

Math 309 - Spring-Summer 2017 Solutions to Problem Set # 4 Completion Date: Friday June 2, 2017

Question 1.

Verify that the function

$$f(z) = 3x + y + i\left(3y - x\right)$$

is entire.

SOLUTION: If f(z) = 3x + y + i(3y - x), then u(x, y) = 3x + y and v(x, y) = 3y - x, so that

$$\frac{\partial u}{\partial x} = 3 = \frac{\partial v}{\partial y}$$
 and $\frac{\partial u}{\partial y} = 1 = -\frac{\partial v}{\partial x}$

Since the Cauchy-Riemann equations hold for all $z \in \mathbb{C}$ and all partial derivatives are continuous everywhere, f'(z) exists for all $z \in \mathbb{C}$ and f(z) is analytic at each $z \in \mathbb{C}$. Therefore f(z) is an entire function.

Note that f(z) = 3(x + iy) + i(-x - iy) = 3z - iz and f'(z) = 3 - i.

Question 2.

Verify that the function

$$f(z) = e^{-y} \sin x - i e^{-y} \cos x$$

is entire.

SOLUTION: If $f(z) = e^{-y} \sin x - i e^{-y} \cos x$, then $u(x, y) = e^{-y} \sin x$ and $v(x, y) = -e^{-y} \cos x$, so that

$$\frac{\partial u}{\partial x} = e^{-y}\cos x = \frac{\partial v}{\partial y}$$
 and $\frac{\partial u}{\partial y} = -e^{-y}\sin x = -\frac{\partial v}{\partial x}$

Since all partial derivatives are defined and continuous everywhere and the Cauchy-Riemann equations hold for all $z \in \mathbb{C}$, then f'(z) exists for all $z \in \mathbb{C}$, that is, f is entire.

Question 3.

For the function

$$f(z) = \frac{z^2 + 1}{(z+2)(z^2 + 2z + 2)},$$

determine the singular points of the function and state why the function is analytic everywhere except at those points.

Ans: $z = -2, -1 \pm i$.

SOLUTION: Note that $z^2 + 2z + 2 = (z+1)^2 + 1 = 0$ when $z = -1 \pm i$, and f'(z) doesn't exist for

 $z_0 = -2, \quad z_1 = -1 + i, \quad z_2 = -1 - i,$

and f is not analytic at any of these points.

Note that f'(z) exists except at each of these points, so that f is analytic everywhere except at these points.

Therefore, given any one of these points, every ϵ -neighborhood of that point contains at least one point at which f is analytic, and the points

$$z_0 = -2$$
, $z_1 = -1 + i$, $z_2 = -1 - i$

are singular points of f(z).

Question 4.

Verify that the function

$$g(z) = \ln r + i \theta \quad (r > 0, \ 0 < \theta < 2\pi)$$

is analytic in the indicated domain of definition, with derivative $g'(z) = \frac{1}{z}$. Then show that the composite function $G(z) = g(z^2 + 1)$ is analytic in the quadrant x > 0, y > 0, with derivative

$$G'(z) = \frac{2z}{z^2 + 1}.$$

Suggestion: Observe that $\text{Im}(z^2 + 1) > 0$ when x > 0, y > 0.

Solution: If $g(z) = \ln r + i \theta$ $(r > 0, 0 < \theta < 2\pi)$, then

$$u(r, \theta) = \ln r$$
 and $v(r, \theta) = \theta$

for r > 0, $0 < \theta < 2\pi$, and

$$\frac{\partial u}{\partial r} = \frac{1}{r} = \frac{1}{r} \frac{\partial v}{\partial \theta}$$
$$\frac{1}{r} \frac{\partial u}{\partial \theta} = 0 = -\frac{\partial v}{\partial r}$$

Therefore, the Cauchy-Riemann equations hold at each point of the domain r > 0, $0 < \theta < 2\pi$, and all the partial derivatives are continuous there, hence g is analytic in this domain, and

$$g'(z) = e^{-i\theta} \left(\frac{\partial u}{\partial r} + i \frac{\partial v}{\partial r} \right) = e^{-i\theta} \left(\frac{1}{r} + i 0 \right) = \frac{1}{re^{i\theta}} = \frac{1}{z},$$

for $r > 0, \ 0 < \theta < 2\pi$.

Since the function $z \mapsto z^2 + 1$ is analytic everywhere, then the composition $G(z) = g(z^2 + 1)$ is analytic wherever

$$w = z^2 + 1 = \rho e^{i\phi}$$

satisfies $\rho > 0$, $0 < \phi < 2\pi$.

Now, if x > 0 and y > 0, then $\text{Im}(z^2 + 1) = 2xy > 0$, so that $\rho > 0$ and $0 < \phi < \pi < 2\pi$, and therefore

$$G(z) = g(z^2 + 1)$$

is analytic for z = x + iy with x > 0, y > 0, and we can use the chain rule to differentiate it. Letting $w = z^2 + 1$, then

$$G'(z) = g'(w) \cdot \frac{dw}{dz} = \frac{1}{w} \cdot 2z = \frac{2z}{z^2 + 1},$$

for x > 0, y > 0.

Question 5.

Let f(z) be analytic in a domain D. Prove that f(z) must be constant throughout D if |f(z)| is constant throughout D.

Suggestion: Observe that

$$\overline{f(z)} = \frac{c^2}{f(z)}$$
 if $|f(z)| = c \ (c \neq 0).$

SOLUTION: Suppose that f(z) = u(x, y) + iv(x, y) for $z = x + iy \in D$, then

$$|f(z)|^2 = u(x,y)^2 + v(x,y)^2 = c^2$$

for $z \in D$, where $c \in \mathbb{R}$ is a constant. Differentiating with respect to x and with respect to y, we get

$$u\frac{\partial u}{\partial x} + v\frac{\partial v}{\partial x} = 0$$
$$u\frac{\partial u}{\partial y} + v\frac{\partial v}{\partial y} = 0$$

in D. Multiplying the first equation by u and the second equation by v, we get

$$u^{2}\frac{\partial u}{\partial x} + uv\frac{\partial v}{\partial x} = 0$$
$$uv\frac{\partial u}{\partial y} + v^{2}\frac{\partial v}{\partial y} = 0,$$

and using the Cauchy-Riemann equations, we have

$$u^{2}\frac{\partial u}{\partial x} + uv\frac{\partial v}{\partial x} = 0$$
$$-uv\frac{\partial v}{\partial x} + v^{2}\frac{\partial u}{\partial x} = 0.$$

Adding these two equations, we have

$$(u^2 + v^2)\frac{\partial u}{\partial x} = 0$$

on D. In an entirely similar way, we find

$$(u^2 + v^2)\frac{\partial u}{\partial y} = 0$$
, and $(u^2 + v^2)\frac{\partial v}{\partial x} = 0$, and $(u^2 + v^2)\frac{\partial v}{\partial y} = 0$,

on D. Finally, since $u^2 + v^2 = c^2$, we have

$$c^{2}\frac{\partial u}{\partial x} = c^{2}\frac{\partial u}{\partial y} = c^{2}\frac{\partial v}{\partial x} = c^{2}\frac{\partial v}{\partial y} = 0$$

on D. Now, if c = 0, then |f(z)| = 0 and therefore f(z) = 0 for all $z \in D$, however, if $c \neq 0$, then

$$\frac{\partial u}{\partial x} = \frac{\partial u}{\partial y} = \frac{\partial v}{\partial x} = \frac{\partial v}{\partial y} = 0,$$

and therefore f(z) is a constant for $z \in D$.

Alternatively, using the suggestion, if |f(z)| = c for all $z \in D$, and c = 0, then f(z) = 0 for all $z \in D$.

On the other hand, if |f(z)| = c for all $z \in D$, where $c \neq 0$, then f(z) is never 0 in D, and the function

$$\overline{f(z)} = \frac{c^2}{f(z)}$$

is also analytic on D, and since f and \overline{f} are both analytic on D, then f(z) is a constant on D.

Question 6. Show that the function

$$u(x,y) = \sinh x \sin y$$

is harmonic in some domain and find a harmonic conjugate v(x, y).

Ans: $v(x, y) = -\cosh x \cos y$.

SOLUTION: If $u(x, y) = \sinh x \sin y$, then

$$\frac{\partial^2 u}{\partial x^2}(x,y) + \frac{\partial^2 u}{\partial y^2}(x,y) = \sinh x \, \sin y - \sinh x \, \sin y = 0$$

for all $(x, y) \in \mathbb{C}$, and u is harmonic on all of \mathbb{C} . In order to find a harmonic conjugate v(x, y) of u, we use the Cauchy-Riemann equations to get

$$\frac{\partial v}{\partial y} = \frac{\partial u}{\partial x} = \cosh x \sin y$$
$$\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y} = -\sinh x \cos y$$

Integrating the first equation with respect to y holding x fixed, we have

$$v(x,y) = -\cosh x \, \cos y + h(x)$$

where h(x) is an arbitrary function of x. Using the second equation, we have

$$\frac{\partial v}{\partial x} = -\sinh x \,\cos y + h'(x) = -\sinh x \,\cos y,$$

that is, h'(x) = 0 for all x, so that h(x) = C (constant) for all x.

Therefore, for any real constant C, the function

$$v(x,y) = -\cosh x \, \cos y + C$$

is a harmonic conjugate for $u(x, y) = \sinh x \sin y$ on \mathbb{C} .

Question 7.

Verify that the function $u(r, \theta) = \ln r$ is harmonic in the domain r > 0, $0 < \theta < 2\pi$ by showing that it satisfies the polar form of Laplace's equation. Then use the Cauchy-Riemann equations in polar form, to derive the harmonic conjugate $v(r, \theta) = \theta$.

SOLUTION: If $u(r, \theta) = \ln r$, for r > 0, $0 < \theta < 2\pi$, then

$$\frac{\partial^2 u}{\partial r^2} = \frac{\partial}{\partial r} \left(\frac{\partial}{\partial r} \left(\ln r \right) \right) = \frac{\partial}{\partial r} \left(\frac{1}{r} \right) = -\frac{1}{r^2},$$

and

$$\frac{\partial u}{\partial r} = \frac{1}{r}$$
, and $\frac{\partial^2 u}{\partial \theta^2} = 0$.

Therefore,

$$\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = \left(-\frac{1}{r^2}\right) + \frac{1}{r} \left(\frac{1}{r}\right) + 0 = 0$$

for all r > 0, $0 < \theta < 2\pi$, and u is harmonic in this region.

In order to find a harmonic conjugate $v(r, \theta)$ of u, we use the Cauchy-Riemann equations

$$\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}$$
 and $\frac{1}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial v}{\partial r}$

and we want

$$\frac{\partial v}{\partial \theta} = r\left(\frac{1}{r}\right) = 1$$
$$\frac{\partial v}{\partial r} = 0$$

Integrating the first equation with respect to θ holding r fixed, we have

$$v(r,\theta) = \theta + h(r)$$

where h(r) is an arbitrary function of r. Using the second equation, we have

$$\frac{\partial v}{\partial r} = h'(r) = 0,$$

that is, h'(r) = 0 for all r > 0, so that h(r) = C (constant) for all r > 0.

Therefore, for any real constant C, the function

$$v(r,\theta) = \theta + C$$

is a harmonic conjugate for $u(r, \theta) = \ln r$ for $r > 0, \ 0 < \theta < 2\pi$.

So we may take $v(r, \theta) = \theta$, r > 0, $0 < \theta < 2\pi$, as the harmonic conjugate of $u = \ln r$.

The function $f(z) = \ln r + i \theta$, r > 0, $0 < \theta < 2\pi$, is analytic in this domain, and

$$f'(z) = e^{-i\theta} \left(\frac{\partial u}{\partial r} + i \frac{\partial v}{\partial r} \right) = e^{-i\theta} \cdot \frac{1}{r} = \frac{1}{re^{i\theta}} = \frac{1}{z}$$

for $r > 0, \ 0 < \theta < 2\pi$.

Question 8.

Show that (a)
$$\exp(2 \pm 3\pi i) = -e^2$$
; (b) $\exp\left(\frac{2+\pi i}{4}\right) = \sqrt{\frac{e}{2}}(1+i)$; (c) $\exp(z+\pi i) = -\exp z$.

SOLUTION:

(a) From the definition of the exponential function, we have

$$\exp(2\pm 3\pi\,i) = e^2(\cos 3\pi\pm i\,\sin 3\pi) = e^2(-1+i\,0) = -e^2$$

(b) From the definition of the exponential function, we have

$$\exp\left(\frac{2+\pi i}{4}\right) = e^{\frac{1}{2}} \cdot e^{\pi i/4} = \sqrt{e}\left(\cos\pi/4 + i\sin\pi/4\right) = \sqrt{\frac{e}{2}}(1+i).$$

(c) From the definition of the exponential function, we have

$$\exp(z+\pi i) = e^{x+i(y+\pi)} = e^x \left(\cos(y+\pi) + i\,\sin(y+\pi)\right) = -e^x (\cos y + i\,\sin y) = -e^{x+iy} = -e^z.$$

Question 9. Use the Cauchy-Riemann equations to show that the function

$$f(z) = \exp \overline{z}$$

is not analytic anywhere.

SOLUTION: If $f(z) = \exp \overline{z} = e^x (\cos y - i \sin y)$, then $u(x, y) = e^x \cos y$ and $v(x, y) = -e^x \sin y$, and

$$\frac{\partial u}{\partial x} = e^x \cos y, \quad \frac{\partial v}{\partial y} = -e^x \cos y$$
$$\frac{\partial u}{\partial y} = -e^x \sin y, \quad \frac{\partial v}{\partial x} = -e^x \sin y$$

The Cauchy-Riemann equations hold if and only if

$$2e^x \cos y = 0$$
$$2e^x \sin y = 0,$$

that is, if and only if $\sin y = \cos y = 0$. However, this is impossible, since $\sin^2 y + \cos^2 y = 1$. Therefore, there are **no** points $z \in \mathbb{C}$ for which $f(z) = e^{\overline{z}}$ is differentiable, and so **no** points $z \in \mathbb{C}$ at which f is analytic.

Question 10.

Write $|\exp(2z+i)|$ and $|\exp(iz^2)|$ in terms of x and y. Then show that $|\exp(2z+i) + \exp(iz^2)| \le e^{2x} + e^{-2xy}.$

SOLUTION: We have

$$|\exp(2z+i)| = |e^{2x+i(2y+1)}| = e^{2x}|e^{i(2y+1)}| = e^{2x},$$
$$|\exp(iz^2)| = |e^{i(x^2-y^2+2ixy)}| = e^{-2xy}|e^{i(x^2-y^2)}| = e^{-2xy},$$
$$|e^{2z+i} + e^{iz^2}| \le |e^{2z+i}| + |e^{iz^2}| = e^{2x} + e^{-2xy}.$$

Question 11.

and

therefore

Show that $|\exp(z^2)| \le \exp(|z|^2)$.

SOLUTION: We have

$$|e^{z^2}| = |e^{x^2 - y^2} \cdot e^{2ixy}| = |e^{x^2 - y^2}| \cdot |e^{2ixy}| = e^{x^2 - y^2}$$

and since $x^2 - y^2 \le x^2 + y^2$, and the (real) exponential function is increasing, then $e^{x^2 - y^2} \le e^{x^2 + y^2}$, so that $|e^{z^2}| = e^{x^2 - y^2} \le e^{x^2 + y^2} = e^{|z|^2}$,

that is,

$$\left|e^{z^2}\right| \leq e^{|z|^2}$$

for all $z \in \mathbb{C}$.

Question 12.

Find all values of z such that

(a) $e^z = -2;$ (b) $e^z = 1 + \sqrt{3}i;$ (c) $\exp(2z - 1) = 1.$

Ans:

(a)
$$z = \ln 2 + (2n+1)\pi i$$
 $(n = 0, \pm 1, \pm 2, ...).$
(b) $z = \ln 2 + \left(2n + \frac{1}{3}\right)\pi i$ $(n = 0, \pm 1, \pm 2, ...).$
(c) $z = \frac{1}{2} + n\pi i$ $(n = 0, \pm 1, \pm 2, ...).$

SOLUTION:

(a) Note that

$$e^{z} = -2$$
 if and only if $e^{x} \cdot e^{iy} = 2 \cdot e^{i\pi}$ if and only if $e^{x} = 2$ and $e^{iy} = e^{i\pi}$.

This last condition is true if and only if

$$x = \ln 2$$
 and $y = \pi + 2k\pi$

for $k = 0, \pm 1, \pm 2, \ldots$, that is, if and only if

$$z = \ln 2 + (2k+1)\pi i$$

for $k = 0, \pm 1, \pm 2, \dots$

(b) Note that

$$e^z = 1 + \sqrt{3}i$$
 if and only if $e^z = 2\left(\frac{1}{2} + \frac{\sqrt{3}i}{2}\right)$ if and only if $e^z = 2 \cdot e^{i\pi/3}$.

This last condition is true if and only if

$$x = \ln 2$$
 and $y = \frac{\pi}{3} + 2\pi k$

for $k = 0, \pm 1, \pm 2, \ldots$, that is, if and only if

$$z = \ln 2 + i\left(\frac{\pi}{3} + 2\pi k\right)$$

for $k = 0, \pm 1, \pm 2, \dots$

(c) Note that

$$e^{(2z-1)} = 1$$
 if and only if $e^{2x-1} \cdot e^{2iy} = 1 \cdot e^{i0}$

and this last condition is true if and only if

$$e^{2x-1} = 1 \qquad \text{and} \qquad 2y = 2\pi k,$$

for $k = 0, \pm 1, \pm 2, \ldots$, that is, if and only if

$$2x - 1 = \ln 1 = 0$$
 and $y = \pi k_z$

for $k = 0, \pm 1, \pm 2, \ldots$, that is, if and only if

$$z = \frac{1}{2} + \pi ki$$

for $k = 0, \pm 1, \pm 2, \dots$

Question 13. We showed in class that for the inversion mapping f(z) = 1/z, $z \neq 0$, the real and imaginary parts of f(z) are

$$u(x,y) = \frac{x}{x^2 + y^2}$$
 and $v(x,y) = \frac{-y}{x^2 + y^2}$.

Show that the level curves of u(x, y) are a family of circles passing through the origin with center on the real axis; while the level curves of v(x, y) are a family of circles passing through the origin with center on the imaginary axis.

SOLUTION: If u(x, y) is constant, say,

$$u(x,y) = \frac{x}{x^2 + y^2} = \frac{1}{2k},$$

then

$$x^{2} + y^{2} = 2kx$$
, that is, $(x - k)^{2} + y^{2} = k^{2}$.

Thus, the level curves of the real part of f(z) = 1/z are a family of circles centered on the real axis and passing through the origin.

Similarly, If v(x, y) is constant, say,

$$v(x,y) = \frac{-y}{x^2 + y^2} = \frac{1}{2k},$$

then

$$x^{2} + y^{2} = -2ky$$
, that is, $x^{2} + (y+k)^{2} = k^{2}$

Thus, the level curves of the imaginary part of f(z) = 1/z are a family of circles centered on the imaginary axis and passing through the origin.

Note that for any $z = x + iy \neq 0$, the gradients

$$\nabla u(x_0, y_0) = \left(\frac{\partial u}{\partial x}(x_0, y_0), \frac{\partial u}{\partial x}(x_0, y_0)\right)$$

and

$$abla v(x_0, y_0) = \left(\frac{\partial v}{\partial x}(x_0, y_0), \frac{\partial v}{\partial x}(x_0, y_0)
ight)$$

are perpendicular to the level curves of u and v, respectively, passing through the point (x_0, y_0) . In fact, from the Cauchy-Riemann equations, the inner product

$$\frac{\partial u}{\partial x}(x_0, y_0) \cdot \frac{\partial v}{\partial x}(x_0, y_0) = \frac{\partial u}{\partial x} \frac{\partial v}{\partial x} \bigg|_{(x_0, y_0)} + \frac{\partial u}{\partial y} \frac{\partial v}{\partial y} \bigg|_{(x_0, y_0)} = 0,$$

Thus, the level curves for u(x, y) and v(x, y) intersect orthogonally at (x_0, y_0) as in the figure.

This is true in general for a function and its harmonic conjugate.