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In this note, as an application of the derivative and roots of unity, we give a proof of the following identity.

Theorem. For each positive integer n > 2, we have
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Proof. For n > 2, the n'® roots of unity are solutions to the equation 2™ — 1 = 0, and are given by

2mi Ami 2(n—1)mi
ZO:17Z1:en722:en7"'7Zn—1:e " )
so that N
2mi 4mi 2n—1)me
2" — :(2—1)(z—en)(z—en)---(z—e D )
Therefore,

2" —1 ( 27'r'£)( 47'ri) ( 2(n—1)1ri)
= zZ—€en zZ—€en z— e n R
z—1
_ (1—622i) (1 _64;@)“. (1_62@;1)”)'
n= (l—e2gi) (1—64?)-'-(1—62(n;1)ﬂ), (%)

and taking the complex conjugate of (x), we have
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Now, for each 1 < k <n — 1, from Euler’s formula and the double angle formula we have
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and letting z — 1, we get
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and multiplying (x) and (xx), we have
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taking the nonnegative square root of both sides of this equation, we get the desired result.



