
 
Math 309 - Spring-Summer 2017

Solutions to Problem Set # 9

Completion Date: Friday July 7, 2017

Question 1.

Show in two ways that the sequence

zn = −2 + i
(−1)n

n2
(n = 1, 2, . . . )

converges to −2.

Solution:

(a) We have

|zn + 2| =

∣

∣

∣

∣

i(−1)n

n2

∣

∣

∣

∣

=
1

n2
→ 0

as n → ∞.

(b) Also, zn = xn + iyn where xn = −2 and yn =
(−1)n

n2
for n ≥ 1, and

xn → −2 and yn → 0

as n → ∞, and again zn → −2 + 0 · i = −2 as n → ∞.

Question 2.

Let rn denote the moduli and Θn the principal values of the arguments of the complex numbers

zn = −2 +
i(−1)n

n2

for n ≥ 1. Show that the sequence rn (n = 1, 2, . . . ) converges but that the sequence Θn (n = 1, 2, . . . ) does
not.

Solution: If zn = −2 +
i(−1)n

n2
for n ≥ 1, then

rn = |zn| =

√

4 +
1

n4
→

√
4 = 2

as n → ∞. However, if Θn = Arg(zn), −π < Θn ≤ π for n ≥ 1, then:

For n even, we have Θn = π − sin−1

(

1√
1 + 4n4

)

2

_

2_
Θn

0 x

y
+ /i n

2



and Θn → π as n → ∞ through even values.

For n odd, we have Θn = −π + sin−1

(

1√
1 + 4n4

)

2

_

2_ _ i /n
Θn

y

x0
2

and Θn → −π as n → ∞ through odd values.

Therefore, lim
n→∞

rn = 2, but lim
n→∞

Θn doesn’t exist.

Question 3.

(a) Show that if the sequence {zn}n≥1 converges, then (zn − zn−1) → 0 as n → ∞.

(b) Let z0 6= 0. Show that the sequence {(z/z0)
n}n≥1 diverges if |z| = |z0| and z 6= z0.

Hint: For |z| = |z0|, show first that

∣

∣

∣

∣

∣

(

z

z0

)

n

−
(

z

z0

)

n−1
∣

∣

∣

∣

∣

=

∣

∣

∣

∣

z

z0
− 1

∣

∣

∣

∣

> 0,

and use the result of part (a).

Solution:

(a) Suppose that lim
n→∞

zn exists and equals α, then given ε > 0, there exists a positive integer n0 such that

|zn − α| < ε/2 whenever n − 1 > n0. Therefore,

|zn − zn−1| = |zn − α + α − zn−1| ≤ |zn − α| + |zn−1 − α| <
ε

2
+

ε

2
= ε

whenever n > n − 1 > n0. That is, lim
n→∞

|zn − zn−1 − 0| = 0, so that lim
n→∞

(zn − zn−1) = 0.

(b) From the hint and part (a), it is not possible for limit to exist, since this would imply that

∣

∣

∣

∣

z

z0
− 1

∣

∣

∣

∣

= 0,

which contradicts the fact that z 6= z0.

Question 4.

Show that
if lim

n→∞
zn = z, then lim

n→∞
|zn| = |z|.

Solution: If lim
n→∞

zn = z, then from the back end of the triangle inequality, we have

∣

∣|zn| − |z|
∣

∣ ≤ |zn − z|,



and given ε > 0, choose n0 so that |zn − z| < ε for all n ≥ n0, then

∣

∣|zn| − |z|
∣

∣ ≤ |zn − z| < ε

for all n ≥ n0, and therefore lim
n→∞

|zn| = |z|.

The converse is not true, for example, if
zn = 1 + i(−1)n

for n ≥ 1, then
|zn| =

√
1 + 1 =

√
2,

for all n ≥ 1, so that lim
n→∞

|zn| =
√

2 exists, but the sequence {zn}n≥1 does not converge (why?).

Question 5.

Obtain the Maclaurin series representation

z cosh(z2) =
∞
∑

n=0

z4n+1

(2n)!
(|z| < ∞).

Solution: The Maclaurin series expansion for z cosh(z2) follows from the Maclaurin series expansion for
cosh z, namely

cosh z =
∞
∑

n=0

z2n

(2n)!
, |z| < ∞

by replacing z by z2 to get cosh(z2) =

∞
∑

n=0

z4n

(2n)!
, and then multiplying by z to get

z cosh(z2) =

∞
∑

n=0

z4n+1

(2n)!
, |z| < ∞.

Question 6.

Obtain the Taylor series

ez = e

∞
∑

n=0

(z − 1)n

n!
(|z − 1| < ∞)

for the function f(z) = ez by

(a) using f (n)(1) (n = 0, 1, 2 . . . );

(b) writing ez = ez−1e.

Solution:

(a) If f(z) = ez, then f (n)(z) = ez for all n ≥ 0, so that f (n)(1) = e for all n ≥ 0, and therefore

f(z) = ez =

∞
∑

n=0

f (n)(1)

n!
(z − 1)n = e

∞
∑

n=0

(z − 1)n

n!

for |z − 1| < ∞.



(b) Also, replacing z by z − 1 in the Maclaurin series for ez, we have

ez−1 =

∞
∑

n=0

(z − 1)n

n!
,

and

ez = e

∞
∑

n=0

(z − 1)n

n!

for |z − 1| < ∞.

Question 7.

Find the Maclaurin series expansion of the function

f(z) =
z

z4 + 9
=

z

9
· 1

1 + (z4/9)
.

Ans:
∞
∑

n=0

(−1)n

32n+2
z4n+1 (|z| <

√
3).

Solution: From the geometic series we have

f(z) =
z

9
· 1

1 + (z4/9)
=

z

9
·

∞
∑

n=0

(−1)nz4n

9n

for |z|4 < 9, that is,

f(z) =

∞
∑

n=0

(−1)nz4n+1

9n+1
=

∞
∑

n=0

(−1)nz4n+1

32n+2

for |z| <
√

3.

Question 8.

With the aid of the identity

cos z = − sin
(

z − π

2

)

,

expand cos z into a Taylor series about the point z0 = π/2.

Solution: The Maclaurin series for sin z, valid for all z ∈ C is

sin z =
∞
∑

n=0

(−1)nz2n+1

(2n + 1)!
,

and replacing z by
(

z − π

2

)

, and using the identity above, we have

cos z = −
∞
∑

n=0

(−1)n

(

z − π

2

)2n+1

(2n + 1)!
=

∞
∑

n=0

(−1)n+1
(

z − π

2

)2n+1

(2n + 1)!

for all z ∈ C.



Question 9.

What is the largest circle within which the Maclaurin series for the function tanh z converges to tanh z?
Write the first two nonzero terms of that series.

Solution: Since

tanh z =
sinh z

cosh z
,

then the largest circle within which tanh z is analytic is the one whose radius equals the distance from the
origin to the closest zero of cosh z.

Now, since
| cosh z|2 = sinh2 x + cos2 y = 0

if and only if
x = 0 and y =

(

n + 1
2

)

π, n = 0, ±1, ±2, . . .

the zeros of cosh z are
z = i

(

n + 1
2

)

π, n = 0, ±1, ±2, . . . .

The zeros of cosh z closest to the point z = 0 are

z0 =
πi

2
and z−1 = −πi

2
,

and f(z) = tanh z is analytic in the interior of the disk |z| = π

2 .

Since f(z) = tanh z = −f(−z), then only odd powers of z appear in the Maclaurin series for f(z), and

f ′(z) =
1

cosh2 z
and f ′(0) = 1.

Since

f ′′(z) = −2 sinh z

cosh3 z
= −2 tanh z sech2z.

then

f ′′′(z) =
−2(1− 2 sinh2 z)

cosh4 z
and f ′′′(0) = −2.

Therefore, the first two nonzero terms of the Maclaurin series for f(z) = tanh z are

f(z) = tanh z = 1 · z − 2

3!
· z3 + · · · = z − z3

3
+ · · ·

Question 10.

Show that when z 6= 0,
ez

z2
=

1

z2
+

1

z
+

1

2!
+

z

3!
+

z2

4!
+ · · · .

Solution: We have

ez = 1 + z +
z2

2!
+

z3

3!
+

z4

4!
+ · · ·

for |z| < ∞, and therefore, if z 6= 0, then

ez

z2
=

1

z2
+

1

z
+

1

2!
+

z

3!
+

z2

4!
+ · · ·

for 0 < |z| < ∞.



Question 11.

Represent the function

f(z) =
z + 1

z − 1

(a) by its Maclaurin series, and state where the representation is valid;

(b) by its Laurent series in the domain 1 < |z| < ∞.

Ans: (a) −1− 2
∞
∑

n=1
zn (|z| < 1); (b) 1 + 2

∞
∑

n=1

1

zn

.

Solution:

(a) For the Maclaurin series, if |z| < 1, then

f(z) =
z + 1

z − 1
= −1 + z

1− z
= −(1+z)(1+z+z2 +z3 + · · · ) = −(1+z+z2 +z3 + · · · )− (z +z2 +z3 + · · · ),

and

f(z) = −(1 + 2z + 2z2 + 2z3 + · · · ) = −1− 2

∞
∑

n=1

zn

for |z| < 1.

(b) For the Laurent series, if 1 < |z| < ∞, then

f(z) =
z + 1

z − 1
=

z + 1

z (1 − 1/z)
=

1 + z

z
· 1

1 − 1/z
,

and

f(z) =

(

1 +
1

z

) [

1 +
1

z
+

1

z2
+

1

z3
+ · · ·

]

,

that is,

f(z) = 1 +
2

z
+

2

z2
+

2

z3
+ · · · = 1 + 2

∞
∑

n=1

1

zn

for |z| > 1.

Question 12.

Show that when 0 < |z − 1| < 2,

z

(z − 1)(z − 3)
= −3

∞
∑

n=0

(z − 1)n

2n+2
− 1

2(z − 1)
.

Solution: We want the series expansion of
z

(z − 1)(z − 3)
inside the circle |z− 1| = 2, excluding the point

z = 1.

Look at

z

z − 3
=

z − 3 + 3

z − 3
= 1 +

3

z − 3
= 1 +

3

z − 1 − 2
= 1 − 3

2 − (z − 1)
= 1 − 3

2
· 1

1 − z − 1

2

for z 6= 3.



For |z − 1| < 2, we have

z

z − 3
= 1 − 3

2

∞
∑

n=0

(

z − 1

2

)

n

,

so that for 0 < |z − 1| < 2, we have

z

(z − 1)(z − 3)
=

1

z − 1
− 3

2
· 1

z − 1
− 3

4

∞
∑

n=1

(

z − 1

2

)

n−1

,

that is,

z

(z − 1)(z − 3)
= − 1

2(z − 1)
− 3

∞
∑

m=0

(z − 1)m

2m+2

for 0 < |z − 1| < 2.

Question 13.

Write the two Laurent series in powers of z that represent the function

f(z) =
1

z(1 + z2)

in certain domains, and specify those domains.

Ans:
∞
∑

n=0
(−1)n+1z2n+1 +

1

z
(0 < |z| < 1);

∞
∑

n=1
(−1)n+1 1

z2n+1
(1 < |z| < ∞).

Solution:

(a) For 0 < |z| < 1, we have

f(z) =
1

z(1 + z2)
=

1

z

[

1 − z2 + z4 − z6 + z8 − + · · ·
]

,

that is,
1

z(1 + z2)
=

1

z
− z + z3 − z5 + z7 − z9 + · · ·

for 0 < |z| < 1.

(b) For |z| > 1, we have

f(z) =
1

z(1 + z2)
=

1

z3
· 1

1 +
1

z2

=
1

z3

[

1− 1

z2
+

1

z4
− 1

z6
+ · · ·

]

,

that is,
1

z(1 + z2)
=

1

z3
− 1

z5
+

1

z7
− 1

z9
+ · · ·

for |z| > 1.


