Math 309 Spring-Summer 2017
Mathematical Methods for Electrical Engineers

Complex Variable Evaluation of Dirichlet’s Integral

Department of Mathematical and Statistical Sciences

University of Alberta

Date: Wednesday July 26, 2017

In this note we use the theory of residues to evaluate Dirichlet’s integral.
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Proof. We evaluate the integral using the Cauchy-Goursat theorem and integrating the function e%*/z
around the indented contour C shown below, where 0 < e <1 < R.
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Since the function e'#/z is analytic inside and on the contour C, by the Cauchy-Goursat theorem
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Therefore,
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and

e On Cgr: z = Re®, where 0 < 6 < 7, and
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From Jordan’s inequality, we have
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and therefore,
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e On C.: z=ce”, where 0 < 8 < 7, and the Laurent series expansion of e“/z about z = 0 is
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valid for 0 < |z] < oo, and € /2 has a simple pole at z = 0 with residue 1. The function
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for z € C is an entire function and is continuous and hence bounded on the disk |z| < 1, so there is an M > 0
such that |g(z)] < M for |z| < 1. Therefore,
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and since 0 < € < 1, then
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Letting e — 0 and R — oo in (x), we get
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that is,

It is instructive to compare the complex variable proof of this theorem with a proof using real variable
techniques.



