function which is the even extension of f. Both series represent f in the interval $0<t<\pi$ (only!).
IV.c Extension of the Interval

So far, the Fourier series we have obtained are representatives for $f(t)$ for $-\pi<t<$ π. We now consider the problem of representing f in the interval $-T<t<T$ where T denotes an arbitrary positive number. Let $f(t)$ be a given function in the interval $-T<t<T$. Set $g(w)=f(T w / \pi)$ where w ranges over the interval $-\pi<w<\pi$. We can write a Fourier series for g as follows:

$$
f\left(\frac{T w}{\pi}\right)=g(w)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n w+b_{n} \sin n w
$$

where

$$
\begin{aligned}
& a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} g(w) d w \\
& a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} g(w) \cos n w d w, \\
& b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} g(w) \sin n w d w
\end{aligned}
$$

Let $t=T w / \pi$ (note that as w ranges over $-\pi<w<\pi, t$ ranges over $-T<t<T$). The above expression becomes:

$$
f(t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi t}{T}+b_{n} \sin \frac{n \pi t}{T}
$$

where

$$
\begin{aligned}
& a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} g(w) d w=\frac{1}{T} \int_{-T}^{T} f(t) d t \\
& a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} g(w) \cos n w d w=\frac{1}{T} \int_{-T}^{T} f(t) \cos \frac{n \pi t}{T} d t \\
& b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} g(w) \sin n w d w=\frac{1}{T} \int_{-T}^{T} f(t) \sin \frac{n \pi t}{T} d t
\end{aligned}
$$

The series we have obtained represents f in the interval $-T<t<T$. Outside this
interval this series repeats and hence it will not represent f unless f is periodic with period $2 T$.

Important Remark. The period is $2 T$, not T.
Example 1. $f(t)=\left\{\begin{array}{ll}1, & 2 n<t<2 n+1, \\ 0, & \text { otherwise }\end{array} \quad n=0, \pm 1, \pm 2, \pm 3, \ldots\right.$. . Find the Fourier series for f.

Answer. Note that $f(t)$ has period 2. If we expand f in terms of $\sin n t, \cos n t$, then we obtain a representation for f valid only between $-\pi$ and π. We instead expand f in terms of $\sin n \pi t$ and $\cos n \pi t(T=1$ in this case) to get a representation for f good "almost" everywhere (i.e., except at the jumps!). The coefficients are as follows:

$$
\begin{aligned}
& a_{0}=\frac{1}{1} \int_{-T}^{T} f(t) d t=\int_{0}^{1} 1 d t=1 \\
& a_{n}=\frac{1}{1} \int_{0}^{1} \cos n \pi t d t=\left.\frac{\sin n \pi t}{n \pi}\right|_{0} ^{1}=0 \\
& b_{n}=\frac{1}{1} \int_{0}^{1} \sin n \pi t d t=-\left.\frac{\cos n \pi t}{n \pi}\right|_{0} ^{1}=\frac{1}{n \pi}\left[1-(-1)^{n}\right]=\left\{\begin{array}{cc}
0, & n \text { even } \\
\frac{2}{n \pi}, & n \text { odd }
\end{array}\right.
\end{aligned}
$$

and thus,

$$
f(t)=\frac{1}{2}+\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{1}{2 n-1} \sin (2 n-1) \pi t .
$$

The graph of the sum of the Fourier series is:

Remark. If $f(t)$ is odd in the interval $-T<t<T$, then the Fourier series has sine terms only, i.e.,

$$
f(t)=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi t}{T}
$$

where

$$
b_{n}=\frac{2}{T} \int_{0}^{T} f(t) \sin \frac{n \pi t}{T} d t
$$

Analogously if $f(t)$ is even, the Fourier series has cosine terms only, i.e.,

$$
f(t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi t}{T}
$$

where

$$
a_{0}=\frac{2}{T} \int_{0}^{T} f(t) d t, \quad a_{n}=\frac{2}{T} \int_{0}^{T} f(t) \cos \frac{n \pi t}{T} d t
$$

If $f(t)$ is defined only on $0<t<T$ or if we are interested in representing f only on this interval, we can extend f to the whole of $-T<t<T$ either as an even function (and obtain a cosine series for f) or as an odd function (and obtain a sine series for f).

Example 2. Find the cosine series for $f(t)=\left\{\begin{array}{ll}1, & 0<t<\pi \\ 0, & \pi<t<2 \pi\end{array}\right.$.

Answer. We extend f as an even function, and we note that $T=2 \pi$ and $b_{n}=0$.

$$
\begin{aligned}
a_{0} & =\frac{1}{\pi} \int_{0}^{\pi} 1 d t=1 \\
a_{n} & =\frac{1}{\pi} \int_{0}^{\pi} \cos \frac{n t}{2} d t=\left.\frac{1 \cdot 2}{n \pi} \sin \frac{n t}{2}\right|_{0} ^{\pi}=\frac{2}{n \pi} \sin \frac{n \pi}{2} \\
& =\left\{\begin{array}{ll}
0, & n \text { even } \\
\frac{2}{n \pi}, & n=1,5,9,13 \\
\frac{-2}{n \pi}, & n=3,7,11
\end{array}= \begin{cases}0, & n \text { even } \\
\frac{2}{n \pi}(-1)^{\frac{n-1}{2}}, & n \text { odd. }\end{cases} \right.
\end{aligned}
$$

Thus,

$$
f(t)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{(2 n-1) \pi}(-1)^{n-1} \cos \frac{(2 n-1) t}{2} .
$$

Note that this function represents f in the interval $0<t<2 \pi$ only.

Example 3. Let $f(t)=1-t$ for $0<t<1$. Find both a sine series and a cosine series for f.

Answer. To find the sine series, we extend f as an odd function. Then,

$$
\begin{aligned}
a_{n} & =0 \\
b_{n} & =\frac{2}{1} \int_{0}^{1}(1-t) \sin n \pi t d t \\
& =-\left.2(1-t) \frac{\cos n \pi t}{n \pi}\right|_{0} ^{1}+2 \int_{195}^{1} \frac{\cos n \pi t}{n \pi}(-1) d t=\frac{2}{n \pi} .
\end{aligned}
$$

Thus we have the series

$$
\sum_{n=1}^{\infty} \frac{2}{n \pi} \sin n \pi t
$$

To find the cosine series we extend f as an even function. Then

$$
\begin{aligned}
b_{n} & =0 \\
a_{0} & =\frac{2}{1} \int_{0}^{1}(1-t) d t=1, \\
a_{n} & =\frac{2}{1} \int_{0}^{1}(1-t) \cos n \pi t d t=\frac{2}{n \pi} \int_{0}^{1} \sin n \pi t d t \\
& =\frac{2}{n \pi}\left[\frac{-\cos n \pi t}{n \pi}\right]_{0}^{1}=\frac{2}{(n \pi)^{2}}\left[1-(-1)^{n}\right] .
\end{aligned}
$$

We have the series:

$$
\frac{1}{2}+\sum_{n=1}^{\infty} \frac{4}{[(2 n-1) \pi]^{2}} \cos (2 n-1) \pi t
$$

Sine series

Cosine series

Further Exercises:

Find the Fourier series for the following function. Sketch the sum of the series you obtain.

Exercise 1. $f(t)=\left\{\begin{array}{ll}0, & -\infty<t<0 \\ t, & 0 \leq t<\infty\end{array}\right.$.
Answer. We calculate the coefficients:

$$
\begin{aligned}
b_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin n t d t=\frac{1}{\pi} \int_{0}^{\pi} t \sin n t d t \\
& =\frac{1}{\pi}\left[\left.\frac{-t \cos n t}{n}\right|_{0} ^{\pi}+\int_{0}^{\pi} \frac{\cos n t}{n} d t\right]=\frac{1}{\pi}\left[\frac{-\pi \cos n \pi}{n}\right] \\
& =-\frac{\cos n \pi}{n}=\frac{(-1)^{n+1}}{n}, \\
a_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos n t d t=\frac{1}{\pi} \int_{0}^{\pi} t \cos n t d t \\
& =\frac{1}{\pi}\left[\left.\frac{t \sin n t}{n}\right|_{0} ^{\pi}-\int_{0}^{\pi} \frac{\sin n t}{n} d t\right] \\
& =\left.\frac{1}{\pi} \frac{\cos n t}{n^{2}}\right|_{0} ^{\pi}=\frac{1}{\pi n^{2}}(\cos n \pi-1)=\frac{1}{\pi n^{2}} \cdot\left\{\begin{array}{ll}
0, & n \text { even } \\
-2, & n \text { odd }
\end{array},\right. \\
a_{0} & =\frac{1}{\pi} \int_{0}^{\pi} t d t=\frac{\pi}{2} .
\end{aligned}
$$

We conclude that for $-\pi \leq t \leq \pi$,

$$
f(t)=\frac{\pi}{4}+\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin n t+\sum_{n=1}^{\infty} \frac{(-2)}{\pi(2 n-1)^{2}} \cos (2 n-1) t .
$$

The graphs are as follows:

Note that outside of $-\pi \leq t \leq \pi$, the series is very different from $f(t)$.

Exercise 2. $f(t)=\left\{\begin{array}{cc}0, & -\pi<t<0 \\ t, & 0 \leq t<\pi\end{array}, \quad f(t)\right.$ periodic outside the interval $-\pi<t<\pi$.

Answer. In this case, f is periodic outside $-\pi \leq t \leq \pi$ and the same as the previous f inside $-\pi \leq t \leq \pi$. The Fourier series is thus identical in this case to what it was for Exercise 1. The only difference is that now outside of $-\pi \leq t \leq \pi$, the series still agrees with f (except at the jumps).

Exercise 3. $f(t)=\left\{\begin{array}{ll}1, & -\pi<t<0 \\ -1, & 0<t<\pi\end{array}, f(t)\right.$ periodic outside the interval $-\pi<t<\pi$.

Answer. Since $f(t)=\left\{\begin{array}{ll}1, & -\pi<t<0 \\ -1, & 0<t<\pi\end{array}\right.$, we note that it is odd. This saves having to calculate a_{n}, since all $a_{n}=0$. If you do not notice this, you should still obtain all $a_{n}=0$ by actual calculation.

Furthermore,

$$
\begin{aligned}
b_{n} & =\frac{2}{\pi} \int_{0}^{\pi} f(t) \sin n t d t=\frac{2}{\pi} \int_{0}^{\pi}(-1) \sin n t d t \\
& =\frac{2}{\pi}\left[\frac{\cos n t}{n}\right]_{0}^{\pi}=\frac{2}{n \pi}(\cos n \pi-1)=\frac{2}{n \pi} \cdot \begin{cases}0, & n \text { even } \\
-2, & n \text { odd }\end{cases}
\end{aligned}
$$

Thus

$$
f(t)=\sum_{n=1}^{\infty} \frac{-4}{(2 n-1) \pi} \sin [(2 n-1) t]
$$

and the sum of the series has a graph:

Exercise 4. $f(t)=\left\{\begin{array}{ll}0, & -\pi<t<-\pi / 2 \\ -1, & -\pi / 2 \leq t \leq \pi / 2 \\ 0, & \pi / 2<t<\pi\end{array}, f(t)\right.$ periodic outside $-\pi<t<\pi$.
Answer. In this case, $f(t)$ is even. Now all $b_{n}=0$ (as can also be seen by direct calculation) and

$$
\begin{aligned}
a_{n} & =\frac{2}{\pi} \int_{0}^{\pi} f(t) \cos n t d t=-\frac{2}{\pi} \int_{0}^{\frac{\pi}{2}} \cos n t d t \\
& =-\frac{2}{\pi}\left[\frac{\sin n t}{n}\right]_{0}^{\frac{\pi}{2}}=-\frac{2}{n \pi} \sin \left(\frac{n \pi}{2}\right)
\end{aligned}
$$

Now

$$
\begin{array}{c|rrrrrrr}
\sin (n \pi / 2) & 1 & 0 & -1 & 0 & 1 & 0 & -1 \\
\hline n & 1 & 2 & 3 & 4 & 5 & 6 & 7
\end{array}
$$

Thus

$$
\sin \left(\frac{n \pi}{2}\right)= \begin{cases}0, & n \text { even } \\ -(-1)^{\frac{n+1}{2}}, & n \text { odd }\end{cases}
$$

and

$$
a_{0}=\frac{-2}{\pi} \int_{0}^{\frac{\pi}{2}} 1 d t=-1
$$

Thus

$$
f(t)=-\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2(-1)^{n}}{(2 n-1) \pi} \cos [(2 n-1) t]
$$

and the sum of the series has a graph given by

Exercise 5. Find the Fourier sine series and the Fourier cosine series for f if $f(t)=1-t, 0 \leq t \leq \pi$. Sketch the sum of the two series.

Answer. We first find the Fourier sine series. Now, in this case $a_{n}=0$,

$$
\begin{aligned}
b_{n} & =\frac{2}{\pi} \int_{0}^{\pi} f(t) \sin n t d t=\frac{2}{\pi} \int_{0}^{\pi}(1-t) \sin n t d t \\
& =\frac{2}{\pi}\left[\left.\frac{-(1-t) \cos n t}{n}\right|_{0} ^{\pi}+\int_{0}^{\pi}(-1) \frac{\cos n t}{n} d t\right] \\
& =\frac{2}{\pi n}(1-(1-\pi) \cos n \pi)=\frac{2}{n \pi}\left[1+(\pi-1)(-1)^{n}\right] .
\end{aligned}
$$

So the series is

$$
\sum_{n=1}^{\infty} \frac{2}{n \pi}\left[1+(\pi-1)(-1)^{n}\right] \sin n t
$$

Next for the Fourier cosine series: now $b_{n}=0$ and

$$
\begin{aligned}
a_{n} & =\frac{2}{\pi} \int_{0}^{\pi}(1-t) \cos n t d t=\frac{2}{\pi}\left[\left.\frac{(1-t) \sin n t}{n}\right|_{0} ^{\pi}-\int_{0}^{\pi}(-1) \frac{\sin n t}{n} d t\right] \\
& =\frac{2}{n \pi} \int_{0}^{\pi} \sin n t d t=\frac{2}{n \pi}\left[-\frac{\cos n t}{n}\right]_{0}^{\pi}=\frac{2}{n^{2} \pi}[1-\cos n \pi], \\
a_{0} & =\frac{2}{\pi} \int_{0}^{\pi}(1-t) d t=\frac{2}{\pi}\left(\pi-\frac{\pi^{2}}{2}\right)=2\left(1-\frac{\pi}{2}\right),
\end{aligned}
$$

and the series is:

$$
\left(1-\frac{\pi}{2}\right)+\sum_{n=1}^{\infty} \frac{4}{\pi(2 n-1)^{2}} \cos [(2 n-1) t]
$$

Graphs:

Exercise 6. Find a Fourier series valid for the rectified cosine function:

$$
f(t)= \begin{cases}0, & -\frac{\pi}{\omega}<t \leq-\frac{\pi}{2 \omega} \\ \cos (\omega t), & -\frac{\pi}{2 \omega}<t<\frac{\pi}{2 \omega}, \quad \text { for arbitrary frequency } \omega>0 \\ 0, & \frac{\pi}{2 \omega} \leq t<\frac{\pi}{\omega}\end{cases}
$$

Answer. We observe two things: first f is even and, secondly, the period is $2 \pi / \omega$ so that $T=\pi / \omega$ and we write a Fourier series in the form

$$
\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi t}{\pi / \omega}\right)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos (n \omega t)
$$

201
and

$$
\begin{aligned}
a_{n} & =\frac{2}{\frac{\pi}{\omega}} \int_{0}^{\frac{\pi}{\omega}} f(t) \cos (n \omega t) d t=\frac{2 \omega}{\pi} \int_{0}^{\frac{\pi}{2 \omega}} \cos (\omega t) \cos (n \omega t) d t \\
& =\frac{2 \omega}{\pi} \int_{0}^{\frac{\pi}{2 \omega}} \frac{1}{2}[\cos (\omega t+n \omega t)+\cos (n \omega t-\omega t)] d t \\
& =\frac{2 \omega}{\pi} \int_{0}^{\frac{\pi}{2 \omega}}[\cos ((n+1) \omega t)+\cos ((n-1) \omega t)] d t \\
& =\frac{\omega}{\pi}\left[\frac{\sin ((n+1) \omega t)}{(n+1) \omega}+\frac{\sin ((n-1) \omega t)}{(n-1) \omega}\right]_{0}^{\frac{\pi}{2 \omega}}
\end{aligned}
$$

(note that a_{1} will need to be calculated separately!)

$$
=\frac{\omega}{\pi}\left[\frac{\sin \left((n+1) \frac{\pi}{2}\right.}{(n+1) \omega}+\frac{\sin \left((n-1) \frac{\pi}{2}\right.}{(n-1) \omega}\right] .
$$

Note

$$
\sin \left((n-1) \frac{\pi}{2}+\pi\right)=-\sin \left((n-1) \frac{\pi}{2}\right)=\sin \left((n+1) \frac{\pi}{2}\right) .
$$

And so

$$
a_{n}=\frac{1}{\pi}\left[\frac{-\sin \left((n-1) \frac{\pi}{2}\right)}{n+1}+\frac{\sin \left((n-1) \frac{\pi}{2}\right)}{n-1}\right]=\frac{1}{\pi} \frac{2}{\left(n^{2}-1\right)} \sin \left((n-1) \frac{\pi}{2}\right) .
$$

But

$$
\begin{array}{c|rrrrr}
\sin ((n-1) \pi / 2) & 1 & 0 & -1 & 0 & 1 \\
\hline n & 2 & 3 & 4 & 5 & 6
\end{array}
$$

So

$$
\sin \left((n-1) \frac{\pi}{2}\right)= \begin{cases}0, & n \text { odd } \\ (-1)^{\frac{n+2}{2}}, & n \text { even }\end{cases}
$$

and thus

$$
a_{n}=\frac{2}{\pi} \frac{1}{\left(n^{2}-1\right)} \cdot \begin{cases}0, & n \text { odd } \\ (-1)^{\frac{n+2}{2}}, & n \text { even }\end{cases}
$$

Finally,

$$
\begin{aligned}
& a_{0}=\frac{2 \omega}{\pi} \int_{0}^{\frac{\pi}{2 \omega}} \cos \omega t d t=\frac{2 \omega}{\pi}\left[\frac{\sin \omega t}{\omega}\right]_{0}^{\frac{\pi}{2 \omega}}=\frac{2}{\pi} \sin \left(\frac{\pi}{2}\right)=\frac{2}{\pi}, \\
& a_{1}=\frac{2 \omega}{\pi} \int_{0}^{\frac{\pi}{2 \omega}} \cos ^{2} \omega t d t=\frac{2 \omega}{\pi} \int_{0}^{\frac{\pi}{2 \omega}} \frac{1-\cos (2 \omega t)}{2} d t=\frac{2 \omega}{\pi} \cdot \frac{1}{2} \cdot \frac{\pi}{2 \omega}=\frac{1}{2} .
\end{aligned}
$$

Thus,

$$
f=\frac{1}{\pi}+\frac{1}{2} \cos \omega t+\sum_{n=1}^{\infty} \frac{2(-1)^{n+1}}{\pi\left(4 n^{2}-1\right)} \cos (2 n \omega t)
$$

IV.d Complex Fourier Series and Fourier Transform

The introduction of complex numbers allows a different formulation of the Fourier series. From the earlier sections we know that in the interval $-\pi<t<\pi$, we have the representation

$$
f(t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n t+b_{n} \sin n t\right)
$$

with

$$
\begin{aligned}
& a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x \\
& b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x d x
\end{aligned}
$$

We have changed the variable from t to x in the integrals for convenience. Recalling once again the identities:

$$
\cos n t=\frac{e^{j n t}+e^{-j n t}}{2}, \quad \sin n t=\frac{e^{j n t}-e^{-j n t}}{2 j}
$$

we can write

$$
\begin{aligned}
a_{n} \cos n t+b_{n} \sin n t= & \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \\
& {\left[\left(\frac{e^{j n x}+e^{-j n x}}{2}\right)\left(\frac{e^{j n t}+e^{-j n t}}{2}\right)\right.} \\
& \left.+\left(\frac{e^{j n x}-e^{-j n x}}{2 j}\right)\left(\frac{e^{j n t}-e^{-j n t}}{2 j}\right)\right] d x \\
= & \frac{1}{\pi} \int_{-\pi}^{\pi} \frac{f(x)}{4}\left[2 e^{j n(x-t)}+2 e^{-j n(x-t)}\right] d x \\
= & \left(\frac{1}{\pi} \int_{-\pi}^{\pi} \frac{f(x)}{2} e^{j n x} d x\right) e^{j(-n t)}+\left(\frac{1}{\pi} \int_{-\pi}^{\pi} \frac{f(x)}{2} e^{-j n x} d x\right) e^{j n t} .
\end{aligned}
$$

Therefore,
$f(t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n t+b_{n} \sin n t\right)$

$$
=\frac{a_{0}}{2}+\frac{1}{2 \pi} \sum_{n=1}^{\infty}\left(\int_{-\pi}^{\pi} f(x) e^{-j n x} d x\right) e^{j n t}+\frac{1}{2 \pi} \sum_{n=-\infty}^{-1}\left(\int_{-\pi}^{\pi} f(x) e^{-j n x} d x\right) e^{j n t} .
$$

Writing a_{0} in terms of the integral of f we are lead to the complex Fourier series for f :

$$
f(t)=\sum_{-\infty}^{\infty} c_{n} e^{j n t} \quad \text { where } \quad c_{n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(t) e^{-j n t} d t
$$

This series represents f in the interval $-\pi<t<\pi$. If we had started with the Fourier series for f which is valid for $-T<t<T$ we would have obtained the complex series:

$$
f(t)=\sum_{-\infty}^{\infty} c_{n} e^{\frac{j n \pi t}{T}} \quad \text { where } \quad c_{n}=\frac{1}{2 T} \int_{-T}^{T} f(t) e^{\frac{-j n \pi t}{T}} d t
$$

This latter series, of course, furnishes a representation for f valid in the interval $-T<t<T$. We can rewrite this series in the form:

$$
f(t)=\sum_{-\infty}^{\infty}\left(\frac{1}{2 T} \int_{-T}^{T} f(x) e^{\frac{-j n \pi x}{T}} d x\right) e^{\frac{j n \pi t}{T}}
$$

since the dummy variable of integration can be changed from t to x for convenience.

Remark. Note that c_{n} is complex in general! It looks like we have to calculate c_{n} for all the positive n 's and then for all the negative n 's. But, if $f(t)$ is real (the usual situation) then

$$
c_{-n}=\frac{1}{2 T} \int_{-T}^{T} f(t) e^{\frac{j n \pi t}{T}} d t
$$

So

$$
\begin{aligned}
\bar{c}_{-n}= & \overline{\frac{1}{2 \pi} \int_{-T}^{T} f(t) e^{\frac{j n \pi t}{T}} d t \quad \text { (complex conjugate) }} \\
& =\frac{1}{2 \pi} \int_{-T}^{T} \overline{f(t) e^{\frac{j n \pi t}{T}}} d t=\frac{1}{2 \pi} \int_{-T}^{T} f(t) e^{\frac{-j n \pi t}{T}} d t=c_{n}
\end{aligned}
$$

and we conclude

$$
\bar{c}_{-n}=c_{n} .
$$

From this remark, we obtain Parseval's Theorem. Let $f(t), g(t)$ be two functions given on $-T<t<T$. Suppose

$$
f(t)=\sum_{-\infty}^{\infty} c_{n} e^{\frac{j n \pi t}{T}}, \quad g(t)=\sum_{-\infty}^{\infty} d_{n} e^{\frac{j n \pi t}{T}}
$$

We wish to calculate

$$
\begin{aligned}
\int_{-T}^{T} f(t) g(t) d t & =\int_{-T}^{T}\left(\sum_{-\infty}^{\infty} c_{n} e^{\frac{j n \pi t}{T}}\right) g(t) d t \\
& =\sum_{-\infty}^{\infty} c_{n} \int_{-T}^{T} e^{\frac{j n \pi t}{T}} g(t) d t \\
& =2 T \sum_{n=-\infty}^{\infty} c_{n} d_{-n}=2 T \sum_{n=-\infty}^{\infty} c_{n} \bar{d}_{n}
\end{aligned}
$$

So (this is the Theorem):

$$
\frac{1}{2 T} \int_{-T}^{T} f(t) g(t) d t=\sum_{n=-\infty}^{\infty} c_{n} \bar{d}_{n}
$$

and, as a consequence,

$$
\frac{1}{2 T} \int_{-T}^{T} f^{2}(t) d t=\sum_{n=-\infty}^{\infty}\left|c_{n}\right|^{2}
$$

In particular, the RMS (Root Mean Square) value of f is

$$
f_{\mathrm{RMS}}=\sqrt{\frac{1}{2 T} \int_{-T}^{T} f^{2}(t) d t}=\sqrt{\sum_{n=-\infty}^{\infty}\left|c_{n}\right|^{2}} .
$$

There is an analogue of this result valid for the ordinary Fourier series. Suppose

$$
f(t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[\begin{array}{c}
\left.a_{n} \cos \frac{n \pi t}{T}+b_{n} \sin \frac{n \pi t}{T}\right] \\
206
\end{array}\right.
$$

$$
g(t)=\frac{\alpha_{0}}{2}+\sum_{n=1}^{\infty}\left[\alpha_{n} \cos \frac{n \pi t}{T}+\beta_{n} \sin \frac{n \pi t}{T}\right] .
$$

Then

$$
\begin{aligned}
\int_{-T}^{T} f(t) g(t) d t & =\int_{-T}^{T}\left[\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left\{a_{n} \cos \frac{n \pi t}{T}+b_{n} \sin \frac{n \pi t}{T}\right\}\right] g(t) d t \\
& =\frac{a_{0}}{2} \int_{-T}^{T} g(t) d t+\sum_{n=1}^{\infty}\left\{a_{n}\left[\int_{-T}^{T} \cos \frac{n \pi t}{T} g(t) d t\right]+b_{n}\left[\int_{-T}^{T} \sin \frac{n \pi t}{T} g(t) d t\right]\right\} \\
& =T\left[\frac{\alpha_{0} \alpha_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \alpha_{n}+b_{n} \beta_{n}\right]\right]
\end{aligned}
$$

or

$$
\frac{1}{2 T} \int_{-T}^{T} f(t) g(t) d t=\frac{a_{0} \alpha_{0}}{4}+\frac{1}{2} \sum_{n=1}^{\infty}\left\{a_{n} \alpha_{n}+b_{n} \beta_{n}\right\}
$$

and

$$
\frac{1}{2 T} \int_{-T}^{T} f^{2}(t) d t=\frac{a_{0}^{2}}{4}+\frac{1}{2} \sum_{n=1}^{\infty}\left\{a_{n}^{2}+b_{n}^{2}\right\}
$$

As stated above, this series represents f only in the interval $-T<t<T$ (unless f is periodic). In an attempt to obtain a representation for f which is valid for all t even if f is not periodic, we let $T \rightarrow \infty$ (as follows). Recall first of all that while $\int_{0}^{b} g(w) d w$-for some function g-is evaluated by means of antiderivatives, the definition of $\int_{0}^{b} g(w) d w$ (and thus its physical significance) is given by: divide the interval $0<w<b$ into N steps of equal size Δw, so that $\Delta w=b / N$, and put $w_{n}=n b / N=n \Delta w$ for $n=1,2, \ldots, N$.

From the sum $\sum_{i=1}^{N} g\left(w_{n}\right) \Delta w$ and recall

$$
\int_{0}^{b} g(w) d w=\lim _{N \rightarrow \infty}\left(\sum_{n=1}^{N} g\left(w_{n}\right) \Delta w\right)=\lim _{\Delta w \rightarrow 0}\left(\sum_{n=1}^{N} g(n \Delta w) \Delta w\right)
$$

Finally,

$$
\int_{-b}^{b} g(w) d w=\int_{-b}^{0} g(w) d w+\int_{0}^{b} g(w) d w=\lim _{\Delta w \rightarrow 0}\left(\sum_{-N}^{N} g(n \Delta w) \Delta w\right)
$$

Set $\pi / T=\Delta w$, and note that from the above series we obtain

$$
\begin{aligned}
f(t) & =\sum_{-\infty}^{\infty} \frac{1}{2 T} \int_{-T}^{T} f(x) e^{\frac{j n \pi}{T}(t-x)} d x=\sum_{-\infty}^{\infty} \frac{\Delta w}{2 \pi} \int_{-T}^{T} f(x) e^{j n \Delta w(t-x)} d x \\
& =\sum_{-\infty}^{\infty}\left[\int_{-T}^{T} f(x) e^{j n \Delta w(x-t)} d x\right] \frac{\Delta w}{2 \pi}
\end{aligned}
$$

Note that $\lim _{T \rightarrow \infty}(\Delta w)=0$. If we put

$$
g(w)=\frac{1}{2 \pi} \int_{-T}^{T} f(x) e^{j w(x-t)} d x
$$

then

$$
f(t)=\sum_{-\infty}^{\infty} g(n \Delta w) \Delta w
$$

and the last expression we have obtained is, by definition, "close" to

$$
\int_{-\infty}^{\infty} \frac{1}{2 \pi}\left[\int_{-\infty}^{\infty} f(x) e^{j w(t-x)} d x\right] d w
$$

for T sufficiently large. (Here we have replaced $n \Delta w$ by w and T by ∞.) We thus are lead to the representation

$$
f(t)=\int_{-\infty}^{\infty} \frac{1}{2 \pi}\left[\int_{-\infty}^{\infty} f(x) e^{j w(t-x)} d x\right] d w
$$

valid for all t. That is, we write:

$$
f(t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} g(w) e^{j w t} d w
$$

where

$$
g(w)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-j w x} f(x) d x
$$

This is indeed a valid representation for the $f(t)$ usually found in practice. The function g is called the Fourier transform of f.

Remarks. (1) We have split 2π as the product of $\sqrt{2 \pi} \cdot \sqrt{2 \pi}$. This is not always done so that sometimes $g(w)=\int_{-\infty}^{\infty} e^{-j w x} f(x) d x$, and then $f(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} g(w) e^{j w t} d t$.
(2) One of the important feature of a transform is that a derivative becomes a product!
(3) Remember that for Laplace transforms, we need $f(t)=0$ if $t<0$. This is not the case for Fourier transforms.

We now pass to examples.

Example 1. Find the complex Fourier series for f if $f(t)=e^{t}$ for $-\pi<t<\pi$.

Answer.

$$
\begin{aligned}
c_{n} & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(t) e^{-j n t} d t=\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{t} e^{-j n t} d t=\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{(1-j n) t} d t \\
& =\left.\frac{e^{(1-j n) t}}{2 \pi(1-j n)}\right|_{-\pi} ^{\pi}=\frac{e^{\pi} e^{-j n \pi}}{2 \pi(1-j n)}-\frac{e^{-\pi} e^{j n \pi}}{2 \pi(1-j n)} .
\end{aligned}
$$

But

$$
\begin{gathered}
e^{ \pm j n \pi}=\cos (\pm n \pi)+j \sin (\pm n \pi)=\cos (\pm n \pi)=(-1)^{n} \\
209
\end{gathered}
$$

Therefore,

$$
c_{n}=\frac{\left(e^{\pi}-e^{-\pi}\right)(-1)^{n}}{2 \pi(1-j n)}
$$

and

$$
f(t)=\sum_{-\infty}^{\infty}\left(\frac{e^{\pi}-e^{-\pi}}{2 \pi}\right) \frac{(-1)^{n}}{(1-n j)} e^{j n t}
$$

Example 2. Find the Fourier transform for f if

$$
f(t)= \begin{cases}1, & \text { for } 0<t<1 \\ 0, & \text { elsewhere }\end{cases}
$$

Answer.

$$
\begin{aligned}
g(w) & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-j w t} f(t) d t=\frac{1}{\sqrt{2 \pi}} \int_{0}^{1} e^{-j w t} \cdot 1 d t \\
& =\left.\frac{1}{\sqrt{2 \pi}} \frac{e^{-j w t}}{-j w}\right|_{0} ^{1}=\frac{1}{j \sqrt{2 \pi} w}\left[1-e^{-j w}\right]
\end{aligned}
$$

if $w \neq 0$. If $w=0$,

$$
g(0)=\frac{1}{\sqrt{2 \pi}} \int_{0}^{1} 1 d t=\frac{1}{\sqrt{2 \pi}} .
$$

Example 3. Let $f(t)=t, g(t)=|t|$ on $-\pi<t<\pi$. Use the Fourier series to calculate $\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(t) g(t) d t$.

Answer.

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(t) g(t) d t=\frac{a_{0}}{2} \cdot \frac{\alpha_{0}}{2}+\frac{1}{2} \sum_{n=1}^{\infty}\left\{a_{n} \alpha_{n}+b_{n} \beta_{n}\right\}
$$

where

$$
f=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left\{a_{n} \cos n x+b_{n} \sin n x\right\}
$$

$$
g=\frac{\alpha_{0}}{2}+\sum_{n=1}^{\infty}\left\{\alpha_{n} \cos n x+\beta_{n} \sin n x\right\} .
$$

So we only need to calculate the Fourier series. Now t is odd, so $a_{n}=0$,

$$
\begin{aligned}
b_{n} & =\frac{2}{\pi} \int_{0}^{\pi} t \sin n t d t=\frac{2}{\pi}\left[\left.\frac{-t \cos n t}{n}\right|_{0} ^{\pi}+\frac{1}{n} \int_{0}^{\pi} \cos n t d t\right] \\
& =\frac{2(-\pi)(-1)^{n}}{\pi n}=\frac{2}{n}(-1)^{n+1}
\end{aligned}
$$

i.e.,

$$
t=\sum_{n=1}^{\infty} \frac{2}{n}(-1)^{n+1} \sin n t
$$

While $|t|$ is even and we have $b_{n}=0$,

$$
\begin{aligned}
a_{n} & =\frac{2}{\pi} \int_{0}^{\pi}|t| \cos n t d t=\frac{2}{\pi} \int_{0}^{\pi} t \cos n t d t \\
& =\frac{2}{\pi}\left[\left.\frac{t \sin n t}{n}\right|_{0} ^{\pi}-\int_{0}^{\pi} \frac{\sin n t}{n} d t\right] \\
& =\left.\frac{2}{\pi} \frac{\cos n t}{n^{2}}\right|_{0} ^{\pi}=\frac{2}{\pi n^{2}}\left[(-1)^{n}-1\right]=\frac{2}{\pi n^{2}} \cdot\left\{\begin{array}{ll}
0, & n \text { even } \\
-2, & n \text { odd, } \\
a_{0} & =\frac{2}{\pi} \int_{0}^{\pi}|t| d t=\frac{2}{\pi} \int_{0}^{\pi} t d t=\frac{2}{\pi} \cdot \frac{\pi^{2}}{2}=\pi .
\end{array} .\right.
\end{aligned}
$$

So

$$
|t|=\frac{\pi}{2}+\sum_{n=1}^{\infty} \frac{2}{\pi n^{2}}\left[(-1)^{n}-1\right] \cos n t
$$

and thus
$\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(t) g(t) d t=\frac{1}{4} \underbrace{0}_{a_{0}} \cdot \underbrace{\frac{\pi}{2}}_{\alpha_{0}}+\frac{1}{2} \sum_{n=1}^{\infty}(\underbrace{0}_{a_{n}} \cdot \underbrace{\frac{2}{\pi n^{2}}\left[(-1)^{n}-1\right]}_{\alpha_{n}}+\underbrace{\frac{2}{n}(-1)^{n+1}}_{b_{n}} \cdot \underbrace{0}_{\beta_{n}})=0$.
But we know this is obvious: t is odd, $|t|$ is even, so $t|t|$ is odd and $\int_{-\pi}^{\pi} t|t| d t=0$.

Suppose

$$
f(t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left\{a_{n} \cos \frac{n \pi t}{T}+b_{n} \sin \frac{n \pi t}{T}\right\}
$$

with a_{0}, a_{n}, b_{n} as given earlier, for $-T<t<T$, where f is a periodic function of period $2 T$. For functions encountered in practice, we can integrate this expression term by term,

$$
\int_{t_{0}}^{t_{1}} f(t) d t=\frac{a_{0}}{2}\left(t_{1}-t_{0}\right)+\left.\sum_{n=1}^{\infty}\left\{\frac{a_{n} \sin \frac{n \pi t}{T}}{\frac{n \pi}{T}}-b_{n} \frac{\cos \frac{n \pi t}{T}}{\frac{n \pi}{T}}\right\}\right|_{t=t_{0}} ^{t_{1}}
$$

The situation, as far as differentiation is concerned, is somewhat more complicated. We can always differentiate the series term by term, but remember that we can write Fourier series even for functions with jumps (i.e., which do not have a derivative everywhere). So term by term differentiation gives $f^{\prime}(t)$ only if (1) $f(t)$ is continuous (i.e., no jumps anywhere, even at $t= \pm T$!) and (2) $f^{\prime}(t)$ also has a Fourier series. Condition (2) is no problem in practice, but condition (1) can be, even away from the jumps (if any)! To see this, consider a standard example:

Example 1. $f(t)=t$ for $-\pi<t<\pi, f(t)$ is periodic with period 2π. The graph of $f(t)$ is as shown, so that $f(t)$ is not continuous: there are jumps at $t=$ $\pm \pi, \pm 3 \pi, \pm 5 \pi, \ldots$

212

Now the Fourier series for f is

$$
f(t)=2 \sum_{n=1}^{\infty}(-1)^{n+1} \frac{\sin n t}{n} .
$$

In particular for any t between $-\pi$ and π we have

$$
t=2 \sum_{n=1}^{\infty}(-1)^{n+1} \frac{\sin n t}{n} .
$$

If we differentiate term by term and this was indeed the derivative of t, then we would obtain

$$
1=2 \sum_{n=1}^{\infty}(-1)^{n+1} \cos n t
$$

by differentiating both sides. This would be true in particular at $t=0$, but $\cos 0=1$ so

$$
1=2 \sum_{n=1}^{\infty}(-1)^{n+1}!
$$

But this is impossible, since

$$
2\left(\sum_{n=1}^{\infty}(-1)^{n+1}\right)=2(1-1+1-1+1-\cdots)
$$

oscillates and does not converge to 1 or anything else! Observe that here $f^{\prime}(t)=1$ for $-\pi<t<\pi$, but f^{\prime} does not exist at $\pm \pi$. Condition (1) is thus important and if (1) and (2) are satisfied, then

$$
f^{\prime}(t)=\sum_{n=1}^{\infty}\left\{a_{n} \frac{n \pi}{T}\left(-\sin \frac{n \pi t}{T}\right)+b_{n} \frac{n \pi}{T} \cos \frac{n \pi t}{T}\right\} .
$$

Example 2. Let f be as in Example 1. Find $\int_{\alpha}^{t} f(s) d s$, for $-\pi<\alpha<t<\pi$.

Answer.

$$
f(t)=t=2 \sum_{n=1}^{\infty}(-1)^{n+1} \frac{\sin n t}{n} .
$$

So

$$
\begin{aligned}
\int_{\alpha}^{t} f(s) d s & =\sum_{n=1}^{\infty} \int_{\alpha}^{t} 2(-1)^{n+1} \frac{\sin n s}{n} d s \\
& =\sum_{n=1}^{\infty} 2(-1)^{n+1}\left[-\frac{\cos n s}{n^{2}}\right]_{\alpha}^{t} \\
& =\sum_{n=1}^{\infty} \frac{2(-1)^{n+1}}{n^{2}}[\cos n \alpha-\cos n t] .
\end{aligned}
$$

On the other hand,

$$
\int_{\alpha}^{t} f(s) d s=\int_{\alpha}^{t} s d s=\frac{t^{2}-\alpha^{2}}{2}
$$

So we conclude

$$
\frac{t^{2}-\alpha^{2}}{2}=\sum_{n=1}^{\infty} \frac{2(-1)^{n+1}}{n^{2}}[\cos n \alpha-\cos n t]
$$

We can rewrite this expression as:

$$
\frac{t^{2}}{2}=\frac{\alpha^{2}}{2}+\sum_{n=1}^{\infty} \frac{2(-1)^{n+1}}{n^{2}} \cos n \alpha-\sum_{n=1}^{\infty} \frac{2(-1)^{n+1}}{n^{2}} \cos n t
$$

or

$$
\frac{t^{2}}{2}=C-\sum_{n=1}^{\infty} \frac{2(-1)^{n+1}}{n^{2}} \cos n t
$$

where

$$
C=\frac{\alpha^{2}}{2}+\sum_{n=1}^{\infty} \frac{2(-1)^{n+1}}{n^{2}} \cos n \alpha
$$

We can look at the right hand side as the Fourier series of $t^{2} / 2$ over $-\pi<t<\pi$. So if we wish we can find C as the " $a_{0} / 2$ " of the expansion for the function $g(t)=t^{2} / 2$,
i.e.,

$$
C=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{t^{2}}{2} d t
$$

Example 3. Find the Fourier series for the derivative of the rectified cosine function:

$$
f(t)=\cos t, \quad \text { for } \quad-\frac{\pi}{2}<t<\frac{\pi}{2} ; \quad f(t)=f(t+\pi),
$$

by differentiating term by term.

Answer. Observe that $f(t)$ has no jumps.

We may therefore obtain the Fourier series for $f(t)$ and differentiate term by term to get the series for $f^{\prime}(t)$. Now $f(t)$ is even, so $b_{n}=0$ and

$$
\begin{aligned}
a_{n} & =\frac{1}{\frac{\pi}{2}} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos t \cos 2 n t d t \\
& =\frac{2}{\pi} \int_{-\pi 2}^{\frac{\pi}{2}}\left[\frac{e^{j t}+e^{-j t}}{2}\right]\left[\frac{e^{j 2 n t}+e^{-j 2 n t}}{2}\right] d t \\
& =\frac{1}{2 \pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left[e^{j(2 n+1) t}+e^{-j(2 n-1) t}+e^{j(2 n-1) t}+e^{-j(2 n+1) t}\right] d t \\
& =\frac{1}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}[\cos (2 n+1) t+\cos (2 n-1) t] d t \\
& =\frac{1}{\pi}\left[\frac{\sin (2 n+1) t}{2 n+1}+\frac{\sin (2 n-1) t}{2 n-1}\right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}}
\end{aligned}
$$

$$
=\frac{2}{\pi}\left[\frac{\sin (2 n+1) \frac{\pi}{2}}{2 n+1}+\frac{\sin (2 n-1) \frac{\pi}{2}}{2 n-1}\right] .
$$

Observe that

n	1	2	3	4	5
$\sin (2 n+1) \frac{\pi}{2}$	-1	1	-1	1	\cdots
$\sin (2 n-1) \frac{\pi}{2}$	1	-1	1	-1	\cdots

So

$$
a_{n}=\frac{2}{\pi}\left[\frac{1}{2 n+1}-\frac{1}{2 n-1}\right](-1)^{n}=\frac{2(-1)^{n}}{\pi} \frac{(-2)}{\left(4 n^{2}-1\right)} .
$$

I.e.,

$$
a_{n}=\frac{4(-1)^{n+1}}{\pi\left(4 n^{2}-1\right)} .
$$

Also

$$
a_{0}=\frac{2}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos t d t=\left.\frac{2}{\pi} \sin t\right|_{-\frac{\pi}{2}} ^{\frac{\pi}{2}}=\frac{4}{\pi}
$$

and

$$
f=\frac{2}{\pi}+\sum_{n=1}^{\infty} \frac{4(-1)^{n+1}}{\pi\left(4 n^{2}-1\right)} \cos 2 n t
$$

Thus

$$
f^{\prime}(t)=\sum_{n=1}^{\infty} \frac{4(-1)^{n} 2 n}{\pi\left(4 n^{2}-1\right)} \sin 2 n t
$$

To practice, we can check this. After all, $f^{\prime}=-\sin t$ for $-\pi / 2<t<\pi / 2$, so is

$$
\begin{gathered}
\sin t=-\sum_{n=1}^{\infty} \frac{8(-1)^{n} n}{\pi\left(4 n^{2}-1\right)} \sin 2 n t ? \\
216
\end{gathered}
$$

Now $\sin t$ is odd, and so $a_{n}=0$, but

$$
\begin{aligned}
b_{n} & =\frac{2}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin t \sin 2 n t d t \\
& =\frac{2}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left[\frac{e^{j t}-e^{-j t}}{2 j}\right]\left[\frac{e^{2 n j t}-e^{-2 n j t}}{2 j}\right] d t \\
& =\frac{2}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{e^{(2 n t+t) j}-e^{-(2 n t-t) j}-e^{(2 n t-t) j}+e^{-j(2 n t+t)}}{4 j^{2}} d t \\
& =-\frac{1}{2 \pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}[2 \cos (2 n t+t)-2 \cos (2 n t-t)] d t \\
& =-\frac{1}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}[\cos (2 n+1) t-\cos (2 n-1) t] d t \\
& =-\frac{1}{\pi}\left[\frac{\sin (2 n+1) t}{2 n+1}-\frac{\sin (2 n-1) t}{2 n-1}\right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}} .
\end{aligned}
$$

We calculated $\sin (2 n+1) t$ and $\sin (2 n-1) t$ before. So

$$
b_{n}=-\frac{2}{\pi}\left[\frac{1}{2 n+1}+\frac{1}{2 n-1}\right](-1)^{n}=\frac{(-1)^{n+1}}{4 \pi} \cdot 2 \cdot 4 \cdot \frac{4 n}{\left(4 n^{2}-1\right)}=\frac{8 n(-1)^{n+1}}{\pi\left(4 n^{2}-1\right)}
$$

That is,

$$
\sin t=\sum_{n=1}^{\infty} \frac{(-1)^{n+1} 8 n}{\pi\left(4 n^{2}-1\right)} \sin 2 n t
$$

as expected.

IV.f Orthogonal Systems and Generalized Fourier Series

So far we have obtained representations for $-T<t<T$ for "arbitrary" functions $f(t)$ in terms of the trigonometric functions $\sin \frac{n \pi t}{T}$ and $\cos \frac{n \pi t}{T}, n=1,2, \ldots$ It is often convenient to represent f in terms of other functions, particularly for distributed parameter problems, and we now indicate how this can be done. We begin with some theoretical considerations. Let $g_{m}(t), g_{n}(t)$ be two functions on the interval $a<t<b$. We define:

$$
\left(g_{m}, g_{n}\right)=\int_{a}^{b} g_{m}(t) g_{n}(t) d t
$$

Example 1. Let $g_{m}(t)=t, g_{n}(t)=t^{2}, a=0, b=1$. Then

$$
\left(g_{m}, g_{n}\right)=\int_{a}^{b} g_{m} g_{n} d t=\int_{0}^{1}(t)\left(t^{2}\right) d t=\frac{1}{4} .
$$

Example 2. Let $g_{m}(t)=\sin t, g_{n}(t)=\cos t, a=-\pi, b=\pi$. Then

$$
\left(g_{m}, g_{n}\right)=\int_{-\pi}^{\pi} \sin t \cos t d t=\left.\frac{\sin ^{2} t}{2}\right|_{-\pi} ^{\pi}=0 .
$$

The properties of the operation (,) which we have introduced are analogous to those of the inner (or dot) product of 3-dimensional vectors. You may recall that two vectors are perpendicular (or orthogonal) iff their dot product is zero. Analogously we say that a collection of functions $g_{1}, g_{2}, g_{3}, \ldots$ is orthogonal in the interval $a<t<b$ iff $\left(g_{m}, g_{n}\right)=0$ for any two different functions g_{m}, g_{n}. This is simply terminology by analogy. It does not mean that functions are "arrows," just like vectors!

Example 3. $g_{1}=\sin t, g_{2}=\cos t, g_{3}=1$, form an orthogonal set on $-\pi<t<\pi$ 218
since

$$
\begin{aligned}
& \left(g_{1}, g_{2}\right)=0 \quad(\text { as shown above }) \\
& \left(g_{1}, g_{3}\right)=\int_{-\pi}^{\pi}(\sin t)(1) d t=-\left.\cos t\right|_{-\pi} ^{\pi}=0, \\
& \left(g_{2}, g_{3}\right)=\int_{-\pi}^{\pi}(\cos t)(1) d t=\left.\sin t\right|_{-\pi} ^{\pi}=0
\end{aligned}
$$

Example 4. Let g_{1}, g_{2}, g_{3} be as before. These do not form an orthogonal set in the interval $0<t<\pi / 2$ since

$$
\left(g_{1}, g_{3}\right)=\int_{0}^{\frac{\pi}{2}} \sin t d t \neq 0
$$

These two examples indicate that a set of functions may be orthogonal in one interval and not in another.

Given a 3-d vector a it is known that the length (or magnitude or norm) of a is given by $\sqrt{\mathbf{a} \cdot \mathbf{a}}$. Analogously we define the norm or magnitude of the function g_{n} by its RMS value (except we neglect the length of the interval):

$$
\left\|g_{n}\right\|=\sqrt{\left(g_{n}, g_{n}\right)}=\sqrt{\int_{a}^{b} g_{n}^{2}(t) d t}
$$

Example 5. Let $g_{1}=1, g_{2}=t, g_{3}=t^{2}, a=0, b=1$. Then

$$
\begin{aligned}
& \left\|g_{1}\right\|=\sqrt{\int_{0}^{1} 1^{2} d t}=1 \\
& \left\|g_{2}\right\|=\sqrt{\int_{0}^{1} t^{2} d t}=\sqrt{\frac{1}{3}} \\
& \left\|g_{3}\right\|=\sqrt{\int_{0}^{1}\left(t^{2}\right)^{2} d t}=\sqrt{\frac{1}{5}}
\end{aligned}
$$

Given a set of functions $g_{1}, g_{2}, g_{3}, \ldots$, we say that it is orthonormal iff (1) the
functions are orthogonal (i.e., $\left(g_{n}, g_{m}\right)=0$ for $n \neq m$), and (2) the norm of each function is 1 (i.e., $\left(g_{n}, g_{n}\right)=1$).

Example 6. Consider the functions $g_{1}=1, g_{2}=\sin t, g_{3}=\cos t$ in the interval $-\pi<t<\pi$. As noted above, this is an orthogonal set, since $\left(g_{n}, g_{m}\right)=0,(n \neq m)$. It is not an orthonormal set since

$$
\begin{aligned}
& \left\|g_{1}\right\|=\sqrt{\left(g_{1}, g_{1}\right)}=\sqrt{\int_{-\pi}^{\pi} 1 d t}=\sqrt{2 \pi} \neq 1 \\
& \left\|g_{2}\right\|=\sqrt{\left(g_{2}, g_{2}\right)}=\sqrt{\int_{-\pi}^{\pi} \sin ^{2} t d t}=\sqrt{\pi} \neq 1 \\
& \left\|g_{3}\right\|=\sqrt{\left(g_{3}, g_{3}\right)}=\sqrt{\int_{-\pi}^{\pi} \cos ^{2} t d t}=\sqrt{\pi} \neq 1
\end{aligned}
$$

However, we can obtain an orthonormal set from g_{1}, g_{2}, g_{3} by dividing each function by its norm, just like we got unit vectors from vectors. In fact let

$$
\begin{aligned}
& h_{1}=\frac{g_{1}}{\left\|g_{1}\right\|}=\frac{1}{\sqrt{2 \pi}} \\
& h_{2}=\frac{g_{2}}{\left\|g_{2}\right\|}=\frac{\sin t}{\sqrt{\pi}} \\
& h_{3}=\frac{g_{3}}{\left\|g_{3}\right\|}=\frac{\cos t}{\sqrt{\pi}}
\end{aligned}
$$

Then $\left(h_{i}, h_{j}\right)=0$ (check this!) and

$$
\begin{gathered}
\left\|h_{1}\right\|=\sqrt{\left(h_{1}, h_{1}\right)}=\sqrt{\int_{-\pi}^{\pi} \frac{1}{2 \pi} d t}=1 \\
\left\|h_{2}\right\|=\sqrt{\left(h_{2}, h_{2}\right)}=\sqrt{\int_{-\pi}^{\pi} \frac{\sin ^{2} t}{\pi} d t}=1 \\
\left\|h_{3}\right\|=\sqrt{\left(h_{3}, h_{3}\right)}=\sqrt{\int_{-\pi}^{\pi} \frac{\cos ^{2} t}{\pi} d t}=1 \\
220
\end{gathered}
$$

Given an orthogonal set g_{1}, g_{2}, \ldots, we may attempt to represent a function $f(t)$ in terms of linear combinations of g_{1}, g_{2}, \ldots. That is, we attempt to write

$$
f(t)=\sum_{n=1}^{\infty} c_{n} g_{n}(t)
$$

with the constants c_{1}, c_{2}, \ldots suitably chosen. To see how the c_{n} should be chosen, proceed as follows: Multiply by g_{m} on both sides and integrate:

$$
\left(f, g_{m}\right)=\int_{a}^{b} f g_{m} d t=\int_{a}^{b} \sum c_{n} g_{n} g_{m} d t=\sum c_{n} \int_{a}^{b} g_{n} g_{m} d t=\sum c_{n}\left(g_{n}, g_{m}\right)
$$

but

$$
\left(g_{n}, g_{m}\right)=\left\{\begin{array}{ll}
0, & n \neq m \\
\left\|g_{m}\right\|^{2}, & n=m
\end{array} .\right.
$$

Thus,

$$
\left(f, g_{m}\right)=c_{m}\left\|g_{m}\right\|^{2} \quad \text { and } \quad c_{m}=\frac{\left(f, g_{m}\right)}{\left\|g_{m}\right\|^{2}} .
$$

This tells us how the c_{i} must be chosen.
There is another difficulty. Since we started with any orthogonal system g_{1}, g_{2}, \ldots, there may not be enough functions in the system to represent f (even though the c_{n} are chosen by the above rule). For example consider the system made up of only the three functions $g_{1}=1, g_{2}=\cos t, g_{3}=\sin t$ which we know is orthogonal for $-\pi<t<\pi$. Even if we choose c_{1}, c_{2}, c_{3} by the above rule, we cannot represent the function $f(t)=t$ in terms of $c_{1} g_{1}+c_{2} g_{2}+c_{3} g_{3}$, since $t \neq c_{1}+c_{2} \cos t+c_{3} \sin t$ for all t in $-\pi<t<\pi$. To see this just choose several values of t and note that no constants c_{1}, c_{2}, c_{3} can work for all the t 's. Other functions g_{4}, g_{5}, \ldots must be included in the system. Hence if we are given an orthogonal system we must somehow ensure that there are "enough" functions in it so that we can represent all the functions in which we are interested. Such systems
are called complete.
We know one such system. It is: 1 , $\sin n t, \cos n t$ for $n=1,2, \ldots$ and $-\pi<t<\pi$. It is this system which was used to construct the Fourier series above and the coefficients were given precisely by the above formula for the c_{m} (although written differently).

Given a complete orthogonal system g_{1}, g_{m}, \ldots we can write the representation

$$
f=\sum_{m=1}^{\infty} c_{m} g_{m} \quad \text { with } \quad c_{m}=\frac{\left(f, g_{m}\right)}{\left\|g_{m}\right\|^{2}} .
$$

This is called the generalized Fourier series for f. The problem of deciding when we have a complete system of orthogonal functions is beyond the scope of the course. In practice most of them arise as the collection of all eigenfunctions of a boundary value problem.

We also encounter systems of functions g_{1}, g_{2}, \ldots which are not orthogonal, but such that there is a fixed positive function $p(t)$ such that

$$
\int_{a}^{b} p(t) g_{m}(t) g_{n}(t) d t=0, \quad m \neq n .
$$

We then say that the system g_{1}, g_{2}, \ldots is orthogonal with respect to the weight function $p(t)$.

Given a system g_{1}, g_{2}, \ldots, which is orthogonal with respect to $p(t)$ and is also complete, we attempt the representation

$$
f(t)=\sum_{n=1}^{\infty} c_{n} g_{n}(t) .
$$

To see how the c_{n} should now be chosen we proceed as follows: Multiply both sides
by $p g_{m}$ and integrate

$$
\int_{a}^{b} p(t) f(t) g_{m}(t) d t=\sum_{n=1}^{\infty} c_{n}\left(\int_{a}^{b} p(t) g_{n}(t) g_{m}(t) d t\right)
$$

but $\int_{a}^{b} p(t) g_{n}(t) g_{m}(t) d t=0$ for $n \neq m$, and therefore

$$
\int_{a}^{b} p(t) f(t) g_{m}(t) d t=c_{m} \int_{a}^{b} p(t) g_{m}^{2}(t) d t
$$

and

$$
c_{m}=\frac{\int_{a}^{b} p(t) f(t) g_{m}(t) d t}{\int_{a}^{b} p(t) g_{m}^{2}(t) d t}
$$

IV.g An Application: Resonance Effects and Harmonics (Optional)

We conclude with an application of how some of the Fourier series results can be used. Specifically we investigate the effects of harmonics when a circuit is driven by non-sinusoidal wave forms. To be specific consider the simple series $L R C$ circuit shown:

with small resistance R and for which we can disregard transients.
We assume the circuit is driven by a square wave:

$$
v(t)=V \cdot \begin{cases}1, & 0<t<T \\ -1, & -T<t<0\end{cases}
$$

extended by periodicity so that $v(t)$ is as shown

Our purpose is to study $i(t)$ as T varies. We could attempt to do this by Laplace transform methods but this does not seem a good way for our purposes. Observe first that we can expand $v(t)$ as a Fourier sine series, since v is odd. Specifically: $a_{n}=0$, and

$$
b_{n}=\frac{2}{T} \int_{0}^{T} \sin \frac{n \pi t}{T} d t=\frac{2}{n \pi}\left[-\cos \frac{n \pi t}{T}\right]_{t=0}^{T}
$$

$$
=\frac{2}{n \pi}\left[1-(-1)^{n}\right]=\left\{\begin{array}{ll}
\frac{4}{n \pi}, & n \text { odd } \\
0, & n \text { even }
\end{array} .\right.
$$

So

$$
v(t)=V \sum_{n=1}^{\infty} \frac{4}{(2 n-1) \pi} \sin \frac{(2 n-1) \pi t}{T}
$$

and we can view $v(t)$ as a sum of series. We are thus led to calculating the response of the circuit to a sine input, say $v_{1}(t)=V \sin \omega t$. To practice, let us do this by differential equations. We have

$$
L \frac{d i}{d t}+R i+\frac{1}{C} \int_{0}^{t} i(r) d r=V \sin \omega t
$$

Differentiating gives

$$
L \frac{d^{2} i}{d t^{2}}+R \frac{d i}{d t}+\frac{1}{C} i=\omega V \cos \omega t
$$

Since we disregard transients, we attempt a solution $i(t)=A \sin \omega t+B \cos \omega t$, with A, B to be found. Substitution into the equation gives

$$
\left(\frac{1}{C}-\omega^{2} L\right)[A \sin \omega t+B \cos \omega t]+R \omega[A \cos \omega t-B \sin \omega t]=\omega V \cos \omega t
$$

or (equating $\sin \omega t, \cos \omega t$ coefficients on both sides)

$$
\begin{aligned}
& A\left[\frac{1}{C}-L \omega^{2}\right]-R \omega B=0 \\
& R \omega A+B\left[\frac{1}{C}-L \omega^{2}\right]=\omega V
\end{aligned}
$$

That is,

$$
\begin{aligned}
& B(\omega)=\frac{\omega V\left[\frac{1}{C}-L \omega^{2}\right]}{\left[\frac{1}{C}-L \omega^{2}\right]^{2}+R^{2} \omega^{2}} \\
& A(\omega)=\frac{R \omega^{2} V}{\left[\frac{1}{C}-L \omega^{2}\right]^{2}+R^{2} \omega^{2}} \\
& 225
\end{aligned}
$$

where we have written $A(\omega), B(\omega)$ to indicate that A, B depend on ω. We recall and these formulas indicate, that the resonance frequency is given by $\omega=1 / \sqrt{L C}$ when the circuit is driven by $\sin \omega t$! We return to our case. Observe that the frequency of the driving square wave voltage is $\omega_{0}=\pi / T$, so

$$
v(t)=\sum_{n=1}^{\infty} \frac{4}{(2 n-1) \pi} \sin \left[(2 n-1) \omega_{0} t\right]
$$

i.e., $v(t)$ is the (infinite) sum of sines and thus

$$
\begin{array}{r}
i(t)=\sum_{n=1}^{\infty} \frac{4}{(2 n-1) \pi}\left\{A\left((2 n-1) \omega_{0}\right) \sin \left[(2 n-1) \omega_{0} t\right]\right. \\
\left.+B\left((2 n-1) \omega_{0}\right) \cos \left[(2 n-1) \omega_{0} t\right]\right\}
\end{array}
$$

We can calculate the RMS value of i in terms of the coefficients:

$$
\begin{aligned}
\frac{1}{2 T} \int_{-T}^{T} i^{2}(t) d t & =\sum_{n=1}^{\infty} \frac{4^{2}}{(2 n-1)^{2} \pi^{2}}\left\{A^{2}\left((2 n-1) \omega_{0}\right)+B^{2}\left((2 n-1) \omega_{0}\right)\right\} \\
& =\sum_{n=1}^{\infty} \frac{4^{2}}{(2 n-1)^{2} \pi^{2}} \frac{\left[(2 n-1) \omega_{0} V\right]^{2}}{\left[\frac{1}{C}-L(2 n-1)^{2} \omega_{0}^{2}\right]+R^{2} \omega_{0}^{2}(2 n-1)^{2}} \\
& =\sum_{n=1}^{\infty} \frac{16}{\pi^{2}} \cdot \frac{\omega_{0}^{2} V^{2}}{\left[\frac{1}{C}-L(2 n-1)^{2} \omega_{0}^{2}\right]+R^{2} \omega_{0}^{2}(2 n-1)^{2}} .
\end{aligned}
$$

Recall that $\omega_{0}=\pi / T$. Suppose that for some small n_{0}, we have $\left(2 n_{0}-1\right) \omega_{0}=$ $1 / \sqrt{L C}$. That is, one of the harmonics of ω_{0} (but not ω_{0} itself) is the resonant frequency. Then since every term in the sum is positive, we have

$$
\frac{1}{2 T} \int_{-T}^{T} i^{2}(t) d t \geq \frac{16}{\pi^{2}} \cdot \frac{\omega_{0}^{2} V^{2}}{R^{2} \omega_{0}^{2}\left(2 n_{0}-1\right)^{2}}=\frac{16 V^{2}}{\pi^{2} R^{2}\left(2 n_{0}-1\right)^{2}} .
$$

If R is small, the RMS value of $i(t)$ is very large even though the frequency ω_{0} of the driving voltage is a fraction of the resonant frequency one would expect, specifically, $\omega_{0}=\frac{1}{\sqrt{L C}} \cdot \frac{1}{\left(2 n_{0}-1\right)}$. The key is that the square wave is a sum of sines, and while
ω_{0} is not $1 / \sqrt{L C}$, one of the sines composing $v(t)$ is indeed of this frequency. It is this component that causes the resonance.

The same phenomenon is observed when a circuit is driven by other nonsinusoidal inputs: triangular, saw tooth, etc.

