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In this note we will study Dirichet’s integral, and give an elementary real variable method for evaluating it.

Theorem.

Proof. The following proof is outlined on page 397, Miscellaneous Exercise 39, in G. H. Hardy’s A Course
of Pure Mathematics.
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Therefore, uy,+1 — u,, = 0 for all n > 1. Thus, u, is constant for n > 1, and
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and therefore u,, = u; = 7/2 for all n > 1.
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Making the substitution ¢ = 2nx in the integral / (sin 2na/x) dx, then
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and integrating by parts, we have
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and therefore
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Using L’Hospital’s rule, we have
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Therefore, we may redefine the integrand on the right-hand side of (2) to be continuous on the interval
[0,7/2], and hence bounded there. Thus, there exists a constant M > 0 such that
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Letting n — oo in (1) and (2), we obtain
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(b) For each positive integer n, we have
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where the last equality follows since sint > 0 for 0 < ¢ < w. For 0 < ¢ < 7, we have 1/(t + kmw) >
1/[m(k + 1)], so that
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Now, for z > 1 we have
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for all k£ > 0. Therefore,
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and this implies that
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It is instructive to compare the real variable proof of part (a) of this theorem with a proof using Cauchy’s
residue theorem.



