

Math 309 - Spring-Summer 2017 Solutions to Problem Set # 1

Completion Date: Friday May 12, 2017

Question 1.

Show that

(a) $\operatorname{Re}(iz) = -\operatorname{Im} z$; (b) $\operatorname{Im}(iz) = \operatorname{Re} z$.

Solution: If z = x + iy, then iz = -y + ix, so that

(a) $\operatorname{Re}(iz) = -y = -\operatorname{Im} z$, and

(b) $\operatorname{Im}(iz) = x = \operatorname{Re} z$.

Question 2.

Reduce the quantity $\frac{5i}{(1-i)(2-i)(3-i)}$ to a real number.

SOLUTION: We have

$$\frac{5i}{(1-i)(2-i)(3-i)} = \frac{5i}{(1-i)(5-5i)} = \frac{i}{(1-i)^2} = \frac{i}{-2i} = -\frac{1}{2}.$$

Question 3.

Reduce the quantity $(1-i)^4$ to a real number.

SOLUTION: We have

$$(1-i)^4 = [(1-i)^2]^2 = (-2i)^2 = 4i^2 = -4.$$

Question 4.

Verify that $\sqrt{2}|z| \ge |\text{Re } z| + |\text{Im } z|$.

Suggestion: Reduce this inequality to $(|x| - |y|)^2 \ge 0$.

SOLUTION: Note that

$$0 \leq \left(|\operatorname{Re}\,z| - |\operatorname{Im}\,z| \right)^2 = |\operatorname{Re}\,z|^2 - 2|\operatorname{Re}\,z| \, |\operatorname{Im}\,z| + |\operatorname{Im}\,z|^2,$$

so that

$$2|\text{Re }z|\,|\text{Im }z| \le |\text{Re }z|^2 + |\text{Im }z|^2,$$

and

$$|\mathrm{Re}\ z|^2 + 2|\mathrm{Re}\ z|\,|\mathrm{Im}\ z| + |\mathrm{Im}\ z|^2 \leq 2\left(|\mathrm{Re}\ z|^2 + |\mathrm{Im}\ z|^2\right),$$

$$(|\text{Re } z| + |\text{Im } z|)^2 \le 2(|\text{Re } z|^2 + |\text{Im } z|^2) = 2|z|^2,$$

and therefore,

$$|\text{Re } z| + |\text{Im } z| \le \sqrt{2} |z|.$$

Question 5.

In each case, sketch the set of points determined by the given condition:

(a)
$$|z - 1 + i| = 1$$
; (b) $|z + i| \le 3$; (c) $|z - 4i| \ge 4$.

(b)
$$|z+i| \le 3$$

(c)
$$|z - 4i| \ge 4$$

SOLUTION:

(a) The set $\{z \in \mathbb{C} \,:\, |z-1+i|=1\}$ is the circle centered at 1-i with radius 1.

(b) The set $\{z \in \mathbb{C} : |z+i| \leq 3\}$ is the closed disk centered at -i with radius 3.

(c) The set $\{z \in \mathbb{C} : |z-4i| \ge 4\}$ is the set of all points on and outside the circle centered at 4i with radius 4.

Question 6.

Use the properties of conjugates and modulii established in class to show that

(a)
$$\overline{z} + 3i = z - 3i$$

(b)
$$\overline{iz} = -i \, \overline{z};$$

(c)
$$\overline{(2+i)^2} = 3 - 4i$$

(a)
$$\overline{z+3i} = z - 3i$$
 (b) $i\overline{z} = -i\overline{z};$ (c) $\overline{(2+i)^2} = 3 - 4i;$ (d) $|(2\overline{z}+5)(\sqrt{2}-i)| = \sqrt{3}|2z+5|.$

SOLUTION:

(a) Since
$$\overline{\overline{z}} = z$$
, then $\overline{\overline{z} + 3i} = \overline{\overline{z}} + \overline{3i} = z - 3i$.

(b)
$$\overline{iz} = \overline{-y + ix} = -y - ix = -i(x - iy) = -i\overline{z}$$
.

(c)
$$\overline{(2+i)^2} = (\overline{2+i})^2 = (2-i)^2 = 3-4i$$
.

(d)
$$|(2\overline{z}+5)(\sqrt{2}-i)| = |2\overline{z}+5| \cdot |\sqrt{2}-i| = \sqrt{3} \cdot |2\overline{z}+5| = \sqrt{3} \cdot |2\overline{z}+5|$$
.

Question 7.

Use established properties of moduli to show that when $|z_3| \neq |z_4|$,

$$\left| \frac{z_1 + z_2}{z_3 + z_4} \right| \le \frac{|z_1| + |z_2|}{||z_3| - |z_4||}.$$

SOLUTION: If $|z_3| \neq |z_4|$, then

$$|z_1 + z_2| \le |z_1| + |z_2|$$
 and $|z_3 + z_4| \ge ||z_3| - |z_4||$,

so that

$$\left| \frac{z_1 + z_2}{z_3 + z_4} \right| \le \frac{|z_1| + |z_2|}{||z_3| - |z_4||}.$$

Question 8.

Find the principal argument Arg z when $z = \frac{i}{-2 - 2i}$.

Ans.
$$-\frac{3\pi}{4}$$
.

SOLUTION: Note that

$$z = \frac{i}{-2 - 2i} = -\frac{1}{2} \cdot \frac{i}{i+1} = -\frac{1}{2}i\left(\frac{1-i}{2}\right) = -\frac{1}{4}(1+i),$$

that is,

$$z = -\frac{\sqrt{2}}{4} \left(\frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}} \right) = \frac{\sqrt{2}}{4} \left[\cos \left(-\frac{3\pi}{4} \right) + i \sin \left(-\frac{3\pi}{4} \right) \right].$$

Therefore, $|z| = \frac{\sqrt{2}}{4}$ and $Arg(z) = -\frac{3\pi}{4}$.

Question 9.

Using the fact that the modulus $|e^{i\theta} - 1|$ is the distance between the points $e^{i\theta}$ and 1, give a geometric argument to find a value of θ in the interval $0 \le \theta < 2\pi$ that satisfies the equation $|e^{i\theta} - 1| = 2$.

Ans. π .

SOLUTION: Note that

$$|e^{i\theta} - 1|^2 = |\cos \theta + i\sin \theta - 1|^2 = (\cos \theta - 1)^2 + \sin^2 \theta = 4$$

if and only if $\cos \theta = -1$, that is, if and only if $\theta = \pi$. Geometrically, $|e^{i\theta} - 1|$ is the distance between the points $z_1 = e^{i\theta}$ and $z_2 = 1$ on the unit circle $\{z \in \mathbb{C} : |z| = 1\}$, and this is a maximum of 2 when $\theta = \pi$.

Question 10.

Establish the identity

$$1 + z + z^{2} + \dots + z^{n} = \frac{1 - z^{n+1}}{1 - z} \qquad (z \neq 1)$$

and then use it to derive Lagrange's trigonometric identity

$$1 + \cos \theta + \cos 2\theta + \dots + \cos n\theta = \frac{1}{2} + \frac{\sin [(2n+1)\theta/2]}{2\sin (\theta/2)} \qquad (0 < \theta < 2\pi).$$

Suggestion: As for the first identity, write $S = 1 + z + z^2 + \cdots + z^n$ and consider the difference S - zS. To derive the second identity, write $z = e^{i\theta}$ in the first one.

SOLUTION: If $z \neq 1$, then

$$(1-z)(1+z+z^2+\cdots+z^n) = 1+z+z^2+\cdots+z^n - (z+z^2+\cdots+z^{n+1})$$
$$= 1-z^{n+1}.$$

so that

$$1 + z + z^{2} + \dots + z^{n} = \begin{cases} \frac{1 - z^{n+1}}{1 - z} & \text{if } z \neq 1\\ n + 1 & \text{if } z = 1. \end{cases}$$

Taking $z = e^{i\theta}$, where $0 < \theta < 2\pi$, then $z \neq 1$, so that

$$1 + e^{i\theta} + e^{2i\theta} + \dots + e^{ni\theta} = \frac{1 - e^{(n+1)i\theta}}{1 - e^{i\theta}} = \frac{1 - e^{(n+1)i\theta}}{-e^{i\theta/2} \left(e^{i\theta/2} - e^{-i\theta/2}\right)}$$

$$= \frac{-e^{-i\theta/2} \left(1 - e^{(n+1)i\theta}\right)}{2i \sin(\theta/2)} = \frac{i \left(e^{-i\theta/2} - e^{(n+\frac{1}{2})i\theta}\right)}{2 \sin(\theta/2)}$$

$$= \frac{1}{2} + \frac{\sin\left(n + \frac{1}{2}\right)\theta}{2\sin(\theta/2)} + \frac{i}{2\sin(\theta/2)} \left(\cos(\theta/2) - \cos\left(n + \frac{1}{2}\right)\theta\right)$$

Equating real and imaginary parts, we have

$$1 + \cos \theta + \cos 2\theta + \dots + \cos n\theta = \frac{1}{2} + \frac{\sin \left(n + \frac{1}{2}\right)\theta}{2\sin \left(\theta/2\right)}$$

and

$$\sin \theta + \sin 2\theta + \dots + \sin n\theta = \frac{1}{2} \cot (\theta/2) - \frac{\cos (n + \frac{1}{2}) \theta}{2 \sin (\theta/2)}.$$