

Math 309 - Spring-Summer 2017 Solutions to Problem Set # 10 Completion Date: Friday July 14, 2017

Question 1.

By differentiating the Maclaurin series representation

$$\frac{1}{1-z} = \sum_{n=0}^{\infty} z^n \qquad (|z| < 1),$$

obtain the expansions

$$\frac{1}{(1-z)^2} = \sum_{n=0}^{\infty} (n+1)z^n \qquad (|z| < 1)$$

and

$$\frac{2}{(1-z)^3} = \sum_{n=0}^{\infty} (n+1)(n+2)z^n \qquad (|z|<1).$$

Solution: Since $\frac{1}{1-z} = \sum_{n=0}^{\infty} z^n$ for |z| < 1, differentiating the right-hand side term by term, we have

$$\frac{1}{(1-z)^2} = \frac{d}{dz} \left(\frac{1}{1-z} \right) = \sum_{n=0}^{\infty} nz^{n-1} = \sum_{n=1}^{\infty} nz^{n-1} = \sum_{m=0}^{\infty} (m+1)z^m$$

for |z| < 1.

Differentiating again, we have

$$\frac{2}{(1-z)^3} = \frac{d}{dz} \left(\frac{1}{(1-z)^2} \right) = \sum_{m=0}^{\infty} (m+1) \cdot mz^{m-1} = \sum_{m=1}^{\infty} (m+1) \cdot mz^{m-1} = \sum_{n=0}^{\infty} (n+2)(n+1)z^n$$

for |z| < 1.

Question 2.

By substituting 1/(1-z) for z in the expansion

$$\frac{1}{(1-z)^2} = \sum_{n=0}^{\infty} (n+1)z^n \qquad (|z| < 1),$$

found in Question 1, derive the Laurent series representation

$$\frac{1}{z^2} = \sum_{n=2}^{\infty} \frac{(-1)^n (n-1)}{(z-1)^n} \qquad (1 < |z-1| < \infty).$$

SOLUTION: Since

$$\frac{1}{(1-z)^2} = \sum_{n=0}^{\infty} (n+1)z^n$$

for |z| < 1, replacing z by $\frac{1}{1-z}$ in this expression, we have

$$\frac{1}{\left(1 - \frac{1}{1 - z}\right)^2} = \sum_{n=0}^{\infty} (n+1) \left(\frac{1}{1 - z}\right)^n,$$

that is,

$$\frac{(1-z)^2}{z^2} = \sum_{n=0}^{\infty} \frac{(n+1)}{(1-z)^n}$$

for $\left|\frac{1}{z-1}\right| < 1$, that is, for |z-1| > 1.

Therefore,

$$\frac{1}{z^2} = \sum_{n=0}^{\infty} \frac{(n+1)}{(1-z)^{n+2}} = \sum_{m=2}^{\infty} \frac{(m-1)}{(1-z)^m} = \sum_{m=2}^{\infty} \frac{(-1)^m (m-1)}{(z-1)^m}$$

for $1 < |z - 1| < \infty$.

Question 3.

Find the Taylor series for the function

$$\frac{1}{z} = \frac{1}{2 + (z - 2)} = \frac{1}{2} \cdot \frac{1}{1 + (z - 2)/2}$$

about the point $z_0 = 2$. Then by differentiating that series term by term, show that

$$\frac{1}{z^2} = \frac{1}{4} \sum_{n=0}^{\infty} (-1)^n (n+1) \left(\frac{z-2}{2}\right)^n \qquad (|z-2| < 2).$$

SOLUTION: We have

$$\frac{1}{z} = \frac{1}{2 + (z - 2)} = \frac{1}{2} \cdot \frac{1}{1 + (z - 2)/2} = \frac{1}{2} \cdot \sum_{n=0}^{\infty} \frac{(-1)^n (z - 2)^n}{2^n}$$

for |z - 2| < 2.

Differentiating this expression term by term, we have

$$-\frac{1}{z^2} = \frac{1}{2} \cdot \sum_{n=0}^{\infty} \frac{(-1)^n n(z-2)^{n-1}}{2^n} = \frac{1}{2} \cdot \sum_{n=1}^{\infty} \frac{(-1)^n n(z-2)^{n-1}}{2^n} = \frac{1}{2} \cdot \sum_{m=0}^{\infty} \frac{(-1)^{m+1} (m+1)(z-2)^m}{2^{m+1}},$$

for |z-2| < 2, that is,

$$\frac{1}{z^2} = \frac{1}{4} \cdot \sum_{m=0}^{\infty} \frac{(-1)^m (m+1)(z-2)^m}{2^m}$$

for |z - 2| < 2.

Question 4.

With the aid of series, prove that the function f defined by means of the equations

$$f(z) = \begin{cases} \frac{e^z - 1}{z} & \text{when } z \neq 0, \\ 1 & \text{when } z = 0 \end{cases}$$

is entire.

SOLUTION:

The Maclaurin series for e^z is

$$e^z = 1 + z + \frac{z^2}{2!} + \frac{z^3}{3!} + \dots + \frac{z^n}{n!} + \dots$$

and this series converges to e^z for all z, $|z| < \infty$.

If $z \neq 0$, then

$$\frac{e^z - 1}{z} = 1 + \frac{z}{2!} + \frac{z^2}{3!} + \dots + \frac{z^n}{(n+1)!} + \dots,$$

that is, the series converges to $\frac{e^z-1}{z}$ for all $z\neq 0$, while if z=0, the series converges to 1.

Therefore, if

$$f(z) = \begin{cases} \frac{e^z - 1}{z} & \text{when } z \neq 0, \\ 1 & \text{when } z = 0, \end{cases}$$

then

$$f(z) = 1 + \frac{z}{2!} + \frac{z^2}{3!} + \dots + \frac{z^n}{(n+1)!} + \dots$$

for all $z \in \mathbb{C}$, and f is analytic at each $z \in \mathbb{C}$, that is, f is entire.

Question 5.

Use multiplication of series to show that

$$\frac{e^z}{z(z^2+1)} = \frac{1}{z} + 1 - \frac{1}{2}z - \frac{5}{6}z^2 + \dots \qquad (0 < |z| < 1).$$

SOLUTION: We have

$$e^{z} \cdot \frac{1}{z^{2} + 1} = (1 + z + \frac{z^{2}}{2!} + \frac{z^{3}}{3!} + \cdots) (1 - z^{2} + z^{4} - z^{6} + \cdots)$$

for |z| < 1, that is,

$$e^{z} \cdot \frac{1}{z^{2} + 1} = 1 + z - \frac{1}{2}z^{2} + \left(\frac{1}{6} - 1\right)z^{3} + \cdots$$

for |z| < 1, that is,

$$e^z \cdot \frac{1}{z^2 + 1} = 1 + z - \frac{1}{2}z^2 - \frac{5}{6}z^3 + \cdots$$

for |z| < 1, and therefore,

$$\frac{e^z}{z(z^2+1)} = \frac{1}{z} + 1 - \frac{1}{2}z - \frac{5}{6}z^2 + \cdots$$

for 0 < |z| < 1.

Question 6.

By writing $\csc z = 1/\sin z$ and then using division, show that

$$\csc z = \frac{1}{z} + \frac{1}{3!}z + \left[\frac{1}{(3!)^2} - \frac{1}{5!}\right]z^3 + \dots \qquad (0 < |z| < \pi).$$

Solution: Since $\sin z = 0$ for $z = 0, \pm \pi, \pm 2\pi, \ldots$, then

$$\csc z = \frac{1}{\sin z}$$

is analytic for $0 < |z| < \pi$.

Now, for $0 < |z| < \pi$

$$z \csc z = \frac{z}{z - \frac{z^3}{3!} + \frac{z^5}{5!} - \frac{z^7}{7!} + \dots} = \frac{1}{1 - \frac{z^2}{3!} + \frac{z^4}{5!} - \frac{z^6}{7!} + \dots}$$

is analytic since the denominator doesn't vanish for $0 < |z| < \pi$; and for z = 0, the series converges to 1. Therefore the function

$$g(z) = \begin{cases} z \csc z & 0 < |z| < \pi \\ 1 & z = 0 \end{cases}$$

is analytic in the entire disk $|z| < \pi$, and so has a Maclaurin series expansion

$$g(z) = a_0 + a_1 z + a_2 z^2 + a_3 z^3 + \dots + a_n z^n + \dots$$

for $|z| < \pi$.

Now, for $0 < |z| < \pi$,

$$z = g(z) \cdot \sin z = (a_0 + a_1 z + a_2 z^2 + a_3 z^3 + a_4 z^4 + \cdots)(z - \frac{z^3}{3!} + \frac{z^5}{5!} - + \cdots),$$

that is,

$$z = a_0 z + a_1 z^2 + \left(a_2 - \frac{a_0}{3!}\right) z^3 + \left(a_3 - \frac{a_1}{3!}\right) z^4 + \left(a_4 - \frac{a_2}{3!} + \frac{a_0}{5!}\right) z^5 + \cdots$$

for $|z| < \pi$.

So we must have

$$a_0 = 1$$
 $a_1 = 0$
 $a_2 = \frac{1}{3!}$
 $a_3 = 0$
 $a_4 = \frac{1}{(3!)^2} - \frac{1}{5!}$

and

$$g(z) = 1 + \frac{1}{3!}z^2 + \left[\frac{1}{(3!)^2} - \frac{1}{5!}\right]z^4 + \cdots$$

for $|z| < \pi$.

Therefore,

$$\csc z = \frac{g(z)}{z} = \frac{1}{z} + \frac{1}{3!}z + \left[\frac{1}{(3!)^2} - \frac{1}{5!}\right]z^3 + \cdots$$

for $0 < |z| < \pi$.