

Math 309 - Spring-Summer 2017 Solutions to Problem Set # 6 Completion Date: Friday June 16, 2017

Question 1.

With the aid of expressions

$$|\sin z|^2 = \sin^2 x + \sinh^2 y$$

and

$$|\cos z|^2 = \cos^2 x + \sinh^2 y,$$

show that

- (a) $|\sinh y| \le |\sin z| \le \cosh y$;
- (b) $|\sinh y| \le |\cos z| \le \cosh y$.

SOLUTION:

(a) Note that

$$|\sin z|^2 = |\sin(x+iy)|^2$$

$$= |\sin x \cos(iy) + \cos x \sin(iy)|^2$$

$$= |\sin x \cosh y + i \cos x \sinh y|^2$$

$$= \sin^2 x \cosh^2 y + \cos^2 x \sinh^2 y$$

$$\leq \sin^2 x \cosh^2 y + \cos^2 x \cosh^2 y$$

$$= \cosh^2 y,$$

since $\sinh^2 y \le \cosh^2 y$ for all $y \in \mathbb{R}$, and $|\sin z| \le \cosh y$. Also,

$$|\sin z|^2 = \sin^2 x \cosh^2 y + \sinh^2 y \cos^2 x$$

$$\geq \sin^2 x \sinh^2 y + \cos^2 x \sinh^2 y$$

$$= \sinh^2 y,$$

and $|\sinh y| \le |\sin z|$.

(b) Note that

$$|\cos z|^2 = |\cos(x+iy)|^2$$

$$= |\cos x \cos(iy) - \sin x \sin(iy)|^2$$

$$= |\cos x \cosh y - i \sin x \sinh y|^2$$

$$= \cos^2 x \cosh^2 y + \sin^2 x \sinh^2 y$$

$$\leq \cos^2 x \cosh^2 y + \sin^2 x \cosh^2 y$$

$$= \cosh^2 y,$$

and $|\cos z| \le \cosh y$.

Also,

$$|\cos z|^2 = \cos^2 x \cosh^2 y + \sin^2 x \sinh^2 y$$
$$\geq \cos^2 x \sinh^2 y + \sin^2 x \sinh^2 y$$
$$= \sinh^2 y$$

and $|\cos z| \ge |\sinh y|$.

Question 2.

Show that

(a)
$$\overline{\cos(iz)} = \cos(i\overline{z})$$
 for all z;

(b)
$$\overline{\sin(iz)} = \sin(i\overline{z})$$
 if and only if $z = n\pi i$ $(n = 0, \pm 1, \pm 2, ...)$.

SOLUTION:

(a) If $z = x + iy \in \mathbb{C}$, then

$$\cos(i\overline{z}) = \cos(y + ix) = \cosh x \cos y - i \sin y \sinh x$$

and

$$\cos(iz) = \cos(-y + ix) = \cosh x \cos(-y) - i \sin(-y) \sinh x$$

that is,

$$\cos(iz) = \cosh x \cos y + i \sin y \sinh x,$$

and $\overline{\cos(iz)} = \cos(i\overline{z})$ for all $z \in \mathbb{C}$.

(b) Since

$$\sin(i\,\overline{z}) = \sin y\,\cosh x + i\,\cos y\,\sinh x$$

and

$$\overline{\sin(iz)} = -\sin y \, \cosh x - i \, \cos y \, \sinh x$$

then $\sin(i\overline{z}) = \overline{\sin(iz)}$ if and only if

$$2\sin y\,\cosh x = 0$$

$$2\cos y \sinh x = 0.$$

Now, since $\cosh x \ge 1$, the first of these equations holds if and only if $\sin y = 0$, and then in the second equation since $\cos y \ne 0$, we must have $\sinh x = 0$, therefore these two equations hold if and only if

$$x = 0$$
 and $y = n\pi$, for $n = 0, \pm 1, \pm 2, ...$

and so

$$\sin(i\,\overline{z}) = \overline{\sin(i\,z)}$$

if and only if $z = n\pi i$, for $n = 0, \pm 1, \pm 2, \ldots$

Question 3.

Find all roots of the equation $\sin z = \cosh 4$ by equating real and imaginary parts of $\sin z$ and $\cosh 4$.

Ans:
$$\left(\frac{\pi}{2} + 2n\pi\right) \pm 4i \quad (n = 0, \pm 1, \pm 2, \dots).$$

SOLUTION: Note that

$$\sin z = \sin(x + iy) = \sin x \cosh y + i \cos x \sinh y = \cosh 4$$

if and only if

$$\sin x \cosh y = \cosh 4$$

$$\sinh y \cos x = 0.$$

Now, if $\sinh y = 0$, then $\cosh y = 1$, and the first equation implies that

$$\sin x = \cosh 4 > 1$$

which is a contradiction. Therefore we must have $\sinh y \neq 0$, and the second equation implies that $\cos x = 0$, so that

$$x = \frac{(2n+1)\pi}{2}$$

for $n=0,\pm 1,\pm 2,\ldots$. For these values of x we have $\sin x=\pm 1$, and since $\cosh 4>0$, and $\cosh y>0$, then we must have $\sin x=+1$, and $\cosh y=\cosh 4$, so that

$$y = \pm 4$$
 and $x = \frac{(4n+1)\pi}{2}$

for $n = 0, \pm 1, \pm 2, \dots$

Therefore, the solutions to the equation $\sin z = \cosh 4$ are

$$z = \frac{(4n+1)\pi}{2} \pm 4i,$$

for $n = 0, \pm 1, \pm 2, \dots$

Question 4.

Show that $|\sinh x| \le |\cosh z| \le \cosh x$ by using

- (a) the identity $|\cosh z|^2 = \sinh^2 x + \cos^2 y$;
- (b) the inequalities $|\sinh y| \le |\cos z| \le \cosh y$.

SOLUTION:

(a) We have

$$|\cosh z|^2 = \sinh^2 x + \cos^2 y \ge \sinh^2 x \tag{1}$$

and

$$|\cosh z|^2 = \cosh^2 x \cos^2 y + \sinh^2 x \sin^2 y \le \cosh^2 x \cos^2 y + \cosh^2 x \sin^2 y$$

that is,

$$|\cosh z|^2 \le \cosh^2 x \tag{2}$$

and combining (1) and (2) we get $|\sinh x| \le |\cosh z| \le \cosh x$.

(b) Starting from the inequality

$$|\sinh y| \le |\cos z| \le \cosh y,$$

we replace z by iz, then since

$$iz = -y + ix$$
 and $\cos(iz) = \cosh z$,

we have

$$|\sinh(\operatorname{Im}(iz))| \le |\cos(iz)| \le \cosh(\operatorname{Im}(iz)),$$

that is,

$$|\sinh x| \le |\cosh z| \le \cosh x$$
.

Question 5.

Locate all zeros and singularities of the hyperbolic tangent function.

SOLUTION: Note that

$$\tanh z = \frac{\sinh z}{\cosh z} = 0$$
 if and only if $\sinh z = 0$ if and only if $e^z = e^{-z}$ if and only if $e^{2z} = 1$,

that is,

$$\tanh z = 0$$
 if and only if $e^{2x} \cdot e^{2iy} = 1$ if and only if $e^{2x} = 1$ and $2y = 2\pi n$ for $n = 0, \pm 1, \pm 2, \dots$

Therefore $\tanh z = 0$ if and only if $z = n\pi i$, $n = 0, \pm 1, \pm 2, \ldots$

Note that the singularities of $\tanh z$ are precisely the points $z \in \mathbb{C}$ for which $\cosh z = 0$, and

$$\cosh z = 0$$
 if and only if $e^z = -e^{-z}$ if and only if $e^{2z} = -1$,

that is,

$$\cosh z = 0$$
 if and only if $e^{2x} \cdot e^{2iy} = -1 = e^{\pi i}$ if and only if $e^{2x} = 1$ and $2y = \pi + 2\pi n$ for $n = 0, \pm 1, \pm 2, \dots$

Therefore $\cosh z = 0$ if and only if

$$z = \frac{\pi i}{2} + n\pi i = \left(n + \frac{1}{2}\right)\pi i$$

for $n = 0, \pm 1, \pm 2, \ldots$

Question 6.

Find all roots of the equation $\cosh z = -2$.

Ans:
$$\pm \ln(2+\sqrt{3}) + (2n+1)\pi i$$
 $(n=0,\pm 1,\pm 2,\ldots)$.

SOLUTION: Note that

$$\cosh z = \cosh x \cos y + i \sinh x \sin y = -2$$

if and only if

$$\cosh x \cos y = -2$$
$$\sinh x \sin y = 0$$

Now, if $\sinh x = 0$, then x = 0 and this implies that $\cosh x = 1$, and then the first equation implies that $\cos y = -2$ which is a contradiction. Therefore, $\sinh x \neq 0$, and from the second equation we must have $\sin y = 0$. Thus, y is a multiple of π , and since $\cosh x \geq 1$, then we must have $\cos y = -1$, and $\cosh x = 2$.

Therefore, $\cosh z = -2$ if and only if

$$x = \cosh^{-1}(2)$$
, and $y = (2n+1)\pi$

for $n = 0, \pm 1, \pm 2, \ldots$, that is, if and only if

$$z = \cosh^{-1}(2) + (2n+1)\pi i$$

for $n = 0, \pm 1, \pm 2, \ldots$

In order to simplify the expression for $\cosh^{-1}(2)$, note that $x = \cosh^{-1}(2)$ if and only if

$$\cosh x = \frac{e^x + e^{-x}}{2} = 2,$$

that is, if and only if

$$e^{2x} - 4e^x + 1 = 0,$$

and solving this quadratic equation, we get two real roots,

$$e^x = 2 + \sqrt{3}$$

or

$$x = \ln\left(2 \pm \sqrt{3}\right).$$

However, note that

$$\ln\left(2 - \sqrt{3}\right) = \ln\left(\frac{(2 - \sqrt{3})(2 + \sqrt{3})}{2 + \sqrt{3}}\right) = \ln\left(\frac{1}{2 + \sqrt{3}}\right) = -\ln\left(2 + \sqrt{3}\right),$$

and we have $\cosh z = -2$ if and only if

$$z = \pm \ln\left(2 + \sqrt{3}\right) + (2n+1)\pi i$$

for $n = 0, \pm 1, \pm 2, \dots$

Question 7.

Solve the equation $\sin z = 2$ for z by

- (a) equating real and imaginary parts in that equation;
- (b) Using expression $\sin^{-1} z = -i \log [i z + (1 z^2)^{1/2}]$.

SOLUTION:

(a) We have

$$\sin z = \sin(x + iy) = \sin x \cosh y + i \cos x \sinh y = 2$$

if and only if

$$\sin x \cosh y = 2$$
$$\cos x \sinh y = 0.$$

If these equations hold and $\sinh y = 0$, then y = 0 and so $\cosh y = 1$, and from the first equation this implies that $\sin x = 2$, which is a contradiction. Therefore, $\sinh y \neq 0$, and from the second equation we must have $\cos x = 0$, so that $x = \frac{(2n+1)\pi}{2}$, for $n = 0, \pm 1, \pm 2, \ldots$ Also, since $\cosh y \geq 1 > 0$, then $\sin x = +1$ and $\cosh y = 2$.

Therefore, $\sin z = 2$ if and only if

$$x = \frac{(2n+1)\pi}{2}$$
, where n is an even integer, and $y = \pm \ln(2+\sqrt{3})$,

that is, if and only if

$$z = (4n+1)\frac{\pi}{2} \pm i \ln(2+\sqrt{3})$$

for $n = 0, \pm 1, \pm 2, \dots$

(b) Using

$$\sin^{-1} z = -i \log \left[iz + (1 - z^2)^{1/2} \right]$$

with z = 2, we get

$$\sin^{-1}(2) = -i \log \left[2i + (-3)^{1/2} \right]$$
$$= -i \log[2i \pm \sqrt{3}i]$$
$$= -i \log[i(2 \pm \sqrt{3})]$$

and by definition of the logarithm,

$$\log i(2+\sqrt{3}) = \log \left[(2+\sqrt{3})e^{i\pi/2} \right] = \ln(2+\sqrt{3}) + i\left[\frac{\pi}{2} + 2\pi n \right]$$

for $n = 0, \pm 1, \pm 2, \dots$

Since

$$2 - \sqrt{3} = \frac{1}{2 + \sqrt{3}},$$

the roots of the equation $\sin z = 2$ are given by

$$z = \sin^{-1} 2 = -i \left(\pm \ln(2 + \sqrt{3}) + i \left(\frac{\pi}{2} + 2\pi n \right) \right),$$

that is,

$$z = \sin^{-1} 2 = \frac{(4n+1)\pi}{2} \pm i \ln(2+\sqrt{3})$$

for $n = 0, \pm 1, \pm 2, \ldots$, as before.