THE STY OF MARKET

Math 309 Spring-Summer 2017 Mathematical Methods for Electrical Engineers

Real Variable Evaluation of Dirichlet's Integral

Department of Mathematical and Statistical Sciences University of Alberta

Date: Wednesday July 26, 2017

In this note we will study Dirichet's integral, and give an elementary real variable method for evaluating it.

Theorem.

(a)
$$\int_0^\infty \frac{\sin x}{x} \, dx = \frac{\pi}{2}.$$

(b)
$$\int_0^\infty \left| \frac{\sin x}{x} \right| dx = +\infty.$$

Proof. The following proof is outlined on page 397, Miscellaneous Exercise 39, in G. H. Hardy's A Course of Pure Mathematics.

(a) For each $n \geq 1$, define

$$u_n = \int_0^{\pi/2} \sin 2nx \cot x \, dx$$
 and $v_n = \int_0^{\pi/2} \frac{\sin 2nx}{x} \, dx$,

and consider the difference $u_{n+1} - u_n$,

$$u_{n+1} - u_n = \int_0^{\pi/2} \left[\sin 2(n+1)x - \sin 2nx \right] \cot x \, dx$$

$$= 2 \int_0^{\pi/2} \sin x \cos(2n+1)x \cot x \, dx$$

$$= 2 \int_0^{\pi/2} \cos x \cos(2n+1)x \, dx$$

$$= \int_0^{\pi/2} \left[\cos(2n+2)x + \cos 2nx \right] \, dx$$

$$= \frac{1}{2(n+1)} \sin 2(n+1)x \Big|_0^{\pi/2} + \frac{1}{2n} \sin 2nx \Big|_0^{\pi/2}$$

$$= 0.$$

Therefore, $u_{n+1} - u_n = 0$ for all $n \ge 1$. Thus, u_n is constant for $n \ge 1$, and

$$u_1 = \int_0^{\pi/2} \sin 2x \cot x \, dx = 2 \int_0^{\pi/2} \cos^2 x \, dx$$
$$= \int_0^{\pi/2} (1 + \cos 2x) \, dx = \frac{\pi}{2} + \frac{\sin 2x}{2} \Big|_0^{\pi/2}$$
$$= \frac{\pi}{2},$$

and therefore $u_n = u_1 = \pi/2$ for all $n \ge 1$.

Making the substitution t=2nx in the integral $\int_0^{\pi/2} (\sin 2nx/x) dx$, then

$$v_n = \int_0^{\pi/2} \frac{\sin 2nx}{x} \, dx = \int_0^{n\pi} \frac{\sin t}{t} \, dt,\tag{1}$$

and integrating by parts, we have

$$u_n - v_n = \int_0^{\pi/2} \left(\cot x - \frac{1}{x} \right) \sin 2nx \, dx$$

$$= -\frac{\cos 2nx}{2n} \left(\cot x - \frac{1}{x} \right) \Big|_0^{\pi/2}$$

$$-\frac{1}{2n} \int_0^{\pi/2} \left(\csc^2 x - \frac{1}{x^2} \right) \cos 2nx \, dx,$$

and therefore

$$u_n - v_n = \frac{(-1)^n}{n\pi} + \lim_{p \to 0^+} \frac{\cos 2np}{2n} \left(\cot p - \frac{1}{p} \right)$$
$$-\frac{1}{2n} \int_0^{\pi/2} \left(\csc^2 x - \frac{1}{x^2} \right) \cos 2nx \, dx. \tag{2}$$

Using L'Hospital's rule, we have

$$\lim_{p\to 0^+}\left(\cot p-\frac{1}{p}\right)=0,\quad \text{and}\quad \lim_{x\to 0^+}\left(\csc^2 x-\frac{1}{x^2}\right)=\frac{1}{3}.$$

Therefore, we may redefine the integrand on the right-hand side of (2) to be continuous on the interval $[0, \pi/2]$, and hence bounded there. Thus, there exists a constant M > 0 such that

$$\left| \int_0^{\pi/2} \left(\csc^2 x - \frac{1}{x^2} \right) \cos 2nx \, dx \right| \le \int_0^{\pi/2} \left| \left(\csc^2 x - \frac{1}{x^2} \right) \cos 2nx \right| dx$$

$$\le \frac{\pi M}{2}.$$

Letting $n \to \infty$ in (1) and (2), we obtain

$$\lim_{n \to \infty} v_n = \lim_{n \to \infty} (v_n - u_n + u_n) = \lim_{n \to \infty} (v_n - u_n) + \lim_{n \to \infty} u_n,$$

so that

$$\int_0^\infty \frac{\sin t}{t} \, dt = \frac{\pi}{2}.$$

(b) For each positive integer n, we have

$$\int_0^{(n+1)\pi} \left| \frac{\sin x}{x} \right| dx = \sum_{k=0}^n \int_{k\pi}^{(k+1)\pi} \left| \frac{\sin x}{x} \right| dx$$

$$= \sum_{k=0}^n \int_0^{\pi} \left| \frac{\sin(t+k\pi)}{t+k\pi} \right| dt = \sum_{k=0}^n \int_0^{\pi} \left| \frac{(-1)^k \sin t}{t+k\pi} \right| dt$$

$$= \sum_{k=0}^n \int_0^{\pi} \frac{|\sin t|}{t+k\pi} dt = \sum_{k=0}^n \int_0^{\pi} \frac{\sin t}{t+k\pi} dt,$$

where the last equality follows since $\sin t \ge 0$ for $0 \le t \le \pi$. For $0 < t < \pi$, we have $1/(t + k\pi) > 1/[\pi(k+1)]$, so that

$$\int_0^{(n+1)\pi} \left| \frac{\sin x}{x} \right| dx > \sum_{k=0}^n \frac{1}{\pi(k+1)} \int_0^{\pi} \sin t \, dt = \frac{2}{\pi} \sum_{k=0}^n \frac{1}{k+1}.$$

Now, for $x \ge 1$ we have

$$\log x = \int_{1}^{x} \frac{1}{t} dt \le \int_{1}^{x} 1 dt = x - 1,$$

and replacing x by (k+2)/(k+1), we have

$$\log\left(\frac{k+2}{k+1}\right) \le \frac{1}{k+1}$$

for all $k \geq 0$. Therefore,

$$\sum_{k=0}^{n} \frac{1}{k+1} \ge \sum_{k=0}^{n} (\log(k+2) - \log(k+1)) = \log(n+2),$$

so

$$\lim_{n \to \infty} \sum_{k=0}^{n} \frac{1}{k+1} \ge \lim_{n \to \infty} \log(n+2) = +\infty,$$

and this implies that

$$\int_0^\infty \left| \frac{\sin x}{x} \right| dx = +\infty.$$

It is instructive to compare the real variable proof of part (a) of this theorem with a proof using Cauchy's residue theorem.