

Math 309 - Spring-Summer 2017 Problem Set # 9

Completion Date: July 7, 2017

Question 1. Show in two ways that the sequence

$$z_n = -2 + i \frac{(-1)^n}{n^2}$$
 $(n = 1, 2, ...)$

converges to -2.

Question 2.

Let r_n denote the moduli and Θ_n the principal values of the arguments of the complex numbers

$$z_n = -2 + \frac{i(-1)^n}{n^2}$$

for $n \ge 1$. Show that the sequence r_n (n = 1, 2, ...) converges but that the sequence Θ_n (n = 1, 2, ...) does not

Question 3.

- (a) Show that if the sequence $\{z_n\}_{n\geq 1}$ converges, then $(z_n-z_{n-1})\to 0$ as $n\to\infty$.
- (b) Let $z_0 \neq 0$. Show that the sequence $\{(z/z_0)^n\}_{n\geq 1}$ diverges if $|z|=|z_0|$ and $z\neq z_0$.

Hint: For $|z| = |z_0|$, show first that

$$\left| \left(\frac{z}{z_0} \right)^n - \left(\frac{z}{z_0} \right)^{n-1} \right| = \left| \frac{z}{z_0} - 1 \right| > 0,$$

and use the result of part (a).

Question 4.

Show that

if
$$\lim_{n \to \infty} z_n = z$$
, then $\lim_{n \to \infty} |z_n| = |z|$.

Question 5.

Obtain the Maclaurin series representation

$$z \cosh(z^2) = \sum_{n=0}^{\infty} \frac{z^{4n+1}}{(2n)!} \qquad (|z| < \infty).$$

Question 6.

Obtain the Taylor series

$$e^z = e \sum_{n=0}^{\infty} \frac{(z-1)^n}{n!}$$
 $(|z-1| < \infty)$

for the function $f(z) = e^z$ by

- (a) using $f^{(n)}(1)$ (n = 0, 1, 2...);
- (b) writing $e^z = e^{z-1}e$.

Question 7.

Find the Maclaurin series expansion of the function

$$f(z) = \frac{z}{z^4 + 9} = \frac{z}{9} \cdot \frac{1}{1 + (z^4/9)}.$$

Question 8.

With the aid of the identity

$$\cos z = -\sin\left(z - \frac{\pi}{2}\right),\,$$

expand $\cos z$ into a Taylor series about the point $z_0 = \pi/2$.

Question 9.

What is the largest circle within which the Maclaurin series for the function $\tanh z$ converges to $\tanh z$? Write the first two nonzero terms of that series.

Question 10.

Show that when $z \neq 0$,

$$\frac{e^z}{z^2} = \frac{1}{z^2} + \frac{1}{z} + \frac{1}{2!} + \frac{z}{3!} + \frac{z^2}{4!} + \cdots$$

Question 11.

Represent the function

$$f(z) = \frac{z+1}{z-1}$$

- (a) by its Maclaurin series, and state where the representation is valid;
- (b) by its Laurent series in the domain $1 < |z| < \infty$.

Ans: (a)
$$-1 - 2\sum_{n=1}^{\infty} z^n$$
 ($|z| < 1$); (b) $1 + 2\sum_{n=1}^{\infty} \frac{1}{z^n}$.

Question 12.

Show that when 0 < |z - 1| < 2,

$$\frac{z}{(z-1)(z-3)} = -3\sum_{n=0}^{\infty} \frac{(z-1)^n}{2^{n+2}} - \frac{1}{2(z-1)}.$$

Question 13.

Write the two Laurent series in powers of z that represent the function

$$f(z) = \frac{1}{z(1+z^2)}$$

in certain domains, and specify those domains.

$$\textit{Ans: } \sum_{n=0}^{\infty} (-1)^{n+1} z^{2n+1} + \frac{1}{z} \quad (0 < |z| < 1); \qquad \sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{z^{2n+1}} \quad (1 < |z| < \infty).$$